CS 556: Computer Vision

Lecture 19

Prof. Sinisa Todorovic

sinisa@eecs.oregonstate.edu

Oregon State University

Computational Framework of Perceptual Grouping

Perceptual Grouping: Image Segmentation

- Find contiguous clusters of pixels, so pixels within each cluster are
 - closer
 - more similar in terms of
 - color
 - texture
- Than pixels from different clusters

Example: N-Cuts Segmentation

segments or regions

results of the Ncuts algorithm

Graph-based Clustering

Graph-based Clustering

Image elements are represented by a graph

Graph-based Clustering

• Image elements are represented by a graph

• Clustering = Graph partitioning into subgraphs

Major Goal: Graph Partitioning

Major Goal: Graph Partitioning

Example: Pixel Clustering

Find a cut, such that in one cluster all pixels are:

- neighbors
- more similar to one another than to pixels in the other cluster

Graph Terminology

- Clique
- Adjacency matrix
- Node degree
- Volume
- Cut
- Association

Clique

- A subgraph with all nodes fully connected
- Maximal clique
- Maximum weighted clique

Adjacency Matrix

$$a_{ij} = \exp\left(-\frac{1}{2\sigma^2} \|\mathrm{SIFT}_i - \mathrm{SIFT}_j\|^2\right)$$

Adjacency Matrix

• Affinities between pairs of nodes (i,j) in the graph

$$a_{ij} = \exp\left(-\frac{1}{2\sigma^2} \|\mathrm{SIFT}_i - \mathrm{SIFT}_j\|^2\right)$$

Adjacency Matrix

• Affinities between pairs of nodes (i,j) in the graph

• Example: Nodes = Pixels \Rightarrow

$$a_{ij} = \exp\left(-\frac{1}{2\sigma^2} \|\mathrm{SIFT}_i - \mathrm{SIFT}_j\|^2\right)$$

Node Degree

Volume of a Subgraph

 $\operatorname{vol}(G_1) = \sum d_i$ $i \in G_1$

Association within a Subgraph

 $\operatorname{assoc}(G_1) = \sum a_{ij} = \mathbf{1}_{G_1}^{\mathrm{T}} A \mathbf{1}_{G_1}$ $i, j \in G_1$

$G_1 \cap G_2 = \emptyset$

 $\operatorname{cut}(G_1, G_2) = \sum$ a_{ij} $i \in G_1, j \in G_2$

$G_1 \cap G_2 = \emptyset$

 $\operatorname{cut}(G_2, G_1) = \sum$ a_{ij} $i \in G_2, j \in G_1$

$G_1 \cap G_2 = \emptyset$

 $\operatorname{cut}(G_1, G_2) \neq \operatorname{cut}(G_2, G_1)$

in general

$\operatorname{cut}(G_1, G_2) = \operatorname{vol}(G_1) - \operatorname{assoc}(G_1)$

$$= \mathbf{1}_{G_1}^{\mathrm{T}} D \mathbf{1}_{G_1} - \mathbf{1}_{G_1}^{\mathrm{T}} A \mathbf{1}_{G_1}$$

$$= \mathbf{1}_{G_1}^{\mathrm{T}} (D - A) \mathbf{1}_{G_1}$$

$\operatorname{cut}(G_2, G_1) = \mathbf{1}_{G_2}^{\mathrm{T}} (D - A) \mathbf{1}_{G_2}$

$= (\mathbf{1} - \mathbf{1}_{G_1})^{\mathrm{T}} (D - A) (\mathbf{1} - \mathbf{1}_{G_1})$