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1 Introduction

One approach to recognizing three-dimensional objects by computer is to obtain a series
of two-dimensional views of a known object (Fig 1), maintain them in some convenient
representation in storage, and then match one or more two-dimensional views of an
unknown object against the stored views of the known object, thereby reducing the three-
dimensional matching problem to a series of two-dimensional ones.

Fig 1.  A series of two-dimensional views of a known (L-shaped) object.  (From [28])

If some sufficiently high matching threshold is surpassed in comparing the views of the
unknown object with the stored views, then the unknown object is presumed to be of the
same type as the known object.  This survey will look more closely at the problem of
computing and storing the two-dimensional views of the known object.  The aspect graph
is a data structure that incorporates information about these views.  The nodes of this
graph represent the collection of stable views of the object which, in a sense to be made
more precise below (section 2), are the only significant views associated with that object.
Stored with each node is enough information to allow for the reconstruction of the stable
view it represents.  The aspect graph also maintains view adjacency information.  Two
stable views are said to be adjacent when it is possible for a moving viewer to pass from
one view to the other with no intervening stable views.  In the aspect graph, each pair of
nodes representing adjacent stable views is joined by an edge.

In section 2 we define more precisely the problem domain for which aspect graphs are
utilized and provide definitions for many terms that will be encountered throughout this
survey.   In section 3 we present an extensive examination of recent research efforts
pertaining to the aspect graph for general polyhedral objects.  We provide detailed
analyses of the complexities of aspect graphs for collections of convex and non-convex
polyhedra.  Several algorithms found in the literature for the computation of aspect
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graphs induced by such objects are discussed in depth and their run-time complexities are
compared.  The study of aspect graphs for the special case of polyhedral terrains has
proved a particularly fruitful area of research, and a thorough treatment is provided in
section 4.  Again, complexities of these aspect graphs and algorithms to compute them in
this special case are examined in detail.  Finally, in section 5 we summarize a number of
research efforts in several related areas.  One such effort concerns the computation of
aspect graphs for object silhouettes.  The complexities of these aspect graphs are often
much lower than those induced by the entire scene.  Much effort has been expended
regarding the construction of useful approximations to aspect graphs, such as scale space,
finite resolution and weighted aspect graphs. These data structures, which may be simpler
or more easily computed than ordinary aspect graphs, nevertheless often embody enough
information to be useful in various circumstances.  We also discuss structures that
provide useful alternatives to aspect graphs in certain cases such as the 3d visibility
complex or a uniform tessellation of the viewpoint space.  We mention briefly here the
related issue of conservative visibility.  Additional topics cited briefly in the final section
include aspect graphs for objects with smooth surfaces, simplified algorithms for
computing aspect graphs and the aspect graph in two dimensions.

2 Definitions

Our problem domain is defined by three parameters [25]; the type of object (or objects)
that make up the scene whose aspect graph is to be determined, the set of available
viewpoints from which the scene may be viewed (the viewpoint space) and a precise
definition of what constitutes a view of the scene from a given viewpoint.

In this survey we focus primarily on the aspect graphs of scenes composed of collections
of opaque three-dimensional polyhedral objects (with planar faces).  This includes as a
special case the objects known as polyhedral terrains.  A large body of work exists
concerning the determination of aspect graphs for scenes involving other types of three-
dimensional objects, for example solids of revolution, and piecewise-smooth surfaces.
However, the machinery involved is more complex than in the case of polyhedral objects
and usually requires analytical methods for finding solutions to systems of simultaneous
polynomial equations [22].  We will return briefly to these considerations in section 5.4.

In most research the viewpoint space is modeled in one of two ways.  In the orthographic
model, the viewpoint space consists of all points on the sphere at infinity.  Each
viewpoint represents a particular direction of observation and is defined by two
parameters:  

�
, its longitude, or angle of rotation about the vertical axis, and � , its

azimuth, or angle from the positive vertical axis (Fig 2).  Note that there exists a natural
mapping from this set of viewpoints to points on the unit sphere S2 about the origin.

In this model all lines of sight emanating from a given viewpoint are parallel and
oriented in a direction opposite to that defined by the viewpoint.  Any line of sight that
meets an object terminates there, and is thus a ray (all other lines of sight are complete
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lines).  The visible features of the objects (vertices, edges or portions of edges, faces or
portions of faces) with respect to a given viewpoint are those encountered by this
collection of rays.  An object feature which is not visible from the viewpoint and for
which the volume immediately in front of the feature (with respect to the viewpoint) is
exterior to the object itself is said to be occluded from that viewpoint.  Thus, while
convex objects possess invisible features, they have no occluded features.  An occluded
feature f1 is said to be (partially) occluded by a feature f2 (with respect to a given
viewpoint) if some line of sight meeting f2 can be extended to a complete line
intersecting f1.

Fig 2.  A point ( � , � ) on S2 representing a viewpoint in the orthographic model.  (From [25])

In the perspective model, the viewpoint space consists of all points in R3 with the
exception of those points occupied by the objects themselves.  Thus each viewpoint is
defined by its  x-,  y-, and  z-coordinates.  In this model, lines of sight emanate in all
directions from a given viewpoint.  Here, however, any line of sight that meets an object
is a line segment.  Each such segment originates at the viewpoint and terminates at its
point of intersection with the object.  All other lines of sight are rays originating at the
viewpoint.  Visible features with respect to a given viewpoint are those encountered by
the collection of line segments.  Occluded features are defined similarly to the
orthographic model.  Finally, an occluded feature f1 is said to be (partially) occluded by a
feature f2 (with respect to a given viewpoint) if some line of sight meeting f2 can be
extended to a ray (emanating from the viewpoint) intersecting f1.

Suppose that, in the orthographic model, each line of sight that is a ray is extended to a
complete line. Similarly suppose that, in the perspective model, each line of sight that is a
line segment is extended to a ray (with endpoint at the viewpoint).  The resulting
collections of extended rays and line segments will both be referred to as extended sight
lines.

y

x

z

�

�
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In certain contexts the viewpoint space is limited to a line or line segment in R3 or a
geodesic curve (i.e. an arc of a great circle) in S2.  Such curves are generically referred to
as flight paths.

We now turn to a more precise formulation of the third parameter defining our problem
domain, the concept of view.  The definition we present is the most common, but by no
means the only one to be found in the literature.  In the rest of this section we refer to a
single object, but the discussion applies equally well to collections of objects.

In the orthographic model we select a viewpoint and project object vertices, edges and
edge portions onto a plane P at infinity that is orthogonal to the lines of sight.  A vertex
or point on an edge that is met by a line of sight is projected onto P at the point where its
extended sight line intersects P.  Since all lines of sight are parallel, the resulting
projection has no distortions due to perspective effects; features along two lines of sight l
and l' separated by a distance d will have projections also separated by a distance d in the
projective plane.  In the perspective model we select a viewpoint and project these same
features onto a sphere S of infinitesimal radius with center at that viewpoint.  For each
line of sight l, the object vertex or edge point met by it, if any, is projected onto S at the
point where l intersects S.  As its name implies, perspective distortions may be seen in the
projection obtained under the perspective model.  For example, parallel edges receding
from a viewpoint will appear to meet in the projection at what in common parlance is
called a vanishing point.

The projection of an object onto the plane P or sphere S with respect to a viewpoint is
called the object’s image from that viewpoint, and P and S are referred to as the image
plane and image sphere respectively.  There are two important types of images, opaque
images and transparent images.

The opaque image of an object with respect to a given viewpoint is the projection of
object vertices and edge portions visible from that viewpoint onto the image plane or
sphere in the manner described above.  Object vertices and edge portions that are
occluded by the interior of object faces do not project onto the opaque image.  In contrast,
the transparent image of an object with respect to a given viewpoint is the projection of
all object vertices and edges onto the image plane or sphere under the assumption that
object faces are transparent.  In other words, object faces do not cause occlusions.  In
terms of the above discussion, we expand all li nes of sight that intersect the interior of an
object face until they encounter an object edge or vertex or else pass to infinity.  We then
project all object features (vertices and edges) encountered by this new collection of sight
lines onto the image plane or sphere.  Thus the transparent image may be regarded as the
projection of the wire frame of the object under consideration.

Opaque and transparent images are composed of three types of features, vertices, edges
and T-junctions.  Object vertices project to image vertices, and portions of object edges
project to image edges.  An additional set of vertices, referred to as T-junctions, arises
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due to the intersections of the projections of non-adjacent object edges.  T-junctions are
but one instance where image features intersect due to the alignment of the object
features that project to them along an extended sight line emanating from the viewpoint.
We will have occasion to speak more about this in section  3.1.  In general, T-junctions
involving two edges appear T-shaped in the opaque view, since the face adjacent to one
of the object edges occludes a portion of the other object edge (Fig 3).  Since object faces
do not occlude in the transparent view, T-junctions involving two edges are in this case
X-shaped in appearance.

Fig 3.  An opaque image showing (a) a vertex, (b) an edge and (c) a T-junction.  (From [28])

The labeled image structure graph (LISG) of the (opaque or transparent) image is
constructed by mapping image vertices (including T-junctions) to nodes and image edges
to arcs, and labeling these nodes and arcs (and the faces induced by them) in some
consistent way [18].  One reasonable labeling scheme involves the assignment of a
distinct label to every vertex, edge and face of the original object.  Image vertices that are
not T-junctions and image edges receive the label of the corresponding object feature that
projects to them.  A T-junction is assigned a set of labels, one label from each image edge
that gives rise to it.  Finally, although object faces are not considered to project into the
image, we may assign to each image face the label of the object face that would be seen
there, if any, from the viewpoint (in the transparent case, we assign the label of the
closest face, relative to the viewpoint, that would be seen there, if any).  Under such a
labeling scheme the LISG thus becomes an embedded, labeled, undirected planar graph.
The opaque (transparent) view from a given viewpoint is the LISG of the opaque
(transparent) image as seen from that viewpoint.

Two embedded, undirected, planar graphs A and B are isomorphic [18] when they
possess the same qualitative (topological) structure, that is, when there exists a one-to-
one correspondence, M, called an isomorphism, mapping the nodes (arcs and faces) of A
to the nodes (respectively, arcs and faces) of B such that given any node n of A, if the

   c

a

b
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arcs and faces adjacent to n (proceeding, say, in the clockwise direction) are a1, f1, a2,
f2, . . . ak, fk and the arcs are adjacent to nodes n1, n2, . . ., nk, respectively, then the arcs
and faces adjacent to M(n) in B are M(a1), M(f1), M(a2), M(f2), . . ., M(ak), M(fk) (also
proceeding in the clockwise direction) and the arcs are adjacent to nodes
M(n1), M(n2), . . ., M(nk), respectively.  In addition, for a labeled graph, under the rules
for assigning labels to nodes and arcs, the nodes n and M(n) must be labeled identically,
as must the arcs a and M(a) and the faces f and M(f).  Two views are called distinct when
their corresponding LISG’s are not isomorphic.

The aspect graph embodies only opaque views of an object.  As we shall see, however,
the transparent view is important because most algorithms compute the collection of
transparent views of an object as an intermediate step towards computing the collection
of opaque views.

To compute the aspect graph it is first necessary to partition the viewpoint space (in the
orthographic case this may be regarded as either the sphere at infinity or S2, by virtue of
the natural mapping that exists between the two) into maximally connected regions of
viewpoints from which the corresponding opaque views are isomorphic.  A representative
viewpoint is selected from each full-dimensional cell (a two-dimensional region in the
orthographic model, and a three-dimensional region in the perspective model) of this
viewpoint space partition (VSP) and its associated opaque view is constructed.  The
aspect graph is the dual of the VSP.  It possesses a node for each full -dimensional cell in
the VSP and an arc between nodes representing adjacent cells (those which are separated
by a region of one lower dimension in the partition).  In addition, it stores at each node
the opaque view of the representative viewpoint (or at least enough information to
reconstruct that view [17]) (Fig 4).  The aspect graph thus contains the information
necessary to allow the type of two-dimensional image matching described in the
introduction.

The viewpoints within the full -dimensional cells of the VSP, termed non-critical regions,
are called general viewpoints.  These are viewpoints for which any infinitesimal
movement in viewpoint space leads to a viewpoint with an isomorphic opaque view.  It is
in this sense that the views associated with non-critical regions are considered stable;
there exists a volume of viewpoint space for each such view from which that view
persists (up to isomorphism) as the viewpoint is varied.  In the orthographic model non-
critical regions are two-dimensional cells and are bounded by one-dimensional curves.  In
the perspective model non-critical regions are three-dimensional cells and are bounded by
two-dimensional surfaces.  These curves and surfaces, termed actual critical regions,
consist of viewpoints for which there exists some infinitesimal movement in viewpoint
space leading to a viewpoint with a non-isomorphic opaque view.  The viewpoints at
these critical curves and surfaces are called accidental viewpoints.  Views associated with
actual critical regions are considered unstable.  Because they are associated with regions
in viewpoint space which are infinitesimally small they are considered insignificant for
image matching, and thus are not stored in the aspect graph.
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Fig 4.  One hemisphere of S2, showing a VSP (solid lines), the corresponding aspect graph (dashed
lines) and selected opaque views of an object for several regions in the VSP in the orthographic
model.  (From [18])

Finally, we will also have occasion to discuss the partition of viewpoint space induced by
the set of transparent views of the object.  This partition, consisting of maximally
connected regions of viewpoints from which the corresponding transparent views are
isomorphic, is a refinement of the VSP.  Just as for the VSP, we will refer to the full-
dimensional cells of this partition as non-critical regions (containing general viewpoints).
We refer to the curves or surfaces of this partition as potential critical regions (containing
accidental viewpoints) since they do not necessarily appear in the VSP.

