CS 261 – Data Structures

AVL Trees
Binary Search Tree

• Complexity of BST operations:
 – proportional to the length of the path from a node to the root

• Unbalanced tree: operations may be $O(n)$
 – E.g.: adding elements in a sorted order
Balanced Binary Search Tree

• Balanced tree: the length of the longest path is roughly $\log n$

• BALANCE IS IMPORTANT!
Complete Binary Tree is Balanced

• Has the smallest height for any binary tree with the same number of nodes

• The longest path guaranteed to be $\leq \log n$

• $=>$ Keep the tree complete
Requiring Complete Trees

• However, it is very costly to maintain a complete binary tree

Add to tree
Requiring Complete Trees

• However, it is very costly to maintain a complete binary tree
Height-Balanced Trees

• For each node, the height difference between the left and right subtrees is \(\leq 1 \)
Height-Balanced Trees

• Are locally balanced, but globally (slightly) unbalanced
Height-Balanced Trees

• Mathematically, the longest path has been shown to be, at worst, 44% longer than $\log n$

• Algorithms that run in time proportional to the path length are still $O(\log n)$

 – Why?
AVL Trees

• Named after the inventors’ initials:
 – Adelson-Velskii and Landis

• Maintain the height balanced property of Binary Search Trees
AVL Trees

• Add an integer height field to each node:
 – Null child has a height of -1
 – A node is *unbalanced* when the absolute height difference between the left and right subtrees is greater than one
AVL Implementation

struct AVLNode {
 TYPE val;
 struct AVLNode *left;
 struct AVLNode *right;
 int height; /* Height of node*/
};
int _height(struct AVLNode *cur)
{
 if(cur == 0)
 return -1;
 else return cur->hght;
}
Compute Height

```c
void _setHeight(struct AVLNode *cur) {
    int lh = _height(cur->left);
    int rh = _height(cur->rght);
    if(lh < rh)
        cur->hght = 1 + rh;
    else
        cur->hght = 1 + lh;
}
```
Maintaining the Height Balanced Property

- When unbalanced, perform a “rotation” to balance the tree
Left Rotation

1. Input: \textcolor{red}{current}

2. New top = \textcolor{green}{current's right child}

Current:

- 2(3)
- 1(0)
- 4(2)
- 3(0)
- 5(1)
- 6(0)

New top:

- 4(?)

Rotate left
Left Rotation

1. Input: **current**
2. New top = **current**'s right child
3. New top’s new left child = **current**
1. Input: current
2. New top = current's right child
3. New top’s new left child = current
4. Current’s new right child = new top's left child
Left Rotation

1. Input: current
2. New top = current's right child
3. New top's new left child = current
4. Current’s new right child = new top's left child
5. Set height of current
6. Set height of new top node
Right Rotation
Right Rotation

1. Input: current
2. New top = current's left child
3. New top’s right child = current
4. Current’s new left child = new top's right child
5. Set height of current
6. Set height of new top node
Double Rotation Right

• A single rotation may not fix the problem:
 – When the right child is heavy, i.e.,
 • its parent is unbalanced
 • has only a right subtree

Unbalanced
“top” node

“Heavy” right child

Rotate left

Doesn’t work!!!
Double Rotation Right

- **Rotate the child** before the regular rotation:
 1. Rotate the heavy right child to the right
 2. Rotate the “top” node to the left
Double Rotation Left

• A single rotation may not fix the problem:
 – When the **left** child is **heavy**, i.e.,
 • its parent in unbalanced from the left
 • has only a left subtree

Unbalanced “top” node

“Heavy” left child

Doesn’t work!!!
Double Rotation Left

- This case requires *rotating the child* before the regular rotation:

1. Rotate the heavy left child to the left
2. Rotate the “top” node to the right

![Diagram of double rotation left](image)
Balancing an Unbalanced Node

If left child of node is taller than right child{
 If left child is heavy /* Double rotation left*/
 Rotate left the heavy left child
}
 Rotate right the node
} else{
 If right child is heavy /* Double rotation */
 Rotate right the heavy right child
}
 Rotate left the node
}
Return node
Example: Add 7 to the tree

Height-Balanced Tree

Unbalanced Tree

Add data: 7

“Heavy” left child

Added to right side of heavy left child

Unbalanced “top” node
Example – Suppose We Used Single Rotation

Unbalanced Tree

Single right rotation

Tree Still Unbalanced

Unbalanced “top” node (still)
Example – Double Rotation

Unbalanced Tree

Tree Still Unbalanced, but …

Rotate left the heavy left child

“Heavy” left child
Example – Double Rotation

Unbalanced Tree (after 1st rotation)

Tree Now Balanced

Rotate right top node

Unbalanced “top” node
AVL Trees: Sorting

• An AVL tree can sort a collection of values:

1. Copy data into the AVL tree: \(O(??) \)

2. Copy them out using the ?? traversal: \(O(??) \)
AVL Trees: Sorting

• An AVL tree can sort a collection of values:

 Copy data into the AVL tree:
 \[O(n \log_2 n) \]

 Copy them out using the in-order traversal:
 \[O(n) \]
AVL Trees: Sorting

• Execution time $\Rightarrow O(n \log n)$:
 – Matches that of quick sort in benchmarks
 – Unlike quick sort, AVL trees don’t have problems if data is already sorted or almost sorted (which degrades quick sort to $O(n^2)$)

• However, requires extra storage to maintain both the original data buffer (e.g., a DynArr) and the tree structure
Your Turn

• Any questions

• Worksheet:
 – Start by inserting values 1-7 into an empty AVL tree
 – Then write code for left and right rotations