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Abstract. We present a novel approach to the weighted graph-matching
problem in computer vision, based on a convex relaxation of the underly-
ing combinatorial optimization problem. The approach always computes
a lower bound of the objective function, which is a favorable property in
the context of exact search algorithms. Furthermore, no tuning parame-
ters have to be selected by the user, due to the convexity of the relaxed
problem formulation.
For comparison, we implemented a recently published deterministic an-
nealing approach and conducted numerous experiments for both estab-
lished benchmark experiments from combinatorial mathematics, and for
random ground-truth experiments using computer-generated graphs. Our
results show similar performance for both approaches. In contrast to the
convex approach, however, four parameters have to be determined by
hand for the annealing algorithm to become competitive.

1 Introduction

Motivation. Visual object recognition is a central problem of computer vision
research. A key question in this context is how to represent objects for the purpose
of recognition by a computer vision system. Approaches range from view-based to
3D model-based, from object-centered to viewer-centered representations [1], each
of which may have advantages under constraints related to speci�c applications.
Psychophysical �ndings provide evidence for view-based object representations
[2] in human vision.

A common and powerful representation format for object views is a set of
local image features V along with pairwise relations E (spatial proximity and
(dis)similarity measure), that is an undirected graph G = (V;E). In this paper,
we will discuss the application of a novel convex optimization technique to the
problem of matching relational representations of object views.

Relations to previous work. There are numerous approaches to graph-matching
in the literature (e.g., [3{8]). Our work di�ers from them with respect to the fol-
lowing points:



1. We focus on problem relaxations , i.e. the optimization criterion equals the
original one but is subject to weaker constraints. As a consequence, such
approaches compute a lower bound of the original objective function which
has to be minimized.

2. The global optimum of the relaxed problem can be computed with polynomial-
time complexity.

Fig.1 A graph based on features de-
scribed in [9] using corresponding
public software ( http://www.ipb.uni-
bonn.de/ipb/projects/fex/fex.html). This
graph has jV j = 38 nodes.

The �rst property above is necessary for combining the approach with an
exact search algorithm where lower bounds of the original objective function are
needed. Furthermore, it allows to compare di�erent approaches by simply ranking
the corresponding lower bounds.

The second property is important since graph-matching belongs to the class of
NP-hard combinatorial problems. Matching two graphs with, say, jV j = 20 nodes
gives � 1018 possible matches. Typical problem instances however (see Fig. 1)
comprise jV j > 20 nodes and thus motivate to look for tight problem relaxations
to compute good suboptimal solutions in polynomial time.

Contribution. We discuss the application of novel convex optimization tech-
niques to the graph-matching problem in computer vision.
First, we sketch a recently published deterministic annealing approach [6, 10]
which stimulated considerable interest in the literature due to its excellent per-
formance in numerical experiments. Unfortunately, this approach cannot be inter-
preted as a relaxation of the graph-matching problem and requires the selection
of (at least) four parameters to obtain optimal performance (Section 3).
Next we consider the relaxed problems proposed in [11, 3] and show that, by us-
ing convex optimization techniques based on the work [12], a relaxation of the
graph-matching problem is obtained with equal or better performance than the
other approaches (Section 4). Moreover, due to convexity, no parameter selection
is required.
In Section 5, we report extensive numerical results with respect to both benchmark-
experiments [13] from the �eld of combinatorial mathematics, and random ground-
truth experiments using computer-generated graphs.

Remark. Note that, in this paper, we are exclusively concerned with the op-
timization procedure of the graph-matching problem. For issues related to the
design of the optimization criterion we refer to, e.g., [4, 14].



Notation.