Note that the VSP is the arrangement [20] of the actual critical regions in viewpoint
space.  Similarly, the partition induced by the set of transparent views is the arrangement
of potential critical regions in viewpoint space.

3 Aspect Graphs and General Polyhedra

We begin this section with a discussion of the nature of the potential critical regions
induced by the transparent views of a single polyhedral object.  We discuss three
algorithms that use very different approaches to compute the actual critical regions of the
VSP given that the set of potential critical regions has already been determined.  Bounds
on the complexity of the VSP in both the orthographic and perspective models are
established next, and a comparison of the run-time complexities of the algorithms is
presented.  Subsequent to this, bounds on the time and space complexities involved in
computing, storing and retrieving the stable opaque views associated with each node in
the aspect graph are considered.  Bounds on the complexity of the VSP induced in the
special case where the scene consists of  k convex polyhedral objects are established next.
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Following this, several algorithms are delineated for computing the potential critical
regions along a flight path in  R3 induced by a collection of polyhedral objects.  Finally,
we consider a special type of object, called an articulated assembly, consisting of a
collection of moving polyhedral parts.  Each specific configuration of such an object
yields a distinct VSP.

3.1 Critical Events and Potential Critical Regions

We begin by describing how to find the set of potential critical regions induced by an
object or collection of objects, since the algorithms to be described require that these be
determined before the actual critical regions can be computed. Potential critical regions,
occurring at viewpoints for which there is a qualitative (topological) structural change in
the LISG of the transparent view as the viewpoint moves infinitesimally in some
direction, are induced by two kinds of critical events.  An EV-event occurs when an
image vertex intersects an image edge. This happens when the corresponding object
vertex and non-adjacent object edge are aligned along an extended sight line from the
viewpoint.  An EEE-event occurs when three image edges (or, equivalently, an image
edge and a T-junction formed by two other image edges) intersect at a point.  Such an
event happens when the three corresponding pairwise non-adjacent object edges are
aligned along an extended sight line from the viewpoint (Fig 5).

Fig 5.  An EV-event (top row) and an EEE-event (bottom row).  (From [17])

It can be shown [18] that these events are fundamental in the sense that any other event
that induces structural changes in the LISG of the transparent image reduces to one of
these.  For example, the intersection of two image T-junctions as seen from a given
viewpoint may be regarded as the simultaneous occurrence of several EEE-events.
Again, the intersection of two image vertices is an EV-event involving one of these
vertices and either of the edges adjacent upon the other vertex.
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To determine the potential critical regions induced by EV-events [25], consider an object
vertex v and an object edge e.  In R3 it is clear that the only viewpoints that possess
extended sight lines passing through both v and e lie in a planar region which is part of
the affine hull of v and  e.

This region is bounded by the lines passing through v and either endpoint of e.  All
viewpoints between v and e are discarded, as no extended sight line emanating from such
viewpoints (recall that these are rays in the perspective model) can pass through both
features simultaneously.  This region is a potential critical surface in the perspective
model.  This surface intersects the sphere at infinity along two diametrically opposite arcs
of a great circle, yielding two potential critical curves in the orthographic model (Fig 6).

Fig 6.  The potential critical region induced in R3 by a vertex v and an edge e (excluding the region
between the features) and (at the bottom of the diagram) its intersection with a portion of the sphere
at infinity.  (From [14])

Special considerations exist for the EV-events induced by the vertices and edges
bounding a single object face.  In R3, every viewpoint lying on the plane containing this
object face (recall that all viewpoints are exterior to the object itself) will possess an
extended sight line intersecting at least one edge and one vertex adjacent to that face.
Thus this planar region is a potential critical surface in the perspective model.  The
intersection of this surface with the sphere at infinity is a great circle, hence this is a
potential critical curve in the orthographic model.

To determine the potential critical regions induced by EEE-events [25], consider three
object edges e1, e2 and e3.  For a selected point q on one of the edges (say e1), the only
viewpoints in R3 that possess extended sight lines passing through q and points on both
of the other two edges are those along the line of intersection of the two planes defined
by q and those edges (Fig 7).

As q is allowed to vary among all points on e1, these lines of intersection sweep out a
quadric surface, the nature of which depends on the relative orientation of the three
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edges.  For example, if the edges are skew to each other then the induced quadric surface
is a portion of a hyperboloid of one sheet [18].  As in the case of EV-events, however,
viewpoints on this surface lying between any two of the edges are discarded, as no
extended sight line emanating from such viewpoints can pass through all three features
simultaneously.  This quadric surface constitutes a potential critical surface in the
perspective model.  The intersection of this surface with the sphere at infinity yields a
potential critical curve in the orthographic model (Fig 8).

Fig 7.  An extended sight line passing through q and points on e2 and e3.  (From [18])

Fig 8.  The potential critical region induced in R3 by three edges e1, e2 and e3 (excluding the region
between the features) and (at the bottom of the diagram) its intersection with a portion of the sphere
at infinity.  (From [14])

We note that each potential critical region is an algebraic surface patch of constant
maximum degree, and is bounded by a constant number of algebraic surface patches,
each of which is also of constant maximum degree.  We will refer to such surface patches
as well-behaved.  A property of such patches in two dimensions is that any pair intersects
in at most a constant number of points.  A property of such patches in three dimensions is

q

e1

e2

e3
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that any pair intersects in at most a constant number of algebraic curves and any triple
intersects in at most a constant number of points.

3.2 Actual Critical Regions and Algorithms to Compute the VSP

The actual critical regions of the VSP are composed of viewpoints for which there is a
qualitative structural change in the LISG of the opaque view as the viewpoint moves
infinitesimally in some direction.  Equivalently, these regions consist of the set of
accidental viewpoints for which there exists at least one critical event such that the object
features associated with that event are not occluded by any other object features (Fig 9).
Therefore the actual critical regions of the VSP are contained within potential critical
regions, and the arrangement of potential critical regions is a refinement of the VSP.

Fig 9.  The occlusion of an edge that would have been involved in an EV-event by an object face.
(From [17])

Yet another equivalent formulation is that actual critical regions are made up of those
accidental viewpoints for which there exists an extended sight line with the following
properties (Fig 10):

• The line intersects every feature associated with some critical event.
• The line is tangent to the object(s) at the features associated with the event except,

possibly, at the feature that is furthest from the viewpoint (it may be tangent to the
object or it may penetrate the object at that feature).

• The line does not intersect any other object feature between the viewpoint and that
furthest feature.

We note here that, in three dimensions, actual critical regions are not necessarily bounded
by a constant number of surface patches.  Thus, while potential critical regions are well-
behaved, actual critical regions may not necessarily be so.  It is not true, for example, that
any pair of actual critical regions intersects in at most a constant number of algebraic
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curves. However, because actual critical regions lie on potential critical regions, which
are indeed well-behaved, these intersections consist of a collection of curve segments that
lie on a constant number of algebraic curves.  In two dimensions each actual critical
region is a curve (bounded by two points) lying on a well-behaved (potential critical)
curve and thus is well-behaved.

Fig 10.  Accidental viewpoint belonging to actual critical regions.  In each case the event shown (an
EV-event in (a) and an EEE-event in (b)) is visible in the opaque view.  (From [27])

We now describe the different approaches used by the three algorithms, mentioned
earlier, for computing actual critical regions directly from potential critical regions. The
method of the first algorithm [17] is to prune each potential critical region as it is
computed (or to discover that a potential critical region need not be computed in the first
place) using various ad hoc methods prior to computing the entire VSP.  For example, it
is not necessary to compute the potential critical region induced by an EV-event when the
vertex v lies in the shadow volume of an edge e.  This is the intersection of the negative
half-spaces of the two faces adjacent to e.  The negative half-space of a face consists of
all points in R3 whose associated vectors have negative dot product with the outward
normal of the face (in other words it is the half-space behind the face).  A line segment
extended from any point p in the shadow volume of e to a point p' on e will, in a region
near p', lie in the interior of the object whose boundary contains e.  Therefore, no
extended sight line (from any viewpoint) intersecting both v and e with the three
properties discussed above may exist, and there is no need to compute the potential
critical region induced by v and e since there can be no corresponding actual critical
region.

In the orthographic model, pruning of a potential critical curve amounts to identifying all
viewpoints on that curve from which some feature involved in the associated critical
event is occluded by an object feature not associated with the event.  Points with this
property are pruned out, and the remaining set of viewpoints constitutes the actual critical
curve.

e
v

e1

e2

e3

(a)

(b)
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Practically, all such points can be identified by first finding all event occlusion endpoints
(EOE points) on the potential critical curve.  EOE points are those viewpoints for which
the extended sight line associated with the critical event is tangent to some edge adjacent
to an object face before intersecting at least one of the features involved in the event.  The
object face is not adjacent to any of the features defining the event.  This extended sight
line thus intersects four object edges (note that, for EV-events, we regard the intersection
of the extended sight line and the vertex associated with the event as an intersection with
each of the edges adjacent to that vertex), is tangent to the object at the three edges
closest to the viewpoint, and may penetrate the object only at or beyond the fourth
edge (Fig 11).  We will have more to say about lines with these properties in section  4.4,
which deals with polyhedral terrains.

Fig 11.  An extended sight line intersecting four object edges (a) and its associated EOE point on (a
small portion of) the sphere at infinity (b).   (From [14])

In R3 at most two lines can intersect four lines (or line segments) in general position in
the manner described (general position with respect to lines, or line segments, implies
that they are not all coplanar and that no three of them have a common point of
intersection).  Thus there can be at most two extended sight lines associated with the four
edges in question.  Since these two lines intersect the sphere at infinity in at most four
points we note that each object edge contributes no more than four EOE points to each
potential critical curve.

We also note that any EOE point on a potential critical curve p1 occurs at the intersection
of that curve with some other potential critical curve p2.  This is so because the edge
adjacent to the occluding face combines with several of the features which induce p1 to
form the critical event which induces p2.

Once the set of EOE points for the potential critical curve is determined, they are sorted
along that curve.  The EOE points are then classified into two groups, those for which an
occlusion is about to occur as the curve is traversed in an arbitrary, fixed direction, and

a

b
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those for which an occlusion is about to cease.  If the number of occluding faces is first
calculated for the initial point on the curve at which the traversal begins, then the
collection of segments between consecutive EOE points along the curve for which no
occlusions occur is easy to find.  This collection constitutes the actual critical region for
the event.  By analyzing the potential critical curves induced by all events in a similar
manner, we may obtain the entire set of actual critical regions for the object.

Another approach for handling occlusion, used by the second algorithm we discuss, is to
compute the entire arrangement of potential critical regions in S2 before any pruning is
performed [18].  In the orthographic model, this involves finding the intersections of the
potential critical curves in the arrangement and determining the curve segments that are
bounded by these intersections.  The two cells adjacent to each segment possess distinct
transparent views, but their opaque views may be isomorphic.  The opaque views of
adjacent cells will be isomorphic when, for each critical event associated with the
segment between the cells (there may be more than one if different events induce
overlapping potential critical curves), at least one of the features involved in the event is
occluded by a feature not associated with the event from all viewpoints along the
segment.  If this occurs, the segment is pruned from the partition.  When all such
segments are removed, what remains constitutes the entire set of actual critical regions
for the object.

The approach taken by the third algorithm requires the use of geometric spaces of
dimension greater than three [25].  Given a d-dimensional viewpoint space and a
two-dimensional image space (corresponding to an image plane or sphere), we define the
(d+2)-dimensional aspect space to be the Cartesian product of these two spaces.  Thus,
the aspect space is four-dimensional in the orthographic model and five-dimensional in
the perspective model.  A point in aspect space, denoted by ( � � �
	  u, v) in the orthographic
model ((x, y, z, u, v) in the perspective model), represents the contents of point (u, v) in
the image space as seen from viewpoint ( �
� � ) (respectively (x, y, z)).

A point on an object feature is said to occupy a point ( ��� ���  u, v) (or (x, y, z, u, v)) in
aspect space when, with respect to the viewpoint ( ��� � ) (respectively (x, y, z)), its
projection (in the transparent image) lies at the point (u, v) in the image space.  The set of
points in aspect space occupied by an object feature is called its aspect space volume.
For example, a vertex is a zero-dimensional feature which can be observed (in the
transparent image) from all points in the two-dimensional orthographic viewpoint space
leading to an aspect space volume of two (zero plus two) dimensions.  Likewise, an edge
is a one-dimensional feature which can be observed from all points in the two-
dimensional orthographic viewpoint space leading to an aspect space volume of three
dimensions.  In the perspective model aspect space volumes for vertices and edges are of
three and four dimensions, respectively.

