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Computational Framework  

of Perceptual Grouping



Perceptual Grouping: Image Segmentation

• Find contiguous clusters of pixels, 
so pixels within each cluster are

• closer

• more similar in terms of

• color

• texture

• Than pixels from different clusters
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Example: N-Cuts Segmentation
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results of the Ncuts algorithm

segments
or

regions



Graph-based Clustering
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Graph-based Clustering

• Image elements are represented by a graph 
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Graph-based Clustering

• Image elements are represented by a graph 

• Clustering = Graph partitioning into subgraphs
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Major Goal: Graph Partitioning
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Major Goal: Graph Partitioning
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Example: Pixel Clustering
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Find a cut, such that in one cluster all pixels are:

• neighbors

• more similar to one another than to pixels in 
the other cluster



Graph Terminology

• Clique

• Adjacency matrix

• Node degree

• Volume

• Cut 

• Association
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Clique

• A subgraph with all nodes fully connected 

• Maximal clique

• Maximum weighted clique

9



10

Adjacency Matrix

A =

�

⇧⇤

...
. . . aij

⇥

⌃⌅i

j

aij = exp

✓
� 1

2�2
kSIFTi � SIFTjk2

◆
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• Affinities between pairs of nodes (i,j) in the graph

Adjacency Matrix
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• Affinities between pairs of nodes (i,j) in the graph

• Example:  Nodes = Pixels  ⇒  

Adjacency Matrix

A =
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Node Degree
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Node Degree
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⇒

iD =

�

⇧⇧⇧⇤

d1 0 0 . . .
0 d2 0
...

. . . 0 0 dN

⇥
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Volume of a Subgraph
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Volume of a Subgraph
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⇒ vol(G1) = 1T
G1

D 1G1
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Association within a Subgraph
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Association within a Subgraph
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adjacency
matrix
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Cut between Two Graph Partitions
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Cut between Two Graph Partitions
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Cut between Two Graph Partitions
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Cut between Two Graph Partitions
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Cut between Two Graph Partitions
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