CS 556: Computer Vision

Lecture 1

Prof. Sinisa Todorovic

sinisa@eecs.oregonstate.edu

CS 556: Computer Vision

• Instructor:

Sinisa Todorovic

sinisa@oregonstate.edu

Office:

2107 Kelley Engineering Center

Office Hours:

Wed 3-3:30pm, or by appointment

Classes:

Tue 2-4pm, Thu 2-3pm BEXL 207

Class website:

http://web.engr.oregonstate.edu/~sinisa/courses/OSU/CS556/CS556.html

Recommended Textbooks

- "Computer Vision: Models, Learning, and Inference," by Simon J.
 D. Prince, Cambridge University Press, 2012
- "Computer Vision: Algorithms and Applications," by Richard Szeliski, Springer, 2010
- "Computer Vision: A Modern Approach," by D.A. Forsyth and J. Ponce, Prentice Hall, 2nd ed, 2011
- "Multiple View Geometry in Computer Vision," by R. Hartley and A. Zisserman, Academic Press, 2nd ed, 2004
- "Learning OpenCV: Computer Vision with the OpenCV Library,"
 by Gary Bradski, Adrian Kaehler
- Additional readings on the class website

Prerequisites

- Undergraduate-level knowledge of:
 - Linear algebra
 - Matrices, Matrix Operations
 - Determinants, Systems of Linear Equations
 - Eigenvalues, Eigenvectors
 - Statistics and probability
 - Probability density function, Probability distribution
 - Priors, Posteriors, Likelihoods
 - Gaussian distribution
- Some programming skills
 - MATLAB, C, C++

Requirements and Grading Policy

- Homework assignments (30%)
 - HW1 Feb 02
 - HW2 Feb 21
 - HW3 March 07
 - HW4 Mar 21
- Exam 1 (30%) Feb 9
- Exam 2 (40%) Mar 16

Grading Policy

Late policy:

Zero tolerance without prior approval

Homework

- Mini projects using MATLAB
- http://is.oregonstate.edu/accounts-support/software/ software-list/matlab
- Must have:
 - Computer Vision Toolbox
 - Neural Network Toolbox
- Individual work, but collaboration is allowed
- Use any helpful source code that is available online
- Turn in homework online via TEACH

"...Understanding vision is a key to understanding intelligence..."

T. Poggio

What is Computer Vision?

M. C. Escher, "Waterfall" 1961

Develop

- representations,
- learning and inference algorithms,

for interpretation of images and video in terms of

- recognition,
- detection,
- segmentation, etc.,

of

- objects (parts), surfaces,
- human activities, events, etc.,

and their 3D spatiotemporal relations, e.g.,

- depth, occlusion, 3D orientation, supported-by,
- followed-by, cause, effect

A Typical Computer Vision System

3D world: objects scenes events

camera

image

interpretation

algorithms

representations

problem understanding trade offs training data

Applications: Face Detection

Automatic adjustment of camera focus, aperture, and shutter speed based on face detection

Applications: Object Recognition

http://www.kickstarter.com/projects/visionai/vmx-project-computer-vision-for-everyone

Applications: Monitoring Driver's Behavior

Applications: Navigating UAVs

Flight stability and control of Micro Air Vehicles

Source: M. Nechyba

Applications: Navigating UAVs

Flight stability and control of Micro Air Vehicles

Source: M. Nechyba

Image Features

• Pixels, 4-adjacency, 8-adjacency, m-adjacency

4-adjacency

• Path -- directed, undirected, loop

• Edge = Connected pixels with high gradient values

• T-junctions

• T-junctions

• T-junctions

• Interest points = corners, textured patches

• Specularity = Highlights

- Lambertian surface = isotropic reflectance
- Specular surface = zero reflectance except at an angle

- Region = Connected set of pixels
- Region boundary, inner and outer contour

• Texture

Dynamic texture

• Foreground - Background

Image interpretation is usually defined in terms of

- Objects, scenes, activities, events
- Spatiotemporal relations between objects, scenes, ...

Image properties depend on:

- Imaging conditions
- Visual properties of the 3D world

- Image acquisition parameters:
 - Camera distance, viewpoint, motion
 - Camera intrinsic parameters (e.g., lens)
 - Illumination or Brightness
 - Occlusion and Clutter