Note that aspect space volumes may be associated with EV- and EEE-events as well as
object features.  As we have seen, the (zero-dimensional) points of intersection in the
image space associated with these events are observable from a one-dimensional curve of
viewpoints in the orthographic model and from a two-dimensional surface of viewpoints
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in the perspective model.  Thus the induced aspect space volumes are one-dimensional in
the orthographic model and two-dimensional in the perspective model.  We emphasize
the fact that aspect space volumes associated with EV- and EEE-events share a similarity
with the potential critical regions examined in section 3.1 in that they embody the
collection of viewpoints from which structural changes in the corresponding transparent
image may be observed.  One could project these volumes into viewpoint space, thus
generating the set of potential critical regions for the object.  These regions may then be
pruned, as described earlier, to remove regions from which occlusion occurs, thus
yielding the entire set of actual critical regions.

An alternative approach, however, is to perform this pruning in aspect space before
projecting into viewpoint space. The virtue of this alternative (indeed the reason for
making use of the aspect space construction at all) becomes apparent when it is noted that
occlusion is particularly easy to quantify in aspect space.  Two object features f1 and f2

occlude whenever they occupy the same point in the image space (in the transparent
image) with respect to a given viewpoint.  Equivalently, occlusion occurs whenever the
aspect space volumes for the two features have non-empty intersection (note that
analytical means must be employed to determine those connected sub-regions of this
intersection for which f1 occludes f2 and vice versa).

This suggests the following course of action.  Using analytical methods (parametric
equations for aspect space volumes arising from the different kinds of features and events
are derived in [25]) compute the aspect space volume for each object face.  Then, for a
selected face  f, determine the intersection of its volume with each of the other aspect
space volumes just computed.  Use set subtraction to remove from the aspect space
volume of  f those sub-regions of these intersections for which  f is occluded by another
object face (note that pruning of occluded features and events involving  f is
accomplished by this subtraction;  we may think of the remaining volume as the aspect
space volume for  f corresponding to the opaque image).  The resulting volumes for all
faces may be determined similarly, and the union of these yields a final volume for the
entire object.  Finally, in the orthographic model, the one-dimensional curves of this
volume are projected into viewpoint space, while, in the perspective model, the two-
dimensional surfaces of this volume are so projected.  These curves and surfaces are the
ones associated with visible EV- and EEE-events only, since all occlusions have been
eliminated by the set subtraction step.  Thus these projections constitute the entire
collection of actual critical regions that is sought.

3.3 Complexity of the VSP

This section provides an analysis of the complexity of the VSP for a single polyhedral
object with O(n) vertices, edges and faces.  For any such object there exist  O(n2) vertex-
edge pairs and O(n3) edge triples.  Thus the number of potential critical regions induced
by EV-events is  O(n2), and those induced by EEE-events is  O(n3).  We make use of the
following fact [20]:  in Rd, a set of O(n) well-behaved (d-1)-dimensional surface patches
induces an arrangement of complexity O(nd).  Recall that the potential critical regions
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generated by EV- and EEE-events are all well-behaved.  The entire set of  O(n3) potential
critical regions therefore induces an arrangement of complexity O(n6) in the orthographic
model and  O(n9) in the perspective model.  It can be shown (we omit the details) that
these also serve as bounds for the complexity of the VSP itself.  (In fact, in any situation
where an upper bound can be established for the number of actual critical regions, the
upper bound complexity of the arrangement of an equal number of potential critical
regions containing these actual critical regions serves as an upper bound on the
complexity of the VSP induced by the actual critical regions.  This result will be used
repeatedly throughout this survey.)

In the case of a single convex polyhedron, the above bounds may be improved upon.
Here there exist no EEE-events (since no three pairwise non-adjacent object edges may
be met by any extended sight line).  Further, all EV-events that induce actual critical
regions arise due to vertex-edge pairs that lie on the same object face only (for a given
edge, all vertices not lying on the same face lie in the shadow volume of the edge and
thus do not generate actual critical regions – see section 3.2). Therefore, all actual critical
regions lie, in the orthographic model, on one of the n great circles at infinity coplanar
with the object faces or, in the perspective model, on one of the n planes containing the
object faces.  These actual critical regions are thus well-behaved.  The result mentioned
above may then be used directly to conclude that the VSP for convex objects in the
orthographic model is O(n2), while in the perspective model it is O(n3).

A lower bound on the worst-case complexity of the VSP for a polyhedron of
complexity � � n) is established in [25].  For the convex case, it is shown that there exists�����
������� ����!#"�$���%'&(���*),+-��$/.0$��1.2.0$3��&(�54 67!8!:9
� ;=< n2) vertices in the VSP of the orthographic> ?:@�A�BDC�E�@GFIH n3) vertices in the VSP of the perspective model  (Fig 12).  In the
orthographic model, this can be seen by noting that each of the J H n) great circles, which
are the actual critical regions induced by the J H n) faces on one of the ‘orthogonal’ bands,
will intersect each of the J H n) great circles associated with the faces on the other
‘orthogonal’ band.  There will thus be J H n2) distinct points of intersection.  In the
perspective model, the J H n3) triples consisting of two planes containing two faces in one
band and a plane containing a face in the other band will intersect in J H n3) distinct
points.  Because of the previous upper bound results, these bounds for the complexity ofK0L�M*NPO3QSR�T(MUK0V#W�L�KXV7YZK0L3M\[^]
T`_,Kba�R�_cM�dfe/g

n2 h�i7jlk0m�npo�q,k0mro
s�q(tvu�m�i7wZx o�y�n�z{t�j�yD|U} n3) in the
perspective model.

In the non-convex case, a polyhedron of complexity |I} n) can be constructed  [25]
consisting of two grids of |U} n hI~���|U} n) ‘strips’ (of negligible thickness), behind, and
slightly skew to, two sets of |/} n) parallel rectangular faces with a narrow gap between
each pair of consecutive faces (Fig 13).  Since the strips are arbitrarily thin, we may
consider each of the |U} n2) junctions of the grids at which two edges appear to overlap to
be pseudo-vertices.  These pseudo-vertices along with the edges of the rectangular faces
induce |U} n3) nearly planar actual critical regions.  The grids and rectangular faces on the
left are positioned so that, as the viewpoint moves along a horizontal line in viewpoint
space, each of the junctions aligns with the edges of one gap before any of them are seen
to align with the edges of another gap.  In this way it is ensured that each of the |/} n3)
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actual critical regions are met at a distinct point along the line.  The grids and faces on the
right are positioned so that the same is true as the viewpoint moves along a vertical line.
Thus a ‘grid’ of �U� n3) by �/� n3) nearly planar actual critical regions is induced in some
region of viewpoint space.  This therefore yields a VSP with complexity � � n6).  In the
perspective model, a third set of grids and faces must be added, and the three sets
positioned orthogonally to each other to create a region of viewpoint space with a grid
containing �/� n3) by �U� n3) by �U� n3) nearly planar actual critical regions.  Thus a VSP of
complexity � � n9) is constructed.  Note that by extending imaginary prisms (with total
complexity O(n)) of negligible thickness between the various strips and rectangular faces
one may construct a single connected polyhedral object.  With care, the addition of these
prisms wil l not lower the worst-case complexities just presented.  So assuming that the
scene consists of a single, non-convex, connected polyhedron does not affect the worst-
case complexity of the induced VSP (which, because of the previous upper bound results,
are tight): ��� n6) in the orthographic model and �U� n9) in the perspective model.

Fig 12.  A convex polyhedron (with � (n) faces in each ‘or thogonal’ band) which induces a VSP with
complexity � (n2) in the or thographic model and � (n3) in the perspective model.  (From [25])

Fig 13.  A non-convex polyhedron (with � (n) faces in total) which induces a VSP with complexity
� (n6) in the orthographic model.  (From [25])
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The lower bound construction presented above for the non-convex case requires that
some object edges (those of the grids) be slightly askew to other object edges (those of
the rectangular faces).  That such a condition is unnecessary to obtain these bounds, at
least in the orthographic case, is demonstrated in [29].  Here a set of 4n axis-parallel lines���b���(���(�����������0���5�I�����
�p�0�����(���v�(� � �

n6) distinct vertices in the VSP, each formed by the
intersection of a pair of actual critical regions associated with the EEE-events induced by
these lines.  Although the proof is for a collection of lines, each such line may be
replaced by a long axis-parallel prism of negligible thickness (so that for each EEE-event
induced by the lines there is a corresponding EEE-event induced by the prisms), and all
such prisms connected, as above, by additional (axis-parallel) prisms of negligible
thickness.  As before, these additional prisms will not lower the worst-case complexity of
the VSP. The resulting connected, non-convex, polyhedron (of complexity � � n)) all of
whose faces are bounded by axis-parallel rectangles, thus induces a VSP of complexity� � n6).

This complexity is obtained by deriving equations for the actual critical curves on a plane
(rather than the sphere) at infinity induced by the EEE-events arising from the 4n
axis-parallel lines (these critical curves are shown to be hyperbolae in all cases),
selecting �U� n6) pairs of these curves such that each pair intersects in exactly one point on
the plane, and demonstrating that these points of intersection are all distinct.  This
establishes the existence of  I¡ n6) distinct points of intersection of critical curves on the
plane at infinity.  Thus, because of the argument in the previous paragraph, the assertion
regarding the complexity of the VSP in the orthographic case is immediate.

A recent construction [4] demonstrating a lower bound on the worst-case complexity of
the VSP induced by a scene consisting of ¢U¡ k) convex polyhedra with a total of ¢/¡ n)
vertices, edges and faces (section 3.6) can be modified to obtain a lower bound of  I¡ n9)
on the worst-case complexity for the VSP induced by axis-parallel lines in the
perspective model.  We omit the details.

3.4 Comparative Run-Time Complexities of the Algorithms

We now present a comparison of the worst-case run-time complexities of the three
algorithms discussed in section  3.2 for computing the VSP of a general polyhedral scene
in the orthographic model.  Subsequent to this we discuss the complexity of the aspect
space algorithm in the perspective model.  In the orthographic model, arrangements are
represented using a standard incidence graph data structure and are constructed using a
standard two-dimensional sweep algorithm [20].  This algorithm constructs arrangements
of m curves having a total of k points of intersection in time O((m + k) log m).  In our
examples the curves are well behaved, thus k = O(m2) and the running time
is O(m2 log m).  In the perspective model arrangements can be represented by a data
structure known as a vertical decomposition and can be constructed using a three-
dimensional sweep algorithm [20].
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We consider first the algorithm in which the arrangement of potential critical curves is
computed before any pruning is performed [18].  Each of these (well-behaved) O(n3)
curves can be computed in constant time.  The arrangement induced by these curves is
thus constructed in O(n6 log n) time using the two-dimensional sweep algorithm referred
to above.  Since each such curve may be intersected by the other O(n3) curves in a total of
O(n3) distinct points, and since there exists O(n2) curves induced by EV-events and O(n3)
curves induced by EEE-events, the total number of EV-event curve segments thus
induced is bounded by O(n2n3) = O(n5), while the total number of EEE-event curve
segments is bounded by O(n3n3) = O(n6).  For each of these segments, a determination is
made as to whether there exists an occluding face for some feature involved in each event
associated with that segment (if so, the segment is not an actual critical curve segment
and, hence, is removed from consideration).  Since this determination can be made so as
to not affect the upper bound on the complexity of the entire algorithm (see the next
paragraph), this algorithm therefore determines the VSP in O(n6 log n) time.

As noted in [25] determining the existence of an occluding face for a feature would
ordinarily require the inspection of each object face in turn, an O(n) time procedure that
would cause the entire algorithm to execute in O(n7) time.  However, this difficulty is
avoided by the maintenance of a structure (called the augmented view of the transparent
object) consisting of a list of faces for each object edge e which are visually adjacent to e
in the transparent image, and are also either physically adjacent to e in the object or
partially occluded by e with respect to all viewpoints on the segment (there are O(1) such
faces for each edge).  Note that this list must be updated for every edge as each of
the O(n6) segments is considered in turn, however this step can be accomplished in
tandem with the calculation of the views of the scene (section 3.5) and so as not to affect
the upper bound on the complexity of the entire algorithm (we omit the details).  For each
feature involved in each event associated with the segment under consideration it can
therefore be determined whether there exists a visually adjacent face which is not one of
the faces in this list (note that the maintenance of the augmented view allows this to be
accomplished in O(1) time for each feature, as opposed to O(n) time).  If such a face
exists, it is also an occluding face for that feature relative to all viewpoints on the
segment.  As stated above, if an occluding face can be found for any feature involved in
each event associated with the segment, the segment must be pruned from the
arrangement.

The algorithm of [18] does not yield an output-sensitive run time (one that is a function of
the size of its output) because it requires the computation of the entire arrangement of
potential critical curves (of which there will always be £I¤ n3) in the general case).  This
dominates the run-time complexity of all other steps in the algorithm.  Output-sensitive
approaches, where the run-time complexity of the algorithm depends directly on the
complexity of the VSP itself, are achieved by first removing all potential critical regions
which are not actual critical regions, and then computing the arrangement thus induced.
The other two algorithms discussed in section  3.2  provide examples of this approach.

