CS 261 – Data Structures

Big-Oh and Execution Time: A Review
Big-Oh: Purpose

• A machine-independent way to describe execution time

• Change in execution time relative to change in input size, independent of:
 – hardware used (e.g., PC, Mac, etc.)
 – the clock speed of your processor
 – what compiler you use
 – what language you use
Algorithmic Analysis

• Suppose that algorithm A processes n data elements in time t.

• Algorithmic analysis attempts to estimate how t is affected by changes in n, when we use A.
Complexity: \(O(f(n)) \)

<table>
<thead>
<tr>
<th>Function</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n!)</td>
<td>Factorial</td>
</tr>
<tr>
<td>(2^n) (or (c^n))</td>
<td>Exponential</td>
</tr>
<tr>
<td>(n^d, d > 3)</td>
<td>Polynomial</td>
</tr>
<tr>
<td>(n^3)</td>
<td>Cubic</td>
</tr>
<tr>
<td>(n^2)</td>
<td>Quadratic</td>
</tr>
<tr>
<td>(n\sqrt{n})</td>
<td></td>
</tr>
<tr>
<td>(n \log n)</td>
<td>Linear</td>
</tr>
<tr>
<td>(n)</td>
<td>Root-(n)</td>
</tr>
<tr>
<td>(\sqrt{n})</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>(\log n)</td>
<td>Constant</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
</tr>
</tbody>
</table>

[Graph showing growth rates of various functions, including \(n! \), \(2^n \), \(n^3 \), \(n^2 \), \(n\sqrt{n} \), \(n \log n \), \(n \), \(\sqrt{n} \), \(\log n \), and \(1 \).]
Determining Big Oh: Simple Loops

• Simple loop: constant-time operations within the loop
• Ask yourself how many times the loop executes as a function of input size.
Determining Big Oh: Simple Loops

- Simple loop: constant-time operations within the loop
- Ask yourself how many times the loop executes as a function of input size.

Example:

```c
double minimum(double data[], int n) {
    /* Input: data array has at least one element. */
    /* Output: returns the smallest value in input array */

    int i;
    double min = data[0];

    for(i = 1; i < n; i++)
        if(data[i] < min) min = data[i];

    return min;
}
```

\[O(n) \]
Determining Big Oh: Simple Loops

Not always simple iteration and termination criteria

– Iterations dependent on a \textbf{function} of n
– Possibility of early exit

Example:

```c
int isPrime(int n) {
    int i;
    for(i = 2; i * i < n; i++) {
        if (n % i == 0) return 0; /*If \text{i is a factor}\*/
    }
    /*If loop exits without finding*/
    /*a factor then \text{n is a prime}*/
    return 1;
}
```
Determining Big Oh: Simple Loops

Not always simple iteration and termination criteria

– Iterations dependent on a function of n
– Possibility of early exit

Example:

```c
int isPrime(int n) {
    int i;
    for(i = 2; i * i < n; i++) {
        if (n % i == 0) return 0; /*If i is a factor*/
    }
    /*If loop exits without finding*/
    /*a factor then n is a prime*/
    return 1;
}
```

$O(\sqrt{n})$
Determining Big Oh: Simple Loops

Not always simple iteration and termination criteria

– Iterations dependent on a function of n
– Possibility of early exit

Example:

```c
int isPrime(int n) {
    int i;
    for(i = 2; i * i < n; i++) { /*If i is a factor*/
        if (n % i == 0) return 0; /*then n is not a prime*/
    }
    return 1; /*If loop exits without finding*/
    /*a factor then n is a prime*/
}
```

$O(\sqrt{n})$

But what happens if it exits early?
Best case? Average case? Worst case?
Determining Big Oh: Nested Loops

Nested loops (dependent or independent) multiply:

```c
void insertionSort(double arr[], unsigned int n) {
    unsigned i, j;
    double elem;
    for(i = 1; i < n; i++) { /*loop for n - 1 times*/
        elem = arr[i]; /* Memorize arr[i]*/
        for (j = i - 1; j >= 0 && elem < arr[j]; j--) {
            arr[j+1] = arr[j]; /*Slide old values up*/
        }
        arr[j+1] = elem; /*put arr[i] in place*/
    }
}
```
Determining Big Oh: Nested Loops

