Introduction
Timing Metric for sequential Circuits

- Setup time (t_{su})
- Hold time (t_{hold})
- Worst case propagation delay (t_{c-q})
Timing Metric for sequential Circuits

Minimum clock period T required for proper operation,

$$T \geq t_{c-q} + t_{plogic} + t_{su}$$

Condition for hold time,

$$t_{cdregister} + t_{cdlogic} \geq t_{hold}$$

$t_{cdregister}$ is minimum propagation delay of the register
Memory Classification
Foreground vs Background Memory

Foreground memory:

Memory is built into logic. (e.g. registers)

Background Memory:

Higher area densities through efficient use of array structures and by trading off performance and robustness for size.
Static versus Dynamic Memory

Static Memory:
- Preserve state as long as power is on.
- Built by using positive feedback or regeneration

Dynamic Memory:
- Based on charge storage
- Needs to be refreshed periodically
Latches versus Registers

Latches:
- Level-sensitive circuit
- Transparent mode
- Hold mode

Registers:
- Edge-triggered circuit
Static Latches and Registers
The Bistability Principle
Metastable vs Stable Operation points
Changing the state of bistable circuit

- Cutting the feedback loop
 \[Q = \text{Clk}_n.Q + \text{Clk}.\text{In} \]

- Overpowering the feedback loop

 Feedback can be overpowered using trigger signal
Multiplexer-Based Latches

(a) Schematic diagram

(b) Non-overlapping clocks
Master-Slave Edge-Triggered Register
Master-Slave Edge-Triggered Register (Contd.)
Master-Slave Edge-Triggered Register (Contd.)
Non-Ideal Clock Signals
Non-Ideal Clock Signals (Contd.)

(a) Schematic diagram

(b) Two-phase non-overlapping clocks
Low Voltage Static Latches
Static SR Flip-Flop
Dynamic Latches and Registers
Dynamic Transmission-Gate Edge-Triggered Registers
Dynamic Transmission-Gate Edge-Triggered Registers

Advantages:

- Requires less transistors
- Setup time is just delay of transmission gates

Disadvantages:

- Periodic refresh
- Losses due to charge leakage, diode leakage and subthreshold current
- Clock overlap

\[t_{\text{overlap}0-0} < t_{T1} + t_{I1} + t_{T2} \]
\[t_{\text{hold}} > t_{\text{overlap}1-1} \]
C^2MOS- A Clock-Skew Insensitive Approach
C²MOS- A Clock-Skew Insensitive Approach

(a) (0-0) overlap

(b) (1-1) overlap
C²MOS- Transient Response
Dual-Edge Registers
True Single-Phase Clocked Register (TSPCR)

Positive Latch

Negative Latch
True Single-Phase Clocked Register (TSPCR) (Cont)

(a) Including logic into the latch
(b) AND latch
True Single-Phase Clocked Register (TSPCR) (Cont)

(a) Positive Latch

(b) Negative Latch
True Single-Phase Clocked Register (TSPCR) (Cont)
Alternative Register Styles
Pulse Registers

(a) register

(b) glitch generation

(c) glitch clock
Pulse Registers (Contd.)
Sense-Amplifier-Based Registers
Sense-Amplifier-Based Registers

L_3 is isolated so charge accumulates until L_1/L_3 change state, causing L_2 to change state as well. As a result the flip-flop outputs change.

The leakage current attempts to charge L_1/L_3 but the DC path through the shorting transistor allows it to leak away to ground.
Pipelining: An Approach to Optimize Sequential Circuits
Pipelining

(a) Reference circuit

<table>
<thead>
<tr>
<th>Clock Period</th>
<th>Adder</th>
<th>Absolute Value</th>
<th>Logarithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a_1 + b_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$a_2 + b_2$</td>
<td>$</td>
<td>a_1 + b_1</td>
</tr>
<tr>
<td>3</td>
<td>$a_3 + b_3$</td>
<td>$</td>
<td>a_2 + b_2</td>
</tr>
<tr>
<td>4</td>
<td>$a_4 + b_4$</td>
<td>$</td>
<td>a_3 + b_3</td>
</tr>
<tr>
<td>5</td>
<td>$a_5 + b_5$</td>
<td>$</td>
<td>a_4 + b_4</td>
</tr>
</tbody>
</table>

(b) Pipelined version

\[
T_{\min,\text{pipe}} = t_{c-q} + \max(t_{p_d,\text{add}}, t_{p_d,\text{abs}}, t_{p_d,\text{log}})
\]
Latch versus Register-Based Pipeline
Latch versus Register-Based Pipeline (Contd.)
NORA-CMOS
NORA-CMOS (Contd.)

(a) CLK-module

(b) CLK-module

<table>
<thead>
<tr>
<th>CLK block</th>
<th>Logie</th>
<th>Latch</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK = 0</td>
<td>Precharge</td>
<td>Hold</td>
</tr>
<tr>
<td>CLK = 1</td>
<td>Evaluate</td>
<td>Evaluate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLK block</th>
<th>Logie</th>
<th>Latch</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK = 0</td>
<td>Evaluate</td>
<td>Precharge</td>
</tr>
<tr>
<td>CLK = 1</td>
<td>Evaluate</td>
<td>Hold</td>
</tr>
</tbody>
</table>
Nonbistable Sequential Circuits
The Schmitt Trigger

- v_{in}
 - V_{M+}
 - V_{M-}
- t_0 to t
- v_{out}
 - $t_0 + t_p$ to t
CMOS Implementation of Schmitt Trigger
Monostable Sequential Circuits
Astable Circuit
Perspective
Choosing a Clocking Strategy

(a) delay cell

(b) two stage VCO

(c) simulated waveforms of 2-stage VCO