In the algorithm which computes event occlusion endpoints (EOE points), in which
pruning precedes the computation of the arrangement [17], it has been noted that the O(n)



22

edges of the object may contribute at most O(n) such points to each of the O(n3) potential
critical curves (each computed in constant time), thus yielding O(n4) EOE points in total
(each such point is also computable in constant time).  The sorting of these EOE points
along each critical curve (which is required in order to determine those curve segments
for which occlusion of the associated event occurs) and hence the total time to find the set
of actual critical curves is therefore accomplished in O(n4 log n) time.  The resulting
arrangement of m (well-behaved) curves (with O(m2) vertices), then, again appealing to
the two-dimensional sweep algorithm, may be constructed in O(m2 log m) time.  The
entire algorithm therefore finds the VSP in O(n4 log n + m2 log m) time, and is output-
sensitive.  As noted in [17], the O(n4) EOE points induce O(n4) actual critical curve
segments, but these segments lie on O(n3) well-behaved curves.  Thus the VSP has at
most O(n6) vertices and the worst-case running time for this algorithm is again
O(n6 log n).

Plantinga and Dyer [25] claim that, with appropriate generalizations, all set-theoretic
operations involved in computing the aspect space volume for an object can be
accomplished in O(n5) time in both the four and five-dimensional cases.  The
orthographic model version of the algorithm described in section  3.2 performs these
operations and then projects the one-dimensional aspect space volumes associated with
critical events into viewpoint space, yielding an arrangement of m (well-behaved) curve
segments which may be constructed in O(m2 log m) time.  Thus the entire algorithm
computes the VSP in O(n5 + m2 log m) time.  Note that this result is also output-sensitive.
As in the analysis of the previous algorithm, the m segments lie on O(n3) well-behaved
curves in the orthographic model, thus making the worst-case run-time complexity of this
algorithm O(n6 log n).  Note that while the worst-case performances of the two output-
sensitive orthographic model algorithms of [17] and [25] are identical, the algorithm
of  [17] is more efficient when m2 log m < n5.

Finally, the perspective model version of this algorithm projects the two-dimensional
aspect space volumes associated with critical events into viewpoint space.  We assume
that the resulting set of actual critical surface patches may be subdivided into a total of m
well-behaved surface patches.  Then, assuming a vertical decomposition representation of
the resulting (three-dimensional) arrangement of these m well-behaved surfaces, and
assuming use of the three-dimensional sweep algorithm referred to at the beginning of
this section, this algorithm can compute the VSP in time O(n5 + ¥ ¦ q(m) log m + Vlog m)
where V is the complexity of this vertical decomposition and ¦ q(m) is the maximum
length of a particular class of Davenport-Schinzel sequences (section 4.1) (q is a constant
depending on the nature of the well-behaved surfaces and their boundaries) [20].  The
complexity of a vertical decomposition in R3 is nearly the same as the complexity of the
arrangement it represents.  Also ¦ q(m) is nearly linear in m.  In the worst case the
arrangement consists of § (n3) surfaces implying  V is nearly O(n9), thus leading to a
worst-case run-time complexity of nearly O(n9 log n).
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3.5 Stable Views and the Complexity of the Aspect Graph

At this point recall that the aspect graph, unlike the VSP, stores the entire set of stable
opaque views of the scene.  An analysis of the complexities of computing, storing, and
retrieving these views for a non-convex object in the orthographic model is provided
next.  Analogous considerations apply for the perspective model, and for convex objects
in either model, and are thus omitted here.

Since, in the orthographic model, the size of the VSP is  O(n6), there are  O(n6) opaque
views to be computed.  Each view is the projection of  O(n) object features onto the
image plane and itself has worst-case complexity ¨ (n2) (since each T-junction arises due
to the alignment along some extended sight line of object edge pairs – see section 2).  A
naïve approach would be to compute (and store) each view independently of all other
views.  However, this method is relatively costly and can be improved upon.  A
procedure to calculate all views without increasing the complexity of the algorithm to
compute the VSP is provided in [18].  Recall that this algorithm, described in section  3.2,
computed the arrangement induced by the set of potential critical curves before
performing any pruning of these curves.  This algorithm may be augmented to do pruning
and calculate opaque views in tandem as follows.   An initial opaque view is first
calculated for some region in this arrangement of potential critical curves.  Then each
segment of this arrangement is analyzed (for purposes of pruning) in an order such that
the opaque view of one region bordering the segment has already been computed while
the opaque view of the other bordering region is yet to be determined (equivalently, one
may think of traversing the dual graph with nodes for each full-dimensional cell i n the
arrangement and arcs connecting each adjacent cell – similar in concept to the aspect
graph itself but instead dual to the arrangement of potential critical regions, along a
spanning path which visits each node).  This latter view is calculated based on the known
view and the set of events that induced the segment being analyzed.  A detailed catalog is
provided in [18] explaining how to update the known view to produce the new view for
every class of event that can occur (for example, there are three different classes of EEE-
events depending on the geometry of the situation (Fig 14)).  This calculation does not
increase the complexity of the overall algorithm because it can be shown [18] that for
EV-events the time to compute the new view is O(n) (the catalog in [18] shows that at an
EV-event it is possible for O(n) edges to be adjacent to the vertex involved in the
event (Fig 15) and that each of these can be updated in O(1) time in the view), while for
EEE-events the time to compute the new view is O(1) (the catalog shows that at an EEE-
event only O(1) edges and T-junctions must be updated, and that each of these can be
done in O(1) time).  Thus the total time spent updating views at all  segments is
O(n5n) = O(n6) for EV-events and O(n6) for EEE-events.  The complexity of the entire
algorithm for computing the VSP and all opaque views therefore remains O(n6 log n).

A naïve approach to storing the set of views would be to maintain them all independently
in the aspect graph, which would then possess a space complexity of O(n6n2) = O(n8).
When most views differ from their adjacent views in only a small number of ways (for
example those views separated in the VSP by boundary segments associated with a small
number of EEE-events only), the amount of redundant information stored would be large.
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A data structure is proposed in [17] to eliminate such redundancies.  However, it allows
only the retrieval of the set of individual features existing in any particular view rather
than the actual reproduction of that entire view.  Here, the views are computed along a
spanning path as in [18].  In addition, each visit to a segment is considered to be a step in
time.  Features existing in the new view that did not exist in the old view are thought of
as having been created at that time and features existing in the old view that will not exist
in the new view are thought of as having been deleted at that time.  Thus, with every
feature existing in any view there is associated a time interval, [ti, tj], denoting that the
feature was created in the view computed at time ti, existed at all views computed from
times ti to tj-1, and then was finally deleted at time tj.  Also, with each view is associated
the time of its calculation.  Thus to retrieve the view that was calculated at time t, it is
only necessary to determine all features whose existence intervals contain t.  A data
structure to handle such queries efficiently is a priority search tree.  A collection of k
intervals may be stored in such a tree with size O(k), and the tree may be built, assuming
the intervals are already sorted by their left endpoints (as these time intervals are), in
time O(k).  Since, as we have seen, the number of features created and deleted in total
is O(n6) (at most O(n) features are created or deleted at each of the O(n5) segments
associated with EV-events and at most O(1) features are created or deleted at each of
the O(n6) segments associated with EEE-events), k is O(n6).  Thus, the size of the tree is
O(n6).  Using this method, therefore, allows the complexity of the aspect graph to be
maintained at  O(n6), the same as that of its dual, the VSP.

Fig 14.  Three classes of EEE-events:  (a to b) two T-junctions disappear, (b to a) two T-junctions
appear and (c) a T-junction moves from one edge to another.  (From [18])
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Fig 15.  An EV-event requiring the updating of O(n) edges (adjacent to the vertex) in the
view.  (From [18])

One pays a bit of a penalty in retrieval time in exchange for the space savings allowed by
the priority search tree.  Whereas the naïve approach permits us to retrieve a view of
size s in time O(s) since the entire view is stored, the priority search tree has a retrieval
time of O(s + log k) = O(s + log n).  Note however, that the worst-case running times of
both approaches are identical when s ©  log n.

3.6 Convex Polyhedra

We consider the special case of a scene consisting of a collection of k disjoint convex
polyhedra with a total of n edges.  Bounds on the complexity of the VSP of such a scene
in both the orthographic and perspective models may be found in [7] and are, in fact,
lower than those for a general polyhedral scene with  n total edges.  The upper bound
analysis considered here proceeds by determining the number of distinct triples of edges
(associated with EEE-events) that can induce actual critical regions.  The number of such
triples (naively O(n3)) dominates the number of vertex-edge pairs (associated with
EV-events) that induce actual critical regions and hence is an upper bound on the total
number of actual critical regions of the VSP.  Recall (section 3.2) that every such edge
triple is associated with extended sight lines that intersect each edge, are tangent to the
objects containing the edges (with the possible exception of the object containing the
edge furthest from the viewpoint), and do not intersect any other object features
anywhere between the viewpoint and the furthest edge. Actually, the bound that is sought
is on the number of such edge triples with the additional property that each edge belongs
to a distinct polyhedron for, asymptotically, this will dominate the number of edge triples
arising from non-distinct polyhedra.

v

e e

v
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Towards this end, consider three distinct polyhedra  Pi,  Pj and  Pl and an edge  el of  Pl.
We parameterize the points on el by  t,  0 ª  t ª  1.  Suppose there exists a plane  R such
that, for all  t, the rays emanating from  el(t) and tangent to Pi meet Pi before they
intersect the plane, and suppose further that the same property holds  for  R with respect
to  Pj.  (The plane  R, if it exists, is a translate of some plane through  el such that  Pi

and  Pj both lie on the same side of it.  If no plane with this property can be found then
choose a plane through el slicing both Pi and  Pj and perform the analysis that follows
first on the portions of  Pi and  Pj in one of the half-spaces induced by it, and then on the
portions of  Pi and  Pj in the other.  In this case  R will be a translate of this plane.)  The
intersection of the plane  R with the set of rays emanating from   el(t) and tangent to  Pi

(the silhouette of  Pi from  el(t)), which we denote  Qi(t), is a convex polygon.  The
polygon Qj(t) is defined similarly.  We may consider the edges and vertices of  Qi(t)
and  Qj(t) to be the projections, onto  R, of corresponding edges and vertices on  Pi

and  Pj, respectively (Fig 16).  Polygon  Qi(t)  (Qj(t)) will be unbounded if any face
of  Pi  (respectively  Pj) is coplanar with the plane through el parallel to  R, or
if  Pi  (respectively Pj) had to be sliced.

As  t is allowed to vary the shapes and positions of Qi(t) and Qj(t) will be altered, but they
will remain convex polygons.  When a ray emanating from  el(t) is tangent to both  Pi

and  Pj, say at edges  ei and ej, respectively, then an intersection of the edges of  Qi(t)
and  Qj(t) that are the projections of  ei and  ej occurs (and we say that the edge
triple  (ei, ej, el) gives rise to this intersection).  Each such ray (now considered as
emanating from a point at infinity) is thus tangent to Pi at ei, is tangent to Pj at ej, and
intersects edge  el (playing the role of the furthest of the three edges from the point at
infinity).  In the orthographic model, each of these rays may be lengthened to an extended
sight line such that the resulting collection of extended sight lines includes all those with
the properties delineated in section 3.2 (with respect to edges ei, ej and el).  In the
perspective model, this collection of rays constitutes a set of maximal extended sight
lines, such that each extended sight line with the properties of section 3.2 (with respect to
edges ei, ej and el) is contained within one of the maximal lines in this set.  If the
foregoing analysis is repeated for all edges  el on  Pl and the entire analysis repeated for
all  Pi, Pj and Pl in the scene, we see that, in either model, every extended sight line
associated with an EEE-event can be associated with a ray possessing the properties
mentioned above.

A bound on the number of intersections of distinct polygon edge pairs generated in the
manner described (we emphasize that we are not interested in the total number of
intersections among polygon pairs, but only the number of distinct edge pairs that have
intersection) determines a bound on the number of distinct edge triples giving rise to
these intersections.  A consequence of the above analysis is that this, in turn, provides a
bound on the number of such triples that induce all extended sight lines associated with
EEE-events.  This, finally, yields a bound on the number of actual critical regions in the
VSP, from which a bound on its complexity can be directly obtained.
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Fig 16.  The silhouettes Qi(t) and Qj(t) (cast by Pi and Pj, respectively) at t = 0.

To find a bound on the number of intersections of distinct polygon edge pairs, we
proceed as follows.  Let  |P| denote the complexity (the total number of vertices, edges
and faces) of polyhedron  P.  At  t = 0, polygons  Qi(0) and  Qj(0), have (since their edges
are projections of edges of  Pi and Pj, respectively)  O(|Pi|) and  O(|Pj|) edges,
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respectively.  Since each edge of a convex polygon will intersect a second convex
polygon at most twice,  Qi(0) and  Qj(0) will intersect in a number of points equal to at
most twice the number of edges of the polygon with the fewest edges. Thus they will
intersect in  O(|Pi| + |Pj|) points.

As  t increases, intersections among new pairs of edges arise in two ways only.  Either an
edge of one polygon will start to intersect a new edge in the other polygon as the shapes
and positions of the polygons are altered, or else edges in one of the polygons are
replaced by other edges (so that intersections occurring on the old edges are replaced by
those occurring on the new).

In the first case an edge, say on  Qi(t), will start to intersect a new edge, on  Qj(t), just
when one of its adjacent vertices intersects the new edge.  This occurs when a ray,
emanating from el(t), is tangent to  Pi at the vertex which projects to the vertex in  Qi(t)
and is simultaneously tangent to  Pj at the edge which projects to the new edge in  Qj(t).
Now, consider a fixed vertex  v in, say,  Pi.  As  t varies, the collection of rays from  el(t)
meeting  v sweeps out a planar region within the affine hull of  el and  v.  At most two of
these rays will, in addition, be tangent to an edge of  Pj (Fig 17).  Thus the vertex
corresponding to  v in  Qi(t) will intersect a new edge of  Qj(t) for, at most, two distinct
values of  t.  Any vertex of Pi or Pj is thus associated with at most two intersections of
new edge pairs.  The number of intersections of new edge pairs, arising from the
intersections of a vertex of one polygon with a new edge of the other polygon is
therefore O(|Pi| + |Pj|).

