
CS 261 – Recitation 4

Spring 2016

Oregon State University
School of Electrical Engineering and Computer Science

CS 261 – Data Structures

Outline
• Linked List
• Linked List variations
• Doubly Linked list
• Singly Linked list operations

– Insert
– Delete

• Linked List: Stack Implementation
• Linked List: Queue Implementation
• Deque ADT (if time permits!)

2

CS 261 – Data Structures

Linked List
• a linked list is a data structure which consists of nodes linked in a linear

fashion.
• Each node in the linked list consists of two fields

– Data Field
– Pointer to next node

• Links are 1 – 1 with elements, allocated and released as necessary

3

Pictorial Representation
of a node in a linked list

struct Link { /* Single link. */

TYPE val; /* Data contained by this link. */

struct Link *next; /* Pointer to next link. */

};

CS 261 – Data Structures

Linked List variations
• Singly Linked list with header (special node to denote the start of

linked list)

• Singly linked list with null as terminator
• Single linked list with no header

– Use a random value to denote the start of the list.
• Singly linked list with a sentinel value for terminating the list

– Use some random value or null data field to denote the end of
the list.

• Pointer to first element only, or pointer to first and last
– In case of Queue ADT

4

…

Doubly Linked List
• The doubly linked list consists of data fields and two links – next and

previous

• Illustration

CS 261 – Data Structures 5

struct Link { /* Double link. */

TYPE val; /* Data contained by this link. */

struct Link *next; /* Pointer to next node. */

struct Link *prev; /* Pointer to previous node. */

};

…
…

Singly Linked List Operations

• Traverse List

• Delete a specific node
– Traverse to the node preceding the node to be deleted.
– Change the pointer field to point the node succeeding the node to be deleted.
– Free the memory for the deleted node
– To delete node 8 in the illustration below,

CS 261 – Data Structures 6

…2 938

Traverse till the end of the list

…2 938X X

1) Traverse

2) Change the pointer field

3) Free the memory

Linked List Operation: Insert
• Insert Beginning of the list

• Insert end of the list

• Insert after a specific node

CS 261 – Data Structures 7

… 49 8 X

9 2 … 8

4

X

…X

4

89

1) Allocate new link

2) Update Pointers for new link

1) Allocate new link

2) Update Pointers for new link 3) Point new link to NULL

1) Allocate new link3) Update Pointers for new link

2) Traverse to the link

CS 261 – Data Structures

Linked list stack
• Implementing a stack interface with a linked list:

– Header with head reference only: null if empty
– No sentinel: null terminated
– Singly linked
– Elements added or removed from front
– Only access first element
– Worksheet 17 deals with this exercise.

• Illustration

8

…2 938

Top of the
Stack

struct link {
TYPE value;
struct link * next;

};

struct linkedListStack {
struct link *firstLink;

}

firstLink

CS 261 – Data Structures

Linked List Stack: Operations

9

• Push
void linkedListStackPush(struct linkedListStack *s, double d){
// Push operation of Stack using Linked list

struct link * newLink = (struct link *) malloc(sizeof(struct link));
assert (newLink != 0); //Create new link to store the value
newLink->value = d;
newLink->next = s->firstLink;
s->firstLink = newLink; //Assign new link immediate to first link

}

• Top of the stack
EleType linkedListStackTop (struct linkedListStack *s) {
//Retrieving element in the top of the stack

assert (! linkedListStackIsEmpty(s));
return s->firstLink->value;

}

Linked List: Stack Operations (contd…)
• Pop

void linkedListStackPop (struct linkedListStack *s) {
//Pop operation of the stack

struct link * lnk = s->firstLink //Create temporary link
assert (! linkedListStackIsEmpty(s));
s->firstLink = lnk->next;
free(lnk); //Free memory for popped element

}

• isEmpty stack
int linkedListStackIsEmpty (struct linkedListStack *s) {
//To check if stack is empty

return s->firstLink == 0;
}

CS 261 – Data Structures 10

Linked List: Implementation of Queue
• Queue ADT follows a FIFO (First-in-First-out) interface.
• Conceptually similar to a line (queue) of waiting people:

– A person joins the queue by adding themselves at the end
– The next person is removed from the front of the queue.

• Illustration

CS 261 – Data Structures 11

…Head

Tail

struct link {
TYPE value;
struct link * next;

};

struct listQueue {
struct link *firstLink;
struct link *lastLink;

};

Queue ADT with Sentinels
• A sentinel is a special marker at the front and/or back of the list
• Has no value and never removed
• Helps remove special cases due to null references since it’s never null
• An empty list always has a sentinel

• Illustration

CS 261 – Data Structures 12

…
Head

Tail

Queue ADT: Operations
• Insert Back

– Insert node at the back of the queue.
void listQueueAddBack (struct listQueue *q, TYPE e) {
//Adding new element to the back of the queue

struct link *lnk = (struct link *) malloc(sizeof(struct slink));
assert(lnk != 0); //Allocate memory for new link
lnk->value = e;
lnk->next = 0;
q->lastLink->next = lnk; //Make the tail pointer point to the new link

}
• Is Queue Empty

int listQueueIsEmpty (struct listQueue *q) {
//To check if queue is empty

return q->firstLink == q->lastLink;
}

CS 261 – Data Structures 13

Queue ADT: Operations (contd…)
• Remove Front

– Remove node in the front of the queue.
void listQueueRemoveFront (struct listQueue *q) {
//To remove front element from the queue
struct link * lnk = q->firstLink->next;
assert (! listQueueIsEmpty(q));

q->firstLink->next = lnk->next;
free (lnk);
}

• Front of the queue
– Retrieve the element in front of the queue.

TYPE listQueueFront (struct listQueue *q) {
//Retrieve front element in the queue
assert (! listQueueIsEmpty(q));
return q->lastLink->value;
}

CS 261 – Data Structures 14

Deque ADT
• What if we want to add and remove elements from both front and

back?
• Need to use links going both forward and backwards
• Makes adding a new link harder, as must maintain both forward and

backward links.
• Illustration

• Deque can be implemented with sentinels.

CS 261 – Data Structures 15

…
…

Head

Tail

Deque ADT: Operations
• Insert Last

– Insert the new node to the end of the deque.
• Insert Front

– Insert the new node to the beginning of the deque.
• Remove Last

– Remove the last node from the deque.
• Remove Front

– Remove the first node from the deque.
• Traverse

– Move through the nodes in the deque.

CS 261 – Data Structures 16

Deque ADT Operations: Insert
• Insert Back

– Update the tail pointer to point the newly added node.
– Update the prev pointer of the newly added node to point the old

last node.
– Update the next pointer of the newly added node to null.
– Update the next pointer of the old last node to point the newly

added node.
• Insert Front

– Update the head pointer to point the newly added node.
– Update the prev pointer of the newly added node to point the

header node.
– Update the next pointer of the newly added node to the old first

node.
– Update the prev pointer of the old first node to point the newly

added node.

CS 261 – Data Structures 17

Deque ADT Operations: Delete
• Delete Back

– Update the tail pointer to point the node previous to the removed
node.

– Update the next pointer of the node previous to the removed node
to null.

• Delete Front
– Update the head pointer to point the node next to the removed

node.
– Update the prev pointer of the node next to the removed node to

point the header node.

CS 261 – Data Structures 18

