CS556: HOMEWORK 2 due 02/27/2017 by 12pm

Please submit your homework reports in PDF format to the TEACH website:

https://secure.engr.oregonstate.edu:8000/teach.php?type=want_auth

This homework is about stereo geometry. For this assignment, you will use the **five** stereo pairs of images provided on the class website. For **each stereo pair** of images, perform the following tasks:

Assignment

- 1) $(5 \times 2 \text{ points})$
 - 1.1) Manually select $N^{(0)} = 10$ points $\mathbf{p}_i = [x_i, y_i, 1]^{\top}$ in image 1 and their corresponding points $\mathbf{q}_{i'} = [x_{i'}, y_{i'}, 1]^{\top}$ in image 2, as precisely as possible, and record their coordinates:

$$M^{(0)} = \{ (\mathbf{p}_i, \mathbf{q}_{i'}) : i = 1, \dots, N^{(0)}, i' = 1, \dots, N^{(0)} \}$$

- 1.2) Estimate the fundamental matrix $F^{(0)}$ based on the set of point pairs $M^{(0)}$, and **present** $F^{(0)}$ in your PDF report.
- 2) $(5 \times 6 \text{ points})$
 - 2.1) Detect 100 strongest interest points in each image. You may use your HW1 implementation, or any other interest point detector of your choice. Let these points be located at coordinates $\mathbf{p}_i = [x_i, y_i, 1]^{\top}$ in image 1, i = 1, ..., 100, and at coordinates $\mathbf{q}_{i'} = [x_{i'}, y_{i'}, 1]^{\top}$ in image 2, i' = 1, ..., 100. Compute feature descriptors of these points, denoted as $\mathbf{f}(\mathbf{p}_i)$ and $\mathbf{f}(\mathbf{q}_{i'})$. You may use your HW1 implementation, or any other feature descriptor of your choice.
 - 2.2) Compute the $(100 \cdot 100) \times 1$ vector of matching similarities, $\boldsymbol{w} = [w_{ii'}]$, as:

$$w_{ii'} = \begin{cases} \exp[-\|\mathbf{f}(\mathbf{p}_i) - \mathbf{f}(\mathbf{q}_{i'})\|_2^2] &, \text{ if } \sqrt{(x_i - x_{i'})^2 + (y_i - y_{i'})^2} < \theta \\ 0 &, \text{ otherwise,} \end{cases}$$
(1)

where threshold $\theta = 20$.

2.3) Find a set of matching pairs of points in image 1 and image 2,

$$M^{(1)} = \{(\mathbf{p}_i, \mathbf{q}_{i'})\}$$

using the following matching formulation:

$$\max_{\mathbf{z}} \ \boldsymbol{w}^{\top} \mathbf{z} \ , \quad \text{s.t.} \ \|\mathbf{z}\|_{2}^{2} = 1, \quad \mathbf{z} \in [0, 1]^{(100 \cdot 100) \times 1}, \tag{2}$$

where $\mathbf{z} = [z_{ii'}]$ is a $(100 \cdot 100) \times 1$ a real column vector indicating matches, such that $z_{ii'}$ closer to 1 means that \mathbf{p}_i in image 1 is more likely to match $\mathbf{q}_{i'}$ in image 2, and $z_{ii'}$ closer to 0 means that \mathbf{p}_i and $\mathbf{q}_{i'}$ should not get matched. After finding the solution \mathbf{z}^* from Eq. (2), you need to threshold \mathbf{z}^* to obtain binary values, and thus the matched pairs of points $M^{(1)}$.

2.4) From your matching solution $M^{(1)}$, automatically select N = 30 pairs $(\mathbf{p}_i, \mathbf{q}_{i'})$ for which the fundamental equation (closely) holds:

$$(\mathbf{p}_i, \mathbf{q}_{i'}): \quad z_{ii'} = 1 \quad \text{and} \quad \mathbf{q}_{i'}^\top F^{(0)} \ \mathbf{p}_i < \epsilon \approx 0$$
 (3)

Fig. 1. An example how to show Figure 1a and Figure 1b in your PDF report: one point in image 1 is marked red, and its corresponding epipolar line is marked cyan in image 2. As can be seen the red point in image 1 corresponds to the cyan point in image 2, and the cyan point must lie on the epipolar line in image 2.

where $F^{(0)}$ is the fundamental matrix that you estimated using the $N^{(0)}$ manually selected pairs of points. Select the value of ϵ so that N = 30.

- 2.5) Merge the two sets of $N^{(0)} = 10$ manually selected and N = 30 automatically matched point pairs, and thus obtain a new set of $N^{(1)} = N^{(0)} + N = 40$ point pairs. Re-estimate the fundamental matrix $F^{(1)}$ based on these $N^{(1)}$ point pairs, and **present** $F^{(1)}$ in your PDF report.
- 3) $(5 \times 2 \times 2 \text{ points})$ Show in Figure 1*a* one example point in image 1, and its epipolar line in image 2 (superimpose the epipolar line over image 2 using a distinct color), computed for $F^{(0)}$. Show in Figure 1*b* the same point in image 1, and its epipolar line in image 2 (superimpose the epipolar line over image 2 using a distinct color), computed for $F^{(1)}$. In the captions of Figures 1*a* and 1*b*, specify the row and column of the point you selected in image 1, and parameters of the epipolar line in image 2. Note that if your estimates of $F^{(0)}$ and $F^{(1)}$ are wrong then the point in image 2 that truly corresponds to the point you selected in image 1 will not lie on your epipolar line.
- 4) $(5 \times 2 \times 2 \text{ points})$ Show in Figure 2*a* another example point in image 2 (different from above), and its epipolar line in image 1 (superimpose the epipolar line over image 1 using a distinct color), computed for $F^{(0)}$. Show in Figure 2*b* the same point in image 2, and its epipolar line in image 1 (superimpose the epipolar line over image 1 using a distinct color), computed for $F^{(1)}$. In the captions of Figures 2*a* and 2*b*, specify the row and column of the point you selected in image 2, and parameters of the epipolar line in image 1. Note that if your estimates of $F^{(0)}$ and $F^{(1)}$ are wrong then the point in image 1 that truly corresponds to the point you selected in image 2 will not lie on your epipolar line.
- 5) $(5 \times 2 \text{ points})$ Show in Figure 3 clearly marked epipoles of image 1 and image 2. In the caption of Figure 3, specify the coordinates of the two epipoles.
- 6) (10 points) Printout of the software that you used for this homework assignment.

Summary of Your Report

- 5 fundamental matrices F⁽⁰⁾ based on the N⁽⁰⁾ = 10 manually selected point pairs.
 5 fundamental matrices F⁽¹⁾ based on the N⁽¹⁾ = 40 point pairs, where 10 pairs are manually selected and 30 pairs are automatically matched.
- 25 figures with captions: Figure 1a, 1b, 2a, 2b, 3.
- Printout of the software.