The second case occurs at those values of  t for which  el(t) becomes coplanar with a facet
of either  Pi or  Pj.  Assume, for the sake of argument, that this facet lies in  Pi.  Just
before the co-planarity event occurs, the rays emanating from  el(t) and tangent to  Pi at
this facet will intersect some of the edges adjacent to this facet, and these edges will be
projected into  Qi(t) as a nearly straight polygonal chain.  When the co-planarity event
occurs, this chain will straighten and will be replaced by a different polygonal chain
comprised of the projections of the remaining edges adjacent to the facet. Just after the
co-planarity event, the new chain will cease to be straight.  Since a line segment can
intersect a convex polygon in at most two points, it is clear that, at the moment of co-
planarity, at most two intersections with Qj(t) involving the edges of  Qi(t) from the old
chain will be replaced by at most two intersections involving edges from the new chain.
Thus the chosen facet is associated with at most two intersections of new edge pairs, and
this will be true for any facet in  Pi or  Pj.  We therefore see that the number of
intersections of new edge pairs arising from the replacement of one set of edges by a
second set of edges in one of the polygons is  O(|Pi| + |Pj|).

We complete the analysis by noting that the initial  O(|Pi| + |Pj|) intersections (at  t = 0) is
therefore augmented by at most  O(|Pi| + |Pj|) additional intersections as  t varies
throughout its range.  Thus, for fixed polyhedra  Pi,  Pj and  Pl, and a fixed edge  el on  Pl,
the number of edge triples (ei, ej, el) giving rise to intersections of  Qi(t) and  Qj(t) is
bounded by  O(|Pi| + |Pj|).  Repeating this analysis for all edges  el on  Pl yields a bound
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of  (|Pl| «  O(|Pi| + |Pj|)).  Then, summing these results over all polyhedra  Pi,  Pj and  Pl

yields

¬
 i ­ j­ l (|Pl| ®  O(|Pi| + |Pj|))   =  ¯  i ° j° l (|Pl| ±  O(|Pj|))   =  ¯  i ¯  j ¯  l O(|Pl| ±  |Pj|)   =   O(n2k)

triples in total.  Since this, as mentioned earlier, is a bound on the number of actual
critical regions (which represents an improvement over the naïve bound because  k < n) it
has been shown that the complexity of the VSP in the orthographic model
is O((n2k)2) = O(n4k2), while in the perspective model it is O((n2k)3) = O(n6k3).

Fig 17.  The planar region swept out by rays from el through v, as t varies.

Recently [4], a lower bound construction has been discovered which establishes that the
above bounds are in fact tight in the worst case; ² ³ n4k2) in the orthographic model
and ´ ³ n6k3) in the perspective model.  This construction consists of ´ ³ k) long, narrow,
convex polyhedra (‘needles’) each with constant complexity lying above a single, nearly
flat, convex polyhedron (‘ fan’) with ´ ³ n) coplanar edges.  The fan, in turn lies above a
nearly flat convex polyhedron (‘drum’) with ´ ³ n) horizontal, parallel edges (Fig 18). The
polyhedra are positioned so that their edges are all arbitrarily close to the hyperbolic
paraboloid y = xz.  Thus the needle edges lie arbitrarily close to the line y = x in the
horizontal plane z = 1.  Likewise, the drum edges lie arbitrarily close to the line y = –x in
the horizontal plane z = –1.  Finally, the fan edges lie arbitrarily close to the
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parabola y = x2 in the plane x = z.  Moreover, the vertices of the fan are positioned so that
each fan edge crosses this parabola at exactly two points.

Fig 18.  (a)  A portion of the lower bound construction for µ ¶ k) convex polyhedra with · (n) total
edges.  (b)  The same construction as viewed from the plane z = +̧ ¹�º¼»v½¿¾ÁÀ�º  z-axis.  (From [4])

The configuration just described implies that the Â Ã n2k) critical surfaces associated with
EEE-events induced by the collection of triples consisting of a needle edge, fan edge and
drum edge all belong to a family of hyperbolic paraboloids which can be created by small
perturbations of the original hyperbolic paraboloid y = xz.  Also, it can be shown that
none of these EEE-events are occluded in a small rectangular area of viewpoints near the
positive z-axis on the sphere at infinity (orthographic model) or sufficiently far away
from the scene (perspective model).  Finally, it can be shown that these paraboloids do
not intersect each other in this region and each extends from the left side to the right side
of the rectangle (so that the rectangle is partitioned into Ä/Å n2k) slices).

Therefore, by repeating the above construction and rotating it ninety degrees to the
original, an Ä=Å n2k) by ÄIÅ n2k) grid of critical regions is created in this rectangular region
in the sphere at infinity, yielding a VSP of complexity ÄÆÅ n4k2) in the orthographic model.
Furthermore, it is possible to place three instances of the above construction oriented
orthogonally to each other and sufficiently far away from each other so as to create a
ÄIÅ n2k) by ÄIÅ n2k) by Ä=Å n2k) grid of critical regions in a small rectangular volume of R3

far from any of the constructions, yielding a VSP of complexity Ä Å n6k3) in the
perspective model.

3.7 Flight Paths

We now present several output-sensitive algorithms for computing the potential critical
regions of a collection of polyhedral objects (with a total of n edges) when the viewpoint
space consists of a straight-line flight path in R3 [9].  (The techniques of pruning,
described in section 3.2, and view computation, in section 3.5, may equally well be
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applied here once the potential critical regions have been found, to determine the VSP
and aspect graph, respectively.)  Note that here the potential critical regions are those
points where the potential critical surfaces of the perspective model (described in section
3.1) intersect the flight path.  Since there are O(n3) such surfaces,  and since each will
intersect a line in at most a constant number of points, there will be O(n3) critical regions.
In these algorithms the flight path f is parameterized by time t, 0 Ç  t Ç  1, so that a point 
f(t0) on f is the current viewpoint at time t = t0.

The first algorithm proceeds by selecting an edge e of one of the polyhedral objects and
sweeping a triangle with base e and apex f(t) on f from f(0) to f(1).  It discovers all values
of t for which two other edges e' and e'' pierce the triangle such that these two pierce
points are collinear with f(t).  When this event occurs e, e' and e'' are aligned along some
line of sight from f(t).  This represents a possible EV-event when two of these edges are
adjacent and a possible EEE-event when all three edges are non-adjacent (note that these
events may in fact be occluded from the viewpoint f(t), and so are associated with
potential, rather than actual, critical regions).  As the sweep proceeds, this algorithm
maintains a priority queue to keep track of these collinearity events plus two other kinds
of events;  the meeting of an edge endpoint by the sweep triangle, or the departure of an
edge from the sweep triangle through one of the sides of the triangle.  There are O(n)
events of the latter two types.  Let ke be the number of collinearity events.  We know that
ke = O(n2) because for each of the O(n2) pairs of edges e' and e'' there are in R3 at most
two lines intersecting the four segments e', e'', e and f (we emphasize, however, that only
collinearities that actually occur are found via this method – a brute force method,
running in È/É n2) time, comparing all edge pairs would necessarily be less efficient than
this method, other than in the worst case).  There are thus O(n2) events in total for each
edge  e and all priority queue insertions and deletions may be handled in time O(log n)
(each event itself can be processed by analytical means in O(1) time, we omit the details).
This implies that the sweep for each edge e can be accomplished in O((n + ke) log n)
time.  Repeating this procedure for each of the n edges yields an algorithm with running
time O((n2 + k) log n) where k Ê Ë ke is the total number of potential critical regions.  The
complexity of this algorithm is O(n3 log n) in the worst case.

The second algorithm presented in [9] is also a sweep algorithm.  It makes use of a
duality transform [15] which, in this case, maps points (lines) in a primal plane to lines
(respectively, points) in a dual plane.  This mapping is one-to-one and is such that the
property of incidence is maintained;  that is, if a point  p is incident to a line  l in the
primal plane, then, under the mapping, the dual point l* is incident to the dual line p*. An
immediate consequence of this is that any three collinear points in the primal plane will
map to three lines that intersect at a single point in the dual plane.

In this algorithm, we imagine a half-plane bounded by  f and consider the set of pierce
points at which it is intersected by object edges.  As this half-plane proceeds to rotate
around  f pierce points will appear or disappear and will move about in the plane.  Now
we consider the duality transform which maps these pierce points in this primal half-
plane to a set of lines in the dual plane.  As the sweep progresses, the dual lines will
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appear, disappear and move about in accordance with the movement of their
corresponding pierce points in the primal plane.

As the sweep proceeds, this algorithm maintains a priority queue to keep track of the
appearance and disappearance of lines in the dual plane (there are O(n) such events) and
the intersection of three dual lines at a single point (there are O(n3) such events). By the
property of incidence this latter type of event corresponds to the collinearity of three
pierce points in the primal plane.  Since f is a line segment, and not a full line, one in fact
needs to consider only those collinearities corresponding to lines that pass through a
point f(t), for some 0 Ì  t Ì  1, in the primal plane.  Such collinearities represent the
alignment of three edges along some line of sight from f(t).  They occur, assuming f
coincides with a portion of the positive z-axis, inside a horizontal strip in the dual plane.
Thus this algorithm will also need to keep track of O(n2) additional events consisting of
intersections of dual line pairs at points along the boundary of this strip.  Note that the
total number of events processed during the course of this algorithm is O(n3).

Now, at  t = 0, the dual plane contains an arrangement of n lines, with complexity O(n2).
Each triangular cell in this arrangement is checked (in constant time) to determine if its
three bordering edges will collapse to a single point at some future time.  These O(n2)
possible future events can be inserted onto an initial priority queue in O(n2) time.

The algorithm also maintains a standard incidence graph data structure for representing
arrangements [15] to keep track of the dual line arrangement as the sweep proceeds.  This
graph must be updated when each event occurs.  For each appearance or disappearance of
a dual line, the portion of this graph which must be updated represents the zone of that
line in the arrangement, a substructure of complexity O(n) [15].  The time spent in
updating the graph for each appearance or disappearance event is thus O(n).  Each of
the O(n) newly created triangular cells of this zone needs be checked to see if it will
collapse to a single point at some future time.  Since each appearance or disappearance
event yields O(n) possible future events, the time spent in updating the priority queue for
each appearance or disappearance event is O(n log n).  Therefore the total time spent in
processing the O(n) appearance and disappearance events is O(n2 + n2 log n)) =
O(n2 log n).

For each collinearity event only a localized portion of the graph (of constant complexity)
must be updated. In addition only  a constant number of triangular cells are created or
destroyed, and each new one needs to be checked for possible future collapse.  Since each
collinearity event yields O(1) possible future events, the time spent in updating the
priority queue for each collinearity event is O(log n).  Thus if there are k collinearity
events encountered during the sweep then the total time spent in processing them
is O(k log n).

Similarly, each event involving the strip boundary in the dual plane may be handled in
time O(log n).  Therefore the total time spent in processing these O(n2) events
is O(n2 log n).
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Thus, the entire algorithm possesses a run-time complexity of O((n2 + k) log n).
Since k = O(n3), it runs in time O(n3 log n) in the worst case.

The third algorithm of [9] makes use of a transform called a skewed projection, defined
as follows.  As usual, the flight path  f is parameterized by t (0 Í  t Í  1).  An edge e (skew
to f) is chosen and parameterized by u (0 Í  u Í  1).  Note that the collection of line
segments with one end on  e and the other end on  f defines a tetrahedron T.  For a
point  p in the interior of  T there exists a unique segment in this collection that passes
through  p.  The skewed projection spe(p) maps  p to the ordered pair (ui, ti) where e(ui)
and f(ti) are the endpoints of this segment, lying on  e and  f, respectively.  For a line
segment  e' lying wholly in the interior of T it can be shown that spe(e') is either a line
segment or a connected portion of a hyperbola in the space [0,1] Î  [0,1].  For a polygon P
lying wholly in the interior of T it can be shown that spe(P) is a curved polygon (a
bounded, connected region in [0,1] Î  [0,1] with sides that are straight lines or portions of
hyperbolae which are the skewed projections of the edges of P).

The algorithm proceeds as follows.  Fix edge e and compute the skewed projection spe(P)
of each polygonal face P in the collection of polyhedra.  This yields a collection of
curved polygons in [0,1] Î  [0,1].  Each intersection of boundary curves of two polygons,
say at point (u0, t0), represents a colli nearity of the point  f(t0) on  f, the point  e(u0) on  e,
and two points on two edges of the faces corresponding to the intersecting polygons.  If
any of  e or the two other edges are adjacent this implies the occurrence of an EV-event
at  f(t0).  Otherwise, an EEE-event occurs at  f(t0).  An output-sensitive randomized
algorithm to compute all boundary intersections for a collection of O(n) curved polygons
runs in expected time O(n log n + ke) (where ke is the total number of intersections) [24].
Repeating this algorithm for each edge e in the collection of polyhedra (and
letting k  = Ï  ke) yields an overall expected run-time complexity for this algorithm
of O(n2 log n + k).  While this algorithm possesses a worst-case complexity of O(n3),
which is better than the first two algorithms, note that, unlike the others, its worst case
complexity does not dominate the time required to output the potential critical regions as
a sorted list along  f.  If sorting is desired, the resulting worst-case complexity is
again O(n3 log n), matching that of the previous two algorithms.

