GPU Compiler
Optimizations

Fuli Ma, Kit Morton, Austin Sharp, Chris Schultz
Objective

To show high level optimization techniques used by compilers for GPU architectures.

Keep in mind...

Different Architectures \rightarrow Different Optimizations
Outline

Background
Overview of GPU Architecture
Optimizations
Future Possibilities
Why GPU Programming?

- Massive parallelism
 - 1000s of threads vs 2-8 threads
- Take advantage of all available resources
 - For heavy computation tasks
Why Compiler Optimizations?

- GPU programming models may be unfamiliar to many programmers
- GPU architectures differ
- Performance increase
Optimization Review

● Pipeline Scheduling
 ○ Rearrange instructions
 ○ Avoid RAW and Control Hazards

● Loop Unrolling
 ○ More scheduling opportunities
 ○ Eliminate branch instructions

● Memory-based Optimizations
 ○ Merging Arrays (spatial locality)
 ○ Loop Interchange (temporal locality)
 ○ Loop Fusion (temporal locality)
 ○ Blocking (temporal locality)
Background

- Kernel
- GPU Architecture
 - Warp / Block
 - Memory Hierarchy
Kernel

- Essentially a function that runs over many threads at once
- All threads run the same code
 - Different data
 - D-cache more important than I-cache
Kernel

Example

```c
__global__ void add( int *a, int *b, int *c ) {
    int tid = blockIdx.x;  // handle the data at this index
    if (tid < N)
        c[tid] = a[tid] + b[tid];
}
```
GPU Architecture

- Threads (FUs)
- Blocks
- Memory Hierarchy
Threads

- One thread corresponds to one FU
- Executes a kernel function
- More lightweight than threads in OS
 - Not managed by operating system
 - Eliminates context switching
 - No I/O handling
Blocks

- Group of threads
 - Different amongst architectures
- Each runs the same kernel
- Threads within a block have unique IDs
- All threads in a block execute same instructions on different data.
Memory (Fast to Slow)

- Register file
- Shared Memory
- Constant Memory
- Texture memory
- Local memory and Global memory
Register File

● Each thread can read and write to registers
● Data is only visible to the thread who wrote it
 ○ Logically, registers are visible per thread
 ○ Architecturally registers are shared within block
 ○ Registers allocated to a thread as needed

● Register pressure
 ○ If not enough for task, pushed out to local memory
Shared Memory

- Visible to all the threads within the block
 - Clears once kernel completes
- This allows for thread-to-thread communication
Shared Memory

● **N-shared memory banks**
 ○ $N = \text{number of threads in a block}$

● Extra space can be used as cache for global memory
Constant Memory

- Read only
- Will not change throughout a kernel execution
- Performance gained when threads in a block read the same location
Texture Memory

- Read only
- When threads inside a block read adjacent memory locations, performance gain
 - Can pull all thread requests in one pull vs. having to pull from separate locations
Local Memory

- Same scope as register files
 - Acts as an overflow for register pressure
- Off chip
- Physically, shares space with global memory
Global Memory

- Is visible to all blocks and host
- Lasts the entire duration
- Physically, is shared with local memory
Optimizations

- Divergence
- Memory Optimizations
- Loop Unrolling
- Source-to-source compilers
Terms

GPGPU - General Purpose Graphics Processing Unit
CUDA - Compute Unified Device Architecture, NVidia’s parallel programming framework
SIMD engines - Single-program multiple-data engine (AMD)
SM - Streaming Multiprocessor (NVidia), consisting of SPs and FUs
SP - Scalar Processors (NVidia)
SC - Stream Core (AMD)
Warp - Execution of kernel on a SP (NVidia)
Divergence

- GPUs fetch a single instruction per cycle.
- When a thread takes divergent paths, paths wait for other threads to fetch instructions.

Optimization Techniques
 - Thread Regrouping
 - Data Reorganization
 - Block Subdivision
Thread Regrouping

- Threads with similar execution paths are arranged into the same warp
- Eliminates thread ID based divergence
Data Reorganization

- Data is reorganized such that all threads in a block (warp) will take the same execution path.
- Requires knowledge of input data.
Warp Subdivision

- Threads in a warp are divided into two sub-warps depending upon divergent paths.
- Sub-warps run independently but are scheduled to maximize computational throughput.
- Does not eliminate divergence but minimizes additional instruction fetches.
Memory Optimization

- Memory Coalescing
 - Memory accessed by thread index
- Vectorization
 - Combining memory accesses for a single thread
- Thread and Thread-block Merging
 - Improves memory sharing while decreasing parallelism
- Data Prefetching
- Avoid Partition Camping
Memory Coalescing

- Reducing global → shared memory transactions
 - Accessing global memory can take up to 100s of instructions
- Sequential and aligned access
 - More recent hardware can adapt to this issue
Memory Coalescing
Sequential and Aligned
Memory Coalescing

Aligned, but not sequential
Memory Coalescing

Sequential but not aligned
Memory Coalescing

Example: Matrix Addition

(a)

```c
__global__ void MatrixAdd(int *in1, int *in2, int *out) {
    int t1 = in1[threadIdx.x * gridDim.x + blockIdx.x];
    int t2 = in2[threadIdx.x * gridDim.x + blockIdx.x];
    out[threadIdx.x * gridDim.x + blockIdx.x] = t1 + t2;
}
```

(b)

```c
__global__ void MatrixAdd(int *in1, int *in2, int *out) {
    int t1 = in1[blockIdx.x * blockDim.x + threadIdx.x];
    int t2 = in2[blockIdx.x * blockDim.x + threadIdx.x];
    out[blockIdx.x * blockDim.x + threadIdx.x] = t1 + t2;
}
```
Example: Matrix Addition

