
Chapter 1: The Study of Data Structures 1

Chapter 1: The Study of Data Structures

The study of data structures has long been considered the cornerstone and starting point
for the systematic examination of computer science as a discipline. There are many
reasons for this. There is the practical realization that almost every program of more than
trivial complexity will need to manage collections of information, and so will require the
use of one or more data structures. Learning the tools and techniques that have proven
over a long period of time to be useful for software development will help the student
become a more productive programmer. But that is only the first, and most practical, of
many reasons.

Data structures are one of the easiest ideas to visualize abstractly, as most data structures
can be matched with a metaphor that the reader will already be familiar with from
everyday life. A stack, for example, is a collection that is managed in much the same
fashion as a stack of dishes; namely, only the topmost item is readily available, and the
top must be removed before the item underneath can be accessed. The ability to deal with
abstract ideas, and the associated concept of information hiding, are the primary tools that
computer scientists (or, for that matter, all scientists) use to manage and manipulate
complex systems. Learning to program with abstractions, rather than entirely with
concrete representations, is a sign of programming maturity.

The analysis of data structures involves a variety of mathematical and other analytical
techniques. These help reinforce the idea that computer science is a science, and that
there is much more to the field than simple programming.

It is in the examination of data structures that the student will likely first encounter the
problems involved in the management of large applications. Modern software
development typically involves teams or programmers, often dozens or more, working on
separate components of a larger system. The difficulties in such development are
typically not algorithmic in nature, but deal more with management of information. For
example, if the software developed by programmer A must interact with the software
developed by programmer B, what is the minimal amount of information that must be
communicated between A and B in order to ensure that their components will correctly
interact with each other? This is not a problem that the student will likely have seen in
their beginning programming courses. Once more, abstraction and information hiding are
keys to success. Each of these topics will be explored in more detail in the chapters that
follow.

The book is divided into three sections. In the first section you will learn about tools and
techniques used in the analysis of data structures. In the second part you will learn about
the abstractions that are considered the classic core of the study of data structures. The
third section consists of worksheets.

Chapter 1: The Study of Data Structures 2

Active Learning

It is in the third section that this book distinguishes itself most clearly from other
examinations of the same topic. The third section is a series of worksheets, each of which
is tied to the material presented in earlier chapters. Simply stated, this book asks you to
do more, and to read (or, if you are in a traditional classroom setting, listen to) less. By
becoming a more active participant in the educational process, the knowledge you gain
will become more familiar to you, and you will hopefully be more comfortable with your
abilities. This approach has been used in a variety of different forms for many years,
with great success.

While the worksheets can be used in an individual situation, it is the author’s opinion
(supported by experience), that they work best in a group setting. When students work in
a group, they can help each other learn the basic material. Additionally, group work helps
students develop their communication skills, as well as their programming skills. In the
authors use, a typical class consists of a short fifteen to twenty minute lecture, followed
by one or two worksheets completed in class.

At the end of each chapter are study questions that you can use to measure your
understanding of the material. These questions are not intended to be difficult, and if you
have successfully mastered the topic of the chapter you should be able to immediately
write short answers for each of these questions. These study questions are followed by
more traditional short answer questions, analysis questions that require more complex
understanding, and programming projects. Finally, in recent years there has been an
explosion of information available on the web, much of it actually accurate, truthful and
useful. Each chapter will end with references to where the student can learn more about
the topic at hand.

A Note on Languages

Most textbooks are closely tied to a specific programming language. In recent years it has
also become commonplace to emphasize a particular programming paradigm, such as the
use of object-oriented programming. The author himself is guilty of writing more than a
few books of this sort. However, part of the beauty of the study of data structures is that
the knowledge transcends any particular programming language, or indeed most
programming paradigms. While the student will of necessity need to write in a particular
programming language if they are to produce a working application, the presentation
given in this book is purposely designed to emphasize the more abstract details, allowing
the student to more easily appreciate the essential features, and not the unimportant
aspects imposed by any one language. An appendix at the end of the book is devoted to
describing a few language-specific features.