3.8 Articulated Assemblies

An articulated assembly [10] is an object with moving parts, consisting of appendages
that move relative to a fixed base.  Here we will consider an object with polyhedral parts.
The opaque view of such an object depends not only on the viewpoint but also on the
object’s configuration, the position of each appendage relative to the base.  The
configuration is represented by the values assigned to each of  k parameters representing
the degrees of freedom of movement of the collection of parts.  Thus a given
configuration may be regarded as a point in a k-dimensional configuration space.  It is
possible to compute a partition of the (d+k)-dimensional space formed by the Cartesian
product of configuration space and a d-dimensional viewpoint space to obtain maximally
connected regions of points (in the product space) from which the corresponding opaque
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views of the object are isomorphic.  This partition is termed the direct visual potential
and is similar in concept to the VSP for rigid objects.  The direct visual potential may be
computed by algorithms similar to those presented in section 3.2 for determining the VSP
of a rigid object.  Here, however, the potential critical regions are hyper-surfaces in
(d+k)-dimensional space rather than curves on S2 or surfaces in R3.

For any fixed configuration, an articulated assembly may be regarded as a rigid object,
which induces a particular VSP in viewpoint space.  One may, therefore, consider
configuration space separately from viewpoint space and compute a partition of
configuration space alone, which yields maximally connected regions of points (in
configuration space) for which the induced VSP’s are isomorphic.  We will not define
precisely what it means for two VSP’s to be isomorphic (i.e. to have the same qualitative,
topological structure) except to point out that such a definition would be along the lines
of that provided in section 2, regarding isomorphisms between LISG’s.

In order to discover the critical regions of this partition, it is necessary to understand how
the topological structure of the induced VSP changes as the configuration point varies in
configuration space, i.e. as the parts of the object move (this is similar, in the case of rigid
objects, to understanding how the qualitative structure of the opaque view changes as the
viewpoint varies in viewpoint space).  The qualitative structure of the VSP changes as the
configuration point varies whenever regions (of any dimension) in the VSP are either
created or destroyed (termed definition events) or whenever two existing regions (of the
same dimensionality) coincide exactly (termed coincidence events).  Potential critical
regions in the VSP are classified as fixed or varying depending on whether they change
shape or position as the configuration point varies.  The intersections (of all dimensions)
of these regions may be classified as fixed or varying too.  Both potential critical regions
and their various intersections can undergo definition or coincidence events as the
configuration point varies.  For example, two intersecting, varying (portions of) planes
induced by distinct EV-events may become parallel (thus the line of intersection is
destroyed).  As a second example, a varying (portion of a) plane will itself be destroyed
when the vertex and edge of the EV-event inducing it become collinear (or will be
created when the opposite occurs).

Just as potential critical regions in viewpoint space are induced by EV- and EEE-events,
so potential critical regions in configuration space are induced by definition and
coincidence events.  Each such region consists of the hyper-surface in configuration
space for which a specific definition or coincidence event occurs.  Note that these
surfaces are not necessarily linear or quadric.  Such regions are obtainable through
analytical methods (we omit the details) and the partition in configuration space may be
determined.  Also, pruning of these potential critical regions may be performed, and the
VSP at each cell of the remaining arrangement calculated (again, we omit the analytical
details).  The resulting actual critical regions in configuration space along with the
collection of VSP’s is called the hierarchical visual potential.

Upper bounds on the complexities of the direct and hierarchical visual potential are as
follows.  (Bowyer et al  [10], do not prove that potential critical regions in either case are
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well-behaved, but this is implicit in their analysis.  Certainly it is not obvious that critical
regions arising from definition or coincidence events possess these properties.)  We
assume a k-dimensional configuration space and a perspective model viewpoint space.
An articulated assembly with  n total edges induces O(n2) potential critical surface
patches due to EV-events and O(n3) such patches due to EEE-events.  In the
(k+3)-dimensional Cartesian product space this O(n3) collection of patches induces (after
pruning) an arrangement of  complexity O((n3)k+3) = O(n3k+9).  Thus the complexity of the
direct visual potential is O(n3k+9).  Note that when k = 0, as in the case of rigid bodies,
this reduces to the familiar O(n9) result.

For the hierarchical visual potential, note that as the configuration point varies, any of
the O(n9) regions of the VSP may coincide with any other, leading to O((n9)2)
coincidence events.  In addition, there can be O(n9) definition events.  Thus there will
be O(n18) potential critical surface patches in configuration space, yielding an
arrangement of complexity O(n18k).  After pruning, each cell of the resulting arrangement
is associated with a VSP of complexity O(n9).  Therefore an upper bound on the
complexity of the hierarchical visual potential is O((n18k)(n9)) = O(n18k+9).  Unfortunately,
the prohibitive complexity of the hierarchical visual potential reduces its usefulness in
most practical applications.

4 Aspect Graphs and Polyhedral Terrains

This section begins with a short introduction to Davenport-Schinzel sequences, which
often arise in complexity analyses involving polyhedral terrains.  This is followed by an
analysis of the complexity of the VSP induced by a terrain when the viewpoint space is a
(straight-line) vertical flight path.  An algorithm for computing the VSP in this special
case is also presented.  We next consider the complexity of the VSP in the case of an
arbitrary (straight-line) flight path above a terrain, and sketch an algorithm for its
computation.  Following this, we consider the complexity of the VSP in the orthographic
model.  The results in the case of vertical flight paths along with a bound on the number
of actual critical regions (an argument involving the calculation of the complexity of the
lower envelope of a collection of three-dimensional surface patches) allows this analysis
to be recast in the context of sparse arrangements (those with low vertical stabbing
number).  This section concludes with an analysis of the complexity of the VSP induced
by a terrain in the perspective model, where the set of viewpoints consists of all points
in R3 above the terrain.

A polyhedral terrain (or, simply, a terrain) is a piecewise-linear bivariate function whose
domain of definition is a simply connected region of the xy-plane.  In the exposition to
follow the domain of definition will be the entire plane.  Thus a terrain is a two-
dimensional piecewise-linear surface intersected by any vertical line at exactly one point.
Without loss of generality, we will always assume the terrain to be triangulated.  If a
terrain has n edges it also has O(n) vertices and faces, because there is a one-to-one
correspondence between the features of the terrain and its projection onto the xy-plane
(this projection can be regarded as a triangulated graph embedded in the plane).
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4.1 Davenport-Schinzel Sequences

Davenport–Schinzel (DS) sequences [27] play an important role in much of the analysis
involving terrains.  A DS(n, s) sequence is a sequence on the alphabet of n symbols such
that no two adjacent symbols are identical and such that there is no subsequence of
length s + 2 (of not necessarily adjacent symbols) contained within it which consists of an
alternation of two distinct symbols (. . ., a, . . ., b, . . ., a, . . ., b, . . .).  DS(n, s) sequences
are important in that they can be used to specify successions of contiguous portions of the
lower (or upper) envelope of a collection of continuous, univariate functions whose
graphs possess a bounded number of pairwise intersections.  More precisely, given n
continuous, univariate (real-valued) functions f1, f2, . . . , fn each defined over the same
interval I whose graphs intersect pairwise in at most s points (for example, a collection of
polynomials of fixed degree), the indices of the functions which achieve the minimum (or
maximum) value for all  fi as I is traversed from left to right form a DS(n, s) sequence.
When the functions are each defined over distinct connected subintervals of I only, the
indices obtained in this fashion yield a DS(n, s+2) sequence.  An important property
of these sequences is that for any fixed s, the maximum length of a DS(n, s) sequence,
denoted by Ð s(n), is o(n log* n), and so is nearly linear in n.  The exact form of this bound
depends on the choice of s.

Note that the number of points along I, termed breakpoints, at which the identity of the
function achieving the minimum (or maximum) value changes from fa to fb (i.e. those
points along I at which the graph of the current function on the lower (or upper)
envelope fa is intersected by the graph of another function  fb, which then becomes the
current function on the lower (or upper) envelope) is therefore O(Ð s(n)) for functions
defined over I, or O(Ð s+2(n)) for functions each of which is defined over a distinct
connected subinterval of I.  These bounds can be shown to be tight in the worst case.

Extensions of the theory of envelopes to several dimensions yield bounds on the number
of vertices in the upper or lower envelope of the graphs of a collection of n continuous,
well-behaved multivariate functions [27].  (We will be concerned exclusively with those
vertices which occur at the intersection, on the envelopes, of the graphs of k + 1 k-variate
continuous, well-behaved functions.  There are, however, vertices of other types
occurring on the envelopes of such a collection of functions.)  These results, in the case
of trivariate and 5-variate functions, are used, for example, in proofs for terrains yielding
bounds on the complexity of the VSP in the orthographic (section 4.4) and perspective
(section 4.5) models.

4.2 Vertical Flight Paths

An analysis of the complexity of the VSP for a terrain Ñ  (with n edges) may be found
in [12] for the special case where the viewpoint space consists of a vertical flight
path in R3 above Ñ .  As we have seen (section 3.7) a naïve bound on the complexity of
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the VSP for arbitrary straight-line flight paths is O(n3).  In this special case, however, this
bound can be improved upon.

In this section, we denote by F* the orthogonal projection of any feature F onto the xy-
plane.  We will assume that the flight path f coincides with the positive z-axis and that the
origin lies on the terrain itself.  Since f is vertical, all points f(t), 0 Ò  t Ò  +Ó/ÔÖÕ�×ÙØÛÚ(Ü�ÝÛÞßÞ�Ø�à
single point f* (i.e. the origin).  It is therefore possible to obtain a partial order for all
edges e of á  by defining ei < ej whenever there exists a ray emanating from f* that
intersects ei* before intersecting ej*.  Note that for this to be a partial order, it may be
necessary, by cutting the edges into no more than 2n sub-edges, to ensure the existence of
some angular orientation â i about f which is not crossed by any edge.  Otherwise, a cycle
(where edges e1, e2, . . ., ek exist such that e1 < e2, e2 < e3, . . ., ek-1 < ek and ek < e1) could
potentially occur (Fig 19).  (We note that the ability to assign a partial order in this way is
peculiar to polyhedral terrains and that for more general polyhedral scenes such a partial
order often cannot be found.  We shall see that this basic property of terrains permits the
development of a large body of unique results.)  Once a partial order is obtained, it can be
completed to a total order by a topological sort.

Fig 19.  A cycle in the edge ordering.  (From [12])

As in the case of k disjoint convex polyhedra (section 3.6) the analysis considered here
seeks to bound the number of distinct edge triples associated with EEE-events that can
induce actual critical regions.  Every such edge triple is associated with extended sight
lines (emanating from a viewpoint on f) that intersect each edge, are tangent to the terrain
at those edges (with the possible exception of the edge furthest from the viewpoint) and
do not intersect any other feature of the terrain anywhere between the viewpoint and the
furthest edge.  The analysis proceeds as follows.  Select an edge e of ã .  For each edge
ei < e let gi( â ) be the (partially defined, well-behaved, univariate) function whose value is
the azimuth ä  of the ray at orientation å  passing through the z-axis and ei, and terminating
at e, if such a ray exists (note that this ray need not lie wholly above æ ).  If, for a
segment s, I(s) denotes the angular interval of directions of all rays in the xy-plane
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emanating from f* and meeting s*, then gi will be defined over the connected
interval I(e) ç  I(ei).  Also, define è 0( é ) to be the (partially defined, well-behaved,
univariate) function whose value is the azimuth è  of the ray at orientation é  passing
through f* and e (if such a ray exists).  This function will be defined over the connected
interval I(e).  Note that if one of the functions gi (say gj) attains the maximum value for
all gi and è 0 at é 0, then there exists a ray emanating from some point on f, tangent to ê  at
ej and terminating at e without passing through any other feature of ê  (Fig 20).

Fig 20.  The ray with azimuth gj( ë 0) passing through the positive z-axis, ej and e and tangent to ì
(shown in cross-section) at ej.  (From [12])

Furthermore for any edge ek < e, k í  j, if, at orientation î 0, there exists a ray emanating
from some point on the z-axis passing though ek and terminating at e, such a ray will pass
through some other feature of ï  (in addition to ek).  Finally, note that if ð 0( ñ 0) exists, any
function gk for which gk( ñ 0) is defined and gk( ñ 0) < ò 0( ñ 0) corresponds to a ray which
emanates from the negative z-axis and passes through ek and e.  Thus if ò 0 should happen
to attain the maximum value for all gi and ò 0 at ñ 0 then no ray with orientation ñ 0

emanating from anywhere on the positive z-axis and terminating at e can be tangent to ó
at some ek less than e.