Nested loops (dependent or independent) multiply:

```c
void insertionSort(double arr[], unsigned int n) {
    unsigned i, j;
    double elem;

    for(i = 1; i < n; i++) {
        /*loop for n - 1 times*/

        elem = arr[i]; /* Memorize arr[i]*/
        for (j = i - 1; j >= 0 && elem < arr[j]; j--) {
            arr[j+1] = arr[j]; /*Slide old values up*/
        }
        arr[j+1] = elem; /*put arr[i] in place*/
    }
}
```

Worst case (reverse order): $1 + 2 + \ldots + (n-1) = (n^2 - n) / 2 \Rightarrow O(n^2)$
Determining Big Oh: Recursion

For recursion, ask yourself:

– How many times will the function be executed?
– How much time does it spend on each call?
– Multiply these together

Example:

```c
double exp(double a, int n) {
    if (n == 0) return 1; /*Stop*/
    /* Cases of recursive calls */
    if (n < 0) return 1 / exp(a, -n);
    return a * exp(a, n - 1);
}
```
Determining Big Oh: Recursion

For recursion, ask yourself:

– How many times will the function be executed?
– How much time does it spend on each call?
– Multiply these together

Example:

```c
double exp(double a, int n) {
    if (n = 0) return 1; /*Stop*/
    /* Cases of recursive calls */
    if (n < 0) return 1 / exp(a, -n);
    return a * exp(a, n - 1);
}
```

complexity: \(O(n) \)
Determining Big Oh: Calling Functions

Big-Oh of a calling function includes the big-Oh of the called function

```c
void removeElement(double elem, struct Vector *v) {
    int i = vectorSize(v);

    while (i-- > 0)
        if (elem == *(v+i)) {
            vectorRemove(v, i);
            return;
        }
}
```
Determining Big Oh: Calling Functions

Big-Oh of a calling function also considers the big-Oh of the called function

```c
void removeElement(double elem, struct Vector *v){
    int i = vectorSize(v);
    while (i-- > 0)
        if (elem == *(v+i)) {
            vectorRemove(v, i);
            return;
        }
}
```

- \(O(1)\)
- \(O(n)\) if we need to slide up all elements after \(e\)
- \(O(n)\) if we need to slide up all elements after \(e\)
Determining Big Oh: Calling Functions

Big-Oh of a calling function also considers the big-Oh of the called function

```c
void removeElement(double elem, struct Vector *v) {
    int i = vectorSize(v);
    while (i-- > 0) { // O(n)
        if (elem == *(v+i)) { // O(n)
            vectorRemove(v, i);
            return;
        }
    }
}
```

$O(n^2)$ if we need to slide up all elements after e
Determining Big Oh: Logarithmic

• Example problem: how many guesses to find a particular number in a sorted array of numbers
 – To find a number between 0 and 1024, it takes approximately \(\log 1024 = \log 2^{10} = 10\) guesses

• In algorithmic analysis, the log of \(n\) is the number of times you can split \(n\) in half (binary search, etc)
Summation and the Dominant Component

- Runtime of a sequence of statements
- The largest component dominates
- Constant multipliers are ignored

Example: $O(8n + 3n^2 + 1) = O(n^2)$
Let’s Practice: What is the O()

```c
int countReps(double data[], int n, double v) {
    int count = 0;
    for (int i = 0; i < n; i++) {
        if (data[i] == v)
            count++;
    }
    return count;
}
```
What is the O(??)

/* Matrix multiplication */

void matMult (int a[][], int b[][], int c[][], int n) {
 /* assume all matrices have the same size n x n */
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++) {
 c[i][j] = 0;
 for (k = 0; k < n; k++)
 c[i][j] += a[i][k] * b[k][j];
 }
}
What is the $O(??)$

```c
void selectionSort (double storage [], int n) {
    for (int p = n - 1; p > 0; p--) { /*backward index*/
        int indexLargest = 0; /*index of largest elem.*/
        for (int i = 1; i <= p; i++) { /*forward index*/
            if (storage[i] > storage[indexLargest])
                indexLargest = i; /*found largest elem.*/
        }
        if (indexLargest != p)
            swap(storage, indexLargest, p);
    }
}
```
Reading & Worksheets

• http://bigocheatsheet.com

• Worksheet 9: Summing Execution Times
• Worksheet 10: Wall Clock Time Estimation