Xt: transpose of a matrix X
O: set of orthogonal n� n-matrices X , i.e. XtX = I (I : unit matrix)
E : matrices with unit row and column sums
N : set of non-negative matrices
� : set of permutation matrices X 2 O \ E \ N
e: one-vector ei = 1; i = 1; : : : ; n
vec [A]: vector obtained by stacking the columns of some matrix A
�(A): vector of eigenvalues of some matrix A

2 Problem statement

Let G = (V;E); G0 = (V 0; E0) denote two weighted undirected graphs with
jV j = jV 0j = n, weights fwijg; fw0ijg, and adjacency matrices Aij = wij ; A

0
ij =

w0ij ; i; j = 1; : : : ; n. Furthermore, let � denote a permutation of the set f1; : : : ; ng
and X 2 � the corresponding permutation matrix, that is Xij = 1 if �(i) = j

and Xij = 0 otherwise. The weight functions w;w0 : E � V � V ! R
+
0 encode

(dis)similarity measures of local image features Vi; i = 1; : : : ; n, which we assume
to be given in this paper. We are interested in matching graphs G and G0 by
choosing a permutation �� such that

�� = argmin
�

X
i;j

(w�(i)�(j) � w0ij)
2 :

By expanding and dropping constant terms, we obtain the equivalent problem:

min
�
(�
X
i;j

w�(i)�(j)w
0
ij) = min

X
(�tr(A0XAXt)) ;

with tr(�) denoting the trace of a matrix. Absorbing the minus sign, we arrive at
the following Quadratic Assignment Problem (QAP) with some arbitrary, sym-
metric matrices A;B:

(QAP ) min
X2�

tr(AXBXt) : (1)

3 Graduated assignment

Gold and Rangarajan [6] and Ishii and Sato [10] independently developed a tech-
nique commonly referred to as graduated assignment or soft assign algorithm.
The set of permutation matrices � is replaced by the convex set D = E \N+ of
positive matrices with unit row and column sums (doubly stochastic matrices). In
contrast to previous mean-�eld annealing approaches, the graduated assignment
algorithm enforces hard constraints on row and column sums, making it usually
superior to other deterministic annealing approaches. The core of the algorithm



is the following iteration scheme, where � > 0 denotes the annealing parameter
and the superscript denotes the iteration time step (for � �xed):

X
(r+1)
ij = gihjy

(r)
ij ; with y

(r)
ij = exp

0
@��

X
k;l

AikBjlX
(r)
kl

1
A (2)

The scaling coeÆcients gi; hj are computed so that X(r+1) is projected on the
set D using Sinkhorn's algorithm [6] as inner loop.

This scheme locally converges under mild assumptions [15]. Several studies
revealed excellent experimental results. In our experiments, we improved the ob-
tained results with a local 2opt heuristics which iteratively improve the objective
function by exchanging two rows and columns of the found permutation matrix
until no improvement in the objective function is possible, as proposed in [10].

A drawback of this approach is that the selection of several \tuning"-parameters
is necessary to obtain optimal performance, namely:

{ the parameter � related to the annealing schedule,
{ a \self-ampli�cation" parameter enforcing integer values, and
{ two stopping criteria with respect to the two iteration loops in (2).

Furthermore, the optimal parameter values vary for di�erent problem instances
(cf. [10]). For more details, we refer to [16].

4 Convex Approximations

In this section, we discuss a convex approximation to the weighted graph-matching
problem (1). For more details and proofs, we refer to [16].
As explained in Section 1, our motivation is twofold: Firstly, the need to se-
lect parameter values (cf. previous section) is quite inconvenient when using a
graph-matching approach as a part within a computer vision system. Convex
optimization problems admit algorithmic solutions without any further param-
eters. Secondly, we focus on problem relaxations providing lower bounds of the
objective criterion (1), which then can be used in the context of exact search
algorithms.

4.1 Orthogonal relaxation and eigenvalue bounds

Replacing the set � by O � � , Finke et al. [11] proved the following so called
Eigenvalue Bound (EVB) as a lower lower bound of (1):

(EVB) min
X2O

tr(AXBXt) =
�
�(A)

�t
�(B) ; (3)

with �(A); �(B) sorted such that �1(A) � � � � � �n(A) and �1(B) � � � � � �n(B).
This bound can be improved to give the Projected Eigenvalue Bound (PEVB)
by further constraining the set of admissible matrices [17], but in contrast to the
approach sketched in Section 4.3 this does not produce a matrix X for which the
bound (PEVB) is attained.



4.2 The approach by Umeyama

Based on (3), Umeyama [3] proposed the following estimate for the solution of
(1):

X̂Ume = arg max
X2�

tr(Xt jU j jV jt) : (4)

Here, U and V diagonalize the adjacency matrices A and B, respectively with the
eigenvalues sorted according to (EVB), and j�j denotes the matrix consisting of the
absolute value taken for each element. (4) is a linear assignment problem which
can be eÆciently solved by using standard methods like linear programming.

4.3 Convex relaxation

Anstreicher and Brixius [12] improved the projected eigenvalue bound (PEVB)
introduced in Section 4.1 to the Quadratic Programming Bound (QPB):

(QPB)
�
�( ~A)

�t
�( ~B) + min

X2E\N
vec [X ]tQvec [X ] ; (5)

where ~A = P tAP , ~B = P tBP , with P being the orthogonal projection onto the
complement of the 1D-subspace spanned by the vector e, and where the matrix
Q is computed as solution to the Lagrangian dual problem of the minimization
problem (3) (see [12, 16] for more details). Notice that both the computation of
Q and minimizing (QPB) are convex optimization problems. Let ~X denote the
global minimizer of (5). Then we compute a suboptimal solution to (1) by solving
the following linear assignment problem:

X̂QPB = arg min
X2�

tr(Xt ~X): (6)

The bounds presented so far can be ranked as follows:

(EVB) � (PEVB) � (QPB) � (QAP ) = min
X2�

tr(AXBXt) : (7)

We therefore expect to obtain better solutions to (1) using (6) than using (4).
This will be con�rmed in the following section.

5 Experiments

We conducted extensive numerical experiments in order to compare the ap-
proaches sketched in Sections 3 and 4. The results are summarized in the fol-
lowing. Two classes of experiments were carried out:

{ We used the QAPLIB-library [13] from combinatorial mathematics which is
a collection of problems of the form (1) which are known to be \particularly
diÆcult".



{ Furthermore, we used large sets of computer-generated random graphs with
sizes up to jV j = 15 such that (i) the global optimum could be computed
as ground-truth by using an exact search algorithm, and (ii) signi�cant sta-
tistical results could be obtained with respect to the quality of the various
approaches.

QAPLIB benchmark experiments.

Table 1 shows the results computed for several QAPLIB-problems. The following
abbreviations are used:

QAP : name of the problem instance (1) taken from the library
X�: value of the objective function (1) at the global optimum
QPB: the quadratic programming bound (5)

X̂QPB : value of the objective function (1) using X̂QPB from (6)

X̂QPB+: X̂QPB followed by the 2opt greedy-strategy

X̂GA: value of the objective function (1) using X̂ from (2)

X̂GA+: X̂GA followed by the 2opt greedy-strategy

X̂Ume: value of the objective function (1) using (4)

X̂Ume+: X̂Ume followed by the 2opt greedy-strategy

The 2opt greedy-strategy amounts to iteratively exchanging two rows and columns
of the matrix X̂ as long as an improvement of the objective function is possible
[10].

By inspection of table 1, three conclusions can be drawn:

{ The convex relaxation approach X̂QPB and the soft-assign approach X̂GA

have similarly good performance, despite the fact that the latter approach
is much more intricate from the optimization point-of-view and involves a
couple of tuning parameters which were optimized by hand.

{ The approach of Umeyama X̂Ume based on orthogonal relaxation is not as
competitive.

{ Using the simple 2opt greedy-strategy as post-processing step signi�cantly
improves the solution in most cases.

In summary, these results indicate that the convex programming approach
X̂QPB embedded in a more sophisticated search strategy (compared to 2opt) is
an attractive candidate for solving the weighted graph-matching problem.

Random ground-truth experiments.

We created many problem instances of (1) by randomly computing graphs. The
probability that an edge is present in the underlying complete graph was about
0:3. For each pair of graphs, the global optimum was computed using an exact
search algorithm.

Table 2 summarizes the statistics of our results. The notation explained in
the previous Section was used. The �rst column on the left shows the problem
size n together with the number of random experiments in angular brackets.
The number pairs in round brackets denote the number of experiments for which
the global optimum was found with/without the 2opt greedy-strategy as a post-
processing step. Furthermore the worst case, the best case, and the average case



QAP X� QPB X̂QPB X̂QPB+ X̂GA X̂GA+ X̂Ume X̂Ume+

chr12c 11156 -22648 20306 15860 19014 11186 40370 11798
chr15a 9896 -48539 26132 14454 30370 11062 60986 17390
chr15c 9504 -47409 29862 17342 23686 13342 76318 13338
chr20b 2298 -7728 6674 2858 6290 2650 10022 3294
chr22b 6194 -20995 9942 6848 9658 6732 13118 7418
esc16b 292 250 296 292 298 292 306 292
rou12 235528 205461 278834 246712 273438 246282 295752 251848
rou15 354210 303487 381016 371480 457908 359748 480352 384018
rou20 725522 607362 804676 746636 840120 738618 905246 765872
tai10a 135028 116260 165364 143260 168096 135828 189852 147838
tai15a 388214 330205 455778 399732 451164 400328 483596 405442
tai17a 491812 415578 550852 513170 589814 505856 620964 526814
tai20a 703482 584942 799790 740696 871480 724188 915144 775456
tai30a 1818146 1517829 1996442 1883810 2077958 1886790 2213846 1875680
tai35a 2422002 1958998 2720986 2527684 2803456 2496524 2925390 2544536
tai40a 3139370 2506806 3529402 3243018 3668044 3249924 3727478 3282284

Table 1. Results of the QAPLIB benchmark experiments (see text).

for the relative values for each of the three estimates presented in Sections 3 and
4 are shown (note that these values are smaller than 1 because the value of the
objective function (1) is negative for this class of experiments). In summary, the
conclusions with respect to the QAPLIB-experiments are con�rmed.

X̂QPB=X
� X̂Ume=X

� X̂GA=X
�

mean worst case best case mean worst case best case mean worst case best case

n=9 [128] (22/53) (7/29) (31/55)

0.87607 0.43552 1 0.638244 0.0651729 1 .948342 .7756129 1
2opt 0.966155 0.79256 1 0.928304 0.753007 1 .9699138 .843046 1

n=11 [42] (3/11) (0/7) (7/10)

0.824023 0.514964 1 0.636159 0.295194 0.998591 .940740 .8338586 1
2opt 0.962258 0.842204 1 0.933206 0.811326 1 .9588626 .8434407 1

n=15 [99] (0/5) (0/1) (4/11)

0.741563 0.232741 0.938917 0.131333 0.225983 0.863508 .916225 .105164 1
2opt 0.925801 0.777494 1 0.890131 0.74688 1 .9576297 .8205957 1

Table 2. Statistics of the results of random ground-truth experiments (see text).

6 Conclusion

We have shown that, based on advanced techniques from convex optimization
theory, suboptimal solutions to the weighted graph-matching problem can be
computed which are competitive with respect to recent deterministic annealing
approaches. In contrast to annealing approaches, however, the convex approach
exhibits two favorable properties: Firstly, no tuning parameters are needed. Sec-
ondly, it computes a lower bound and thus can be used as a subroutine within



an exact search strategy like branch-and-bound, for example. As a result, it is an
attractive candidate for solving matching problems in the context of view-based
object recognition.
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D. Cremers and J. Keuchel.
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