Now let Fe( ñ ) = max { max ei < e gi( ñ ), ò 0( ñ ) }. Fe( ñ ) is the upper envelope of a set of
partially defined, well-behaved, univariate functions each defined on a connected
interval.  Thus whenever Fe( ñ 0) = gj( ñ 0) for some j, there exists a line segment, at
orientation ñ 0, emanating from some point on f, tangent to ó  at ej and terminating at e
without passing through any other feature of ó .
Therefore, the existence of a breakpoint on Fe( ñ ) at some value ñ 0 involving functions ga

and gb implies that there exists a viewpoint on f possessing an extended sight line at
orientation ñ 0 which intersects ea, eb, and e, is tangent to ó  at both ea and eb and does not
intersect any other feature of ó  between the viewpoint and e.  Edges ea, eb, and e thus
constitute an edge triple for which there is an associated EEE-event inducing an actual
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critical region.  (We note that points of intersection of these functions not occurring on
the upper envelope Fe( û ) are associated with EEE-events in the transparent view which
induce potential but not actual critical regions. Also, breakpoints on Fe( û ) involving one
of the functions gi and ü 0 do not correspond to EEE-events.)  By bounding the number of
breakpoints on Fe( ý ) for each edge e in þ  an upper bound on the complexity of the VSP
may thus be obtained.

It is clear that ga( ÿ ) and gb( ÿ ) will not intersect more than twice in their common domain
of definition (since the four line segments f, ea, eb, and e may not be collinear along more
than two lines) while ga( ÿ ) and � 0( ÿ ) will not intersect more than once (since the edge ea

may not intersect the affine hull of f* and e more than once).  Also, it is possible, due to
co-planarities among the various edges considered, for these functions to overlap along a
continuous interval rather than a unique point.  This does not affect the analysis,
however, as the plane in which the edges lie intersects f in at most one point, and can
therefore lead to the discovery of at most one triple.  Such intersections may therefore be
handled as if the functions intersected at a single point.  As stated in section 4.1, the
number of breakpoints occurring on the upper envelope of a set of n partially defined,
well-behaved, univariate functions each defined on a continuous interval and intersecting
pairwise at most s times is � s+2(n).    Thus, in this case, s = 2 and the total number of
breakpoints on Fe is at most � 4(n) = � � n · 2� (n)) where � (n) is the (slowly growing) inverse
Ackermann function.

If the entire preceding argument is applied to each of the n edges e of �  (and noting that
the number of actual critical regions induced by EV-events is O(n2)) it is seen that the
complexity of the VSP for a terrain with vertical flight path is therefore
O( � � 4(n)) = O(n2 · 2	 (n)).

It is unknown whether the above bound is tight.  However, it can be shown [12] that this
complexity is at least 
 � � 
 3(n)) = ��� n2 � (n)), as follows.  The upper rim, or horizon, of a
collection of edges (with respect to a given viewpoint) consists of a set of segments each
belonging to one of the edges such that no extended sight line emanating from the
viewpoint and passing through one of these segments passes below any other edge in the
collection (Fig 21).  The complexity of the upper rim of a collection of  n edges is equal to
the complexity of the upper envelope of n line segments corresponding to those edges,
and, since the existence of a such a collection having an upper envelope with
complexity � � � 3(n)) can be demonstrated, is thus � � � 3(n)) = ��� � � (n)) in the worst case.

A terrain may be constructed by positioning n edges in distinct vertical planes which are
arbitrarily close to each other and far away from f, and by then dropping a steep wedge
down from each of these edges to meet the xy-plane.  The upper rim of these edges will
contain � � �! (n)) breakpoints as seen from all viewpoints on some contiguous portion
of f.  In fact they will appear as vertices from these viewpoints due to the proximity of the
wedges to each other.  A hill with n horizontal edges is placed behind the wedges and can
be positioned so that the (nearly-planar) actual critical regions induced by each pseudo-
vertex and hill edge intersect f at distinct points (Fig 22).  There will be "$# n2  (n)) such
regions.  Thus the complexity of the VSP in this example is "$# n2  (n)) = "�# � % 3(n)).
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Fig 21.  The upper rim (dashed lines) of a set of edges.  (From [12])

Fig 22.  A terrain with n edges inducing a VSP with complexity & ' ( ) 3(n)) when the viewpoint space is
a vertical flight path.  (From [12])

An algorithm for discovering all O( * + 4(n)) actual critical regions on vertical flight path f
is found in [9].  This algorithm makes use of a skewed projection, discussed in
section 3.7.  A special property of terrains under skewed projections is as follows.  For a
fixed edge e, the skewed projection spe( , ) of a terrain ,  (i.e. the collection of skewed
projections of all faces of , ) is the entire area under a curve, rather than a general curved
polygon.  This can be seen by noting that if a line with endpoints e(u0) and f(t0)
intersects , , then all lines with endpoints e(u0) and f(t), for 0 -  t -  t0, will also intersect .
(i.e. if (u0, t0) / spe( 0 ), then all points (u0, t) 1 spe( 0 ), for 0 2  t 2  t0) (Fig 23).

f
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Fig 23.  If a line segment with endpoints e(u0) and f(t0) passes through 3  (shown in cross-section), so
will a line segment with endpoints e(u0) and f(t) for 0 4 t 4  t0.

This implies that all actual critical regions can be discovered by determining, for each
edge e, the t coordinate of all breakpoints of the upper envelope of the collection of O(n)
curves which form the upper boundary of the skewed projection spe( 5 ) (note that points
of intersection of these curves occurring other than on the upper envelope correspond to
potential critical regions which are not actual critical regions).  Because each curve is
either a line segment or a portion of a hyperbola (and therefore a partially defined, well-
behaved, univariate function defined over a contiguous interval), there are O(6 4(n)) such
breakpoints in spe( 7 ) for each edge e, and thus O( 8 9 4(n)) breakpoints in total (agreeing
with the previous result on the number of actual critical regions for a vertical flight path).
This entire algorithm can be shown to run in O( :;9 4(n) log n) time (we omit the details).

4.3 Arbitrary Flight Paths

We begin this section with a construction demonstrating that the upper bound on the
complexity of the VSP induced by a vertical flight path above a terrain, derived in the
previous section, does not apply to arbitrary straight-line flight paths [12].  The
construction consists of a terrain with two parallel rows of n tall, thin peaks in front of a
hill with n faces (Fig 24).

The flight path f is chosen so that both rows of peaks lie between f and the hill.  By
choosing a hill edge and pairs of non-parallel edges from the two rows of peaks, it is not
difficult to select < = n3) triples of skew edges whose associated EEE-events induce actual
critical regions that intersect f at > = n3) distinct points.  This implies that the number of
actual critical regions induced by the arbitrary flight path f is indeed > = n3).

f(t)

f*

?f(t0)

f
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Fig 24.  A terrain inducing @ A n3) actual critical regions on the arbitrary flight path f.  (From [12])

This section now continues with a sketch of an output-sensitive algorithm [9] that can
discover the k = O(n3) actual critical regions on an arbitrary straight-line flight path  f
above a terrain  B  with  n edges.  We have seen that a total order can be established for
the edges of B  with reference to a vertical flight path (section 4.2).  Bern et al  [9],
incorrectly assert that a total order can also be established for the edges of  B , with
reference to the arbitrary flight path f, such that any ray emanating from any point on  f
(having positive dot product with  f in direction of increasing  t) and passing through
edges  ej and  ek will encounter  ej before  ek if and only if  ej < ek.  Although such an
ordering cannot be established for  f as a whole [8], it is possible to subdivide f into O(n)
sub-segments such that for each of these a total order can be established  [2] (recall ,
however, that each total order arises from a topological sort on the corresponding
underlying partial order established on the edges – this consideration wil l become
important below).  Then, since each ordering can be determined in  O(n log n) time (as
claimed in [9], we omit the details), the entire collection of orderings may be found
in  O(n2 log n) time.  Therefore the absence of a single total order does not increase the
run-time complexity of the algorithm to be described.

We assume that  f is parameterized by  t, 0 C  t C  1.  Let  St(i) denote the upper rim, with
respect to a viewpoint  f(t), of the first  i edges in the total order established for the
segment of f containing f(t).  This upper rim has complexity  O(D 3(i)) (section 4.2).
Let Et(i) be the list of terrain edges (of length O(i)) appearing on St(i) and let Vt(i) be
the list of vertices (of length O(D 3(i))) appearing on St(i).

f
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This algorithm maintains a priority queue of future events sorted by increasing t.  These
events are:

1) A future point f(t) becomes collinear with an endpoint of edge ei and a point on some
edge in Et(i-1) (where the edge ordering is that in effect at f(t)).

2) A future point f(t) becomes collinear with a point on edge ei and a vertex in Vt(i-1)
(where the edge ordering is that in effect at f(t)).

3) A value of t is reached at which the edge ordering that is in effect changes.

Events of the first type are those EV-events visible in the opaque view for which the
vertex lies behind the edge along an extended sight line emanating from  f(t), while
events of the second type are EV-events visible in the opaque view for which the vertex
lies in front of the edge along an extended sight line emanating from  f(t) (if the vertex is
formed by adjacent edges in  Et(i-1)) or are EEE-events visible in the opaque view (if the
vertex is formed by the alignment of non-adjacent edges in  Et(i-1) along an extended
sight line emanating from  f(t)).  Equivalently, all points  f(t) which are involved in one of
these collinearity events are those possessing an extended sight line with the properties
delineated in section 3.2 (see Fig 10).

The bound on the number of actual critical regions implies that there cannot exist more
than  O(n3) collinearity events in total (and, as we have seen, there are O(n) events
involving an edge ordering change).  An endpoint of edge ei may be involved in events of
the first type with any of the  O(i) edges of Et(i-1) (and conversely each edge of Et(i-1) is
involved in O(1) such events).  The edge ei may be involved in events of the second type
with any of the  O(E 3(i)) vertices of Vt(i-1) (and conversely each vertex of Vt(i-1) is
involved in O(1) such events).  Therefore, for any fixed t, the n upper rims associated
with f(t) may generate as many as O(n2) events of the first type and O( F;G 3(n)) events of
the second type.

The algorithm begins by computing all  n upper rims with respect to  f(0) and
the O( F;G 3(n)) future events generated by these rims.  This can be accomplished using a
standard hidden surface elimination algorithm so as not to dominate the time complexity
that shall be exhibited for the rest of the algorithm (we omit the details).  These initial
events can be inserted into the priority queue in time  O( F;G 3(n) log n) (alternatively, an
initial priority queue consisting of  O( F;G 3(n)) events could be built in  O( F;G 3(n)) time).

The algorithm proceeds by examining all future events in chronological order until the
list of unprocessed events has been exhausted.  Assume there are k collinearity events in
total. For each such event, either an edge or vertex that was not part of  St(i) just before
the event becomes part of  St(i) just after the event, or an edge or vertex that was part
of  St(i) just before the event is no longer a part of  St(i) after the event.  In any case, two
steps must be accomplished.  First, all upper rims St(j) for j H  i may require an adjustment
consisting of the insertion or deletion of O(1) edges and vertices (for example, when a
vertex is replaced by an edge in St(i), that vertex can no longer appear in any St(j)
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for j I  i).  Naively, this can be accomplished in O( J;K 3(n)) time when the n upper rims,
each of size O(K 3(n)), are stored in separate lists.  This can be improved
to O(log ( J;K 3(n))) = O(log n) by maintaining a similar list implementation for the n upper
rims.  Thus, for the entire collection of k collinearity events this can be accomplished
in O(k log n) time.

Second, the O(K 3(n)) events associated with the affected edge or vertex must be inserted
into or deleted from the priority queue as appropriate (for example, when a vertex is
replaced by an edge in St(i) that vertex will no longer be involved in any events with any
Su(j) for u I  t,  j I  i).  Thus each event may be processed in O(K 3(n) log n) time.  For the
entire collection of k collinearity events, then, this can be accomplished in O( LNM 3(n) log n)
time.

Another difficulty that arises is at the O(n) points at which the total edge ordering
changes.  A change to the total edge ordering implies that a change has occurred in the
underlying partial ordering (see section 4.2).  What we would like is that the change in
the partial ordering has a limited effect on the changes of the total ordering. For example,
we would prefer that, at any point at which the total ordering changes, at most two
adjacent edges in the total ordering (assume these are  em and em+1) would swap places
and no other edges would be affected.  Thus only the silhouette containing the first m
edges would need to be recomputed at this point (which could be accomplished so as not
dominate the time complexity for the entire algorithm; we omit the details).  The entire
algorithm would therefore run in O((n + k) O 3(n) log n) time in total.  Unfortunately, it is
by no means clear [2] that the underlying partial orderings associated with each of the
total orderings (or the topological sorts used to produce the total orderings) will
necessarily give rise to a collection of total orderings with the desired property.  Only if
this can be accomplished, would the asserted time bound for the algorithm be valid.

4.4 Orthographic Model

We now consider the complexity of the VSP in the orthographic model for a terrain P
with n edges [1], [7], [21], where the viewpoint space consists of all points on the sphere
at infinity lying above the terrain.  In the analysis presented in [1], the one-dimensional
curves on S2 constituting the actual critical regions of the VSP are assumed to be in
general position.  This means that whenever two such curves intersect they do so at
discrete points and that no three curves have a common point of intersection.  The
property of general position implies that the complexity of the VSP may be bounded by
the number of its vertices.  The analysis of [1], described next, obtains a bound for this
number.  As we shall see, this does not provide the best currently known bound for the
complexity of the VSP in the orthographic model.  However the analysis bears similarity
to that used to obtain the best currently known bound for terrains in the perspective
model (section 4.5), and it is instructive to present it here.  It is also worth noting that a
proof bounding the number of rays incident to four edges of a terrain, tangent to three of
them, and lying wholly above the terrain (a seemingly unrelated construct), can also be
cast in similar terms.  This latter proof is sketched later on in this section.
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Each vertex in the VSP may be associated with the two (EV- or EEE-) events
corresponding to its incident actual critical regions.  Thus the number of vertices such
that at least one of the associated events is an EV-event is O(n2n3) = O(n5).  The naïve
bound of  O(n3n3) = O(n6) for the number of vertices at which both events are EEE-events
can be improved upon, as is now shown.

Select two edges e1 and e2 from Q .  Form the collection of O(n) continuous, trivariate,
real-valued, partial functions Fi(s1, s2, R ), one for each of the other edges ei in S , where s1

parameterizes points on e1, s2 parameterizes points on e2, and R  is the common angle of
rotation about the z-axis of two rays r1 and r2, if they exist, which emerge from e1(s1)
and e2(s2), respectively, and intersect ei.  The value of  Fi(s1, s2, R ) is the smaller of the
two azimuth angles formed by r1 and r2 if they both exist.  If only one of these rays exists
the value of Fi(s1, s2, R ) is the azimuth of that ray.  If neither ray exists then Fi(s1, s2, R ) is
undefined.  It can be shown that the functions Fi are well-behaved.  In particular, the
graphs of each quadruple of these functions intersects in at most a constant number of
points.

The existence of T  = Fi(s1, s2, U ) implies that one of the rays (with direction ( U , T ))
meets V  at ei.  If this ray is r1 (r2) then, if r2 (r1, respectively) exists, a ray r emanating
from e2(s2) (e1(s1), respectively) in direction ( U , T ) will pass above V  at ei (note that
edge ei intersects the vertical plane passing through r).

Let F be the lower envelope of this collection of functions, and assume that there exists
an Fi such that T  = F(s1, s2, U ) = Fi(s1, s2, U ) for some (s1, s2, U ).  Then one of the
rays r1, r2 (with direction ( U , T )) meets V  at the edge from which it emanates, intersects V
at ei and, furthermore, passes above all other edges of  V  which intersect the vertical plane
it defines.  If this ray is r1 (r2) then a ray r emanating from e2(s2) (e1(s1), respectively) in
direction ( U , T ) meets V  at the edge from which it emanates, and passes above all edges
of V  which intersect the vertical plane it defines. Note that while this implies that each ray
passes above the interiors of all bounded faces of V  intersecting the vertical plane it
defines (since each is tangent to, or passes above, the edges intersecting this plane
adjacent to such a face) this is not enough to imply the identical property for every
unbounded face of V  (for a ray that passes above every edge of an unbounded face which
intersects the vertical plane it defines may still penetrate into the region below that face).
It may be necessary to introduce O(n) additional functions to ensure that, when F = Fi for
some (s1, s2, U ), each ray will pass entirely above the interiors of all faces of V  which
intersect the vertical plane it defines. This, in turn, implies that, aside from any points of
intersection with edges e1, e2 and ei of V , both rays lie wholly above V .

We consider those vertices of F formed by the intersection of the graphs of four
functions Fi.  Each such envelope vertex may be associated with the existence of two
rays, emanating from e1 and e2, tangent to V  at a total of four other edges (corresponding
to the four intersecting function graphs), and passing above V  at all other points.  The
vertices in this collection for which exactly two of the four tangencies belong to each of
the two rays form a subset of the set of vertices of F.  If such a vertex occurs
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at (s1, s2, W X Y ) then (now considering the two rays as emanating from infinity and
terminating at e1 or e2) ( Z[X Y ) represents a viewing direction from which two rays
emanate, are each tangent to \  at two edges and subsequent to this meet \  at a third edge
further from the viewpoint.  Thus each ray is an extended sight line associated with an
EEE-event inducing an actual critical region (section 3.2) in the VSP.  Moreover, these
EEE-events are associated with distinct triples of edges.  The viewpoint ( Z]X Y ) is therefore
a vertex in the VSP.  We have thus reduced the problem of bounding the number of
vertices in the VSP to one of determining a bound for the number of (a subset of) vertices
of the lower envelope of a collection of O(n) continuous, trivariate, real-valued, well-
behaved, partial functions (the introduction of additional functions due to unbounded
faces may necessitate the removal of some points of quadruple intersection from
consideration if they no longer appear on the lower envelope, however the analysis
remains valid).  A bound for this number is O(n3+ ^ ) (see below), where _  > 0 may be
selected as small as desired by an appropriate choice of the implied constant [27].

We note here that any point of quadruple intersection (for which the associated rays each
intersect exactly two edges of ` ) that does not lie on the lower envelope need not be
considered in the above argument because at least one of the EEE-events corresponding
to these rays will induce only a potential, but not actual, critical region.  More precisely,
given a point (s1', s2', a ', b ') at which the graphs of four functions intersect and given that
the minimum value for all  Fi at (s1', s2', c ') is achieved by some other function Fj, then
one of these rays, emanating from e1(s1') or e2(s2') and passing through exactly two other
edges, will, in addition, pass through some other feature of d , thus causing the occlusion
of the associated EEE-event from the viewpoint ( c ', b ') (Fig 25).

Repeating the above argument for all O(n2) pairs of edges e1 and e2 yields a bound
of O(n2n3+e ) = O(n5+e ) on the number of vertices in the VSP.  Hence the complexity of the
VSP induced by d  in the orthographic model is O(n5+e ).
The foregoing argument made use of a result stating that the complexity of the lower
envelope of O(n) well-behaved (section 3.1) d-dimensional surface patches in (d+1)-
dimensional space is O(nd+e ) (in that argument d = 3).  When d = 2 this result yields a
complexity of O(n2+e ).  However, as shown in [21], when the relative interiors of any
triple of a collection of well-behaved two-dimensional surface patches are known to
intersect in at most two points, this bound can be improved to O(n2 f  2c(log n)1/2) for some
constant c depending on the degree and shape of the surfaces.  This result is important for
terrains in the orthographic model because, as also shown in [21], each extended sight
line (a ray in this context) incident to a fixed terrain edge, tangent to three other edges,
and otherwise lying wholly above the terrain (and therefore associated with a constant
number of event occlusion endpoints, section 3.2) corresponds to a vertex in the lower
envelope of a collection of two-dimensional surface patches (in a three-dimensional
space) with the properties just stated.  Thus an immediate bound
of O(n f  n2 f  2c(log n)1/2) = O(n3 f  2c(log n)1/2) is obtained for the number of rays incident to a
terrain edge, tangent to three other edges and otherwise lying wholly above the terrain.
As we shall see shortly, this result yields an improved bound for the complexity of the
VSP induced by a terrain in the orthographic case.  First, however, we sketch the analysis



47

of [21] showing how the bound on the number of rays incident to a fixed edge and
tangent to three other edges is obtained.  Many of the ideas presented here are similar to
those found in the previous proof.

Fig 25.  One of the rays associated with the intersection (not on the lower envelope) of the graphs of
four functions Fi will pass below an edge, and thus penetrate a feature, of g  (shown in cross-section).

Select an edge e from h  and consider the collection of rays emanating from e.  Each such
ray r may be represented by three parameters (t, i j k ) where t fixes the point e(t) on e
from which r emanates and where ( l]m n ) is the direction of r.  Each ray r thus corresponds
to a point in a three-dimensional dual space.  Note that the collection of rays
intersecting e and any other edge ei corresponds to a two-dimensional surface patch in
this dual space.  Each such surface patch defines a continuous, bivariate, real-valued,
partial function Fi(t, l ), one for each of the other edges ei, where t parameterizes points
on e and l  is the angle of rotation about the z-axis of the ray, if it exists, emanating
from e(t) and intersecting ei.  The value of Fi(t, l ) is the azimuth of this ray if it exists.
Otherwise, Fi(t, l ) is undefined.  The functions Fi can be shown to be well-behaved.  In
addition, the intersection of the graphs of any three functions Fi corresponds to a ray
passing through e plus a total of three other edges.  Since in R3 there can be at most two
such rays, we see that every triple of surface patches may intersect in at most two points.

Let F be the lower envelope of this collection of functions.  If there exists an Fi such
that n  = F(t, l ) = Fi(t, l ) then a ray exists which emanates from e(t), intersects ei, and lies
above the interiors of all bounded faces of o  which intersect the vertical plane it defines.
Similar to the previous proof, functions may be added to the collection Fi to ensure that
when F = Fi for some (t, p ) this ray will in addition lie above the interiors of all
(unbounded as well as bounded) faces of o  which intersect the vertical plane it defines.
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Thus, aside from the two points of intersection with edges of � , this ray will lie wholly
above � .

Those vertices of F formed by the intersection of the graphs of three functions Fi may
therefore be associated with an extended sight line incident to an edge of � , tangent to
three other edges of �  and otherwise lying wholly above � .  As stated, the number of such
vertices has been shown [21] to be O(n2 �  2c(log n)1/2) where c is a constant depending on the
nature of the functions Fi.  (Points of intersection of the graphs of three functions Fi not
appearing on the lower envelope may be ignored in this analysis, since they correspond to
rays which penetrate some feature of �  other than one of the four edges, and thus do not
correspond to EOE points).  Applying the entire analysis to each of the O(n) edges e of �
yields a bound of O(n3 �  2c(log n)1/2) for the number of extended sight lines incident to an
edge of � , tangent to three other edges of �  and otherwise lying wholly above � .

As promised, this result can be used to obtain an improved upper bound for the
complexity of the VSP induced by a terrain in the orthographic model [7].  As discussed
in section 3.2, the actual critical regions of the VSP consist of curves in S2 which have
their endpoints at either EOE points or at endpoints of the potential critical regions of
which they are a part.  There are clearly O(n3) points of the latter type.  In addition, since
there are a constant number of EOE points associated with each extended sight line
incident to an edge of � , tangent to three other edges of �  and lying wholly above � , and
since there have been shown to be O(n3 �  2c(log n)1/2) such extended sight lines, we see that
the total number of actual critical region endpoints in the VSP is O(n3 �  2c(log n)1/2).  This
immediately implies that there are at most this many actual critical regions in the VSP.

The analysis of [7] combines this result with that of section 4.2, where it was proved that
the complexity of the VSP induced by a terrain for a vertical flight path is O( � � 4(n)), to
obtain the improved bound on the complexity of the VSP in the orthographic model.  We
observe that the result of section 4.2 may be restated in a slightly different form as
follows:  Any vertical line meets along its path at most O( � � 4(n)) actual critical regions of
the perspective model VSP.  In particular, vertical lines at infinity also possess this
property.  Equivalently, each such line (with fixed �  and varying � ), corresponding to a
meridian (line of longitude) on the sphere at infinity, thus meets at most O( ��� 4(n)) actual
critical regions of the orthographic model VSP (since these arise as the intersections of
actual critical regions in the perspective model VSP with the sphere at infinity).  Since
this is true for all meridians, this implies, in the terminology of [7], that the VSP in the
orthographic model is therefore a sparse (two-dimensional) arrangement (of well-
behaved curves) with low vertical stabbing number.  A central result, proved in [7], is
that the complexity of such arrangements is O(NK), where N is the number of curves of
the arrangement, and K is its maximum vertical stabbing number. A direct application of
this result yields a bound on the complexity of the VSP in the orthographic model
of O((n3 �  2c(log n)1/2) ( ��� 4(n))) = O(n5 �  2 � (n) + c (log n)1/2) = O(n5 �  2c' (log n)1/2) for a constant c'
slightly larger than c.

A worst-case lower bound on the complexity of the VSP in the orthographic model
is � � n5 � (n)) [7] so that the given upper bound is nearly tight.  A construction that
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achieves this bound consists, in part, of a collection of n arbitrarily close wedges
(with ��� � � (n)) breakpoints on its upper rim (section 4.2) placed in front of a hill with n
faces (Fig 26). Because the wedges are so close, the breakpoints of the rim may be thought
of as pseudo-vertices and the actual critical regions induced by each pseudo-vertex and
hill edge are nearly horizontal planes and parallel to one another.  Any meridian of (a�!�������y�¡ £¢¤���¥�§¦�¨!�y©«ª$©«¬®­~��¯«¦�°±�«¯²¦��§¦³�¡�´�yª«¬±�yª«�µ��¶$·$�¤¢¸¢¹�yª;�º¦��»°§¦;�¡�¼��¯²¦]°§¦³�§¦�¨!�y©«ª½°¾�¡� ¿ À n2 Á (n)) distinct
viewpoints.

Also, a collection of n pyramids is placed arbitrarily close to a second hill with n faces
and a set of n prisms with nearly vertical sides is placed in front of and far away from
both of these.  Because the pyramids are arbitrarily close to the hill, each alignment of a
pyramid edge and a hill edge may be thought of as a pseudo-vertex (Fig 27).  The prisms
are arranged so that the actual critical regions induced by each pseudo-vertex and prism
edge are nearly vertical planes and parallel to one another.  Any line on the sphere at
infinity parallel to the equator (in the same region containing the meridians mentionedÂ¡Ã!ÄÆÅ!Ç�ÈÊÉ²Ë$ÌyÍ¤Í½ÌyÎ]ÏºÇÑÐ»ÒÓÇ�Ô¡Ï¹Ï�Õ²Ç]Ò§ÇÖÐÊÇ�×½