Both matrices are inside global memory
Example: Non-coalescable

```
__global__ void MatrixAdd(int *in1, int *in2, int *out) {
    int t1 = in1[threadIdx.x * blockDim.x + blockIdx.x];
    int t2 = in2[threadIdx.x * blockDim.x + blockIdx.x];
    out[threadIdx.x * blockDim.x + blockIdx.x] = t1 + t2;
}
```

Will take 4 total global memory accesses since data is split up amongst cache lines
Example: Coalescable

```
__global__ void MatrixAdd(int *in1, int *in2, int *out)
{
    int t1 = in1[blockIdx.x * blockDim.x + threadIdx.x];
    int t2 = in2[blockIdx.x * blockDim.x + threadIdx.x];
    out[blockIdx.x * blockDim.x + threadIdx.x] = t1 + t2;
}
```

Will take 2 total global memory accesses since data grabbed by blocks are aligned on the same cache line
Vectorization

- Similar to coalescing
 - Trying to pull related data in one pull
- Combining multiple thread memory accesses into one instruction
- Hardware dependent
 - For NVidia GPUs, vectorization can only be done for texture memory
Vectorization

Example: Matrix Vector Multiplication (naive)

```c
#define A(y,x) A[(y)* width+(x)]
#define globalDimY 1

__global__ void mv_naive(float *A, float *B, float *C, int width) {
    float sum = 0;
    for (int i=0; i< width; i=i+1) {
        float a;
        float b;
        a = A(idx, i);
        b = B[i];
        sum += a*b;
    }
    C[idx] = sum;
}
```
Vectorization

Example: Matrix Vector Multiplication (After vectorization)

```c
#define A(y,x) read_imagef(A, imageSampler, (int2)(y,x))
#define B(y,x) read_imagef(B, imageSampler, (int2)(y,x))
#define globalDimY 1
__kernel void mv_vec(__read_only image2d_t A,
                     __read_only image2d_t B, __global float* C, int width) {
    float sum = 0;
    for (int i=0; i< width/4; i=i+1) {
        float a;
        float b;
        a = A(idx, i);
        b = B(0, i);
        sum += a.x*b.x;
        sum += a.y*b.y;
        sum += a.z*b.z;
        sum += a.w*b.w;
    }
    C[idx] = sum;
}
```
Vectorization

<table>
<thead>
<tr>
<th>R</th>
<th>G</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>G</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>G</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>G</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

Block 0

Block 1
Thread and Thread-Block Merging

- **Thread merge**
 - Combine multiple threads into one
 - Data register reuse
- **Thread-block merge**
 - Shared memory reuse
- Both decrease parallelism
- Degree of optimization depends on hardware
Data Prefetching

- Overlap memory accesses with computation
- I.E. prefetch data for future loop iterations
- Prefetched data are not bound to registers or shared memory, avoid hurting thread-level parallelism
Avoid Partition Camping

- “GPGPU prefers threads to distribute global memory accesses to different partitions of offchip memory”
- Address offsets
 - Separate data with padding for parallel accesses
- Remap block identifiers
Loop Unrolling

- Benefits are much the same as for CPUs
 - More ILP
 - Fewer instructions
 - Fewer branches
 - Don’t overrun I-cache size!!

- It’s hard to estimate how much to unroll
 - Cycling of threads within a warp can avoid latency
 - Threads in a warp share architectural registers
Loop Unrolling

- One method: static analysis of optimized code
 - Compile CUDA code with different degrees of unrolling
 - Disassemble
 - Estimate performance via static analysis
Loop Unrolling

- Eventually too many registers can be used
 - Logical registers are pushed to local memory
 - Can significantly reduce performance
- Fewer threads in a block
- Can’t cycle threads while waiting for IO
Source-to-Source Compilers

- Translates high level language into CUDA or OpenCL
 - High level multi-processing languages: HMPP
 - Sequential languages: C
- Uses directives to show parallelizable parts
- Utilizes optimization techniques described previously
Why Source-to-Source?

- Be able to massively parallelize a program with little to no effort
- Takes time for programmers to familiarize with CUDA/OpenCL
Source-to-Source

Unrolling example

```c
#pragma hmppec unroll 2, contiguous
for (i = 0; i < N; i++)
{
    B[i] = A[i];
}

(a) Transformation using 'contiguous' unroll, the codelet on the left shows the code with pragma, and the codelet on the right shows the resulting transformation.

#pragma hmppec unroll 2, split
for (i=0; i < N; i++)
{
    B[i] = A[i];
}

(b) Transformation using 'split' unroll, the codelet on the left shows the code with pragma, and the codelet on the right shows the resulting transformation.

#pragma hmppec tile i:2
for (i=0; i < N; i++)
{
    B[i] = A[i];
}

(c) Transformation using tiling, the codelet on the left shows the code with pragma, and the codelet on the right shows the resulting transformation.
```
Source-to-Source

Figures 8: Speedup of auto-tuned HMPP-generated CUDA kernels and hand-written CUDA codes over default HMPP CUDA on 2D/3D convolution and PolyBench codes using single and double precision.
Source-to-Source

Nvidia Example vs Source-to-source compiler

Figure 5. Execution time of FFT for different size of input data
Summary

- Existing optimization techniques for CPUs still apply to GPGPU programs
- Unique architecture of GPU creates new needs for optimization
- Some optimization techniques are unique to the GPU architecture
Future Possibilities

- Non-graphics oriented hardware
- Use of read-only memory outside graphics
- OpenCL vs CUDA
- Adopting solutions from HPC and vice-versa
Thank you!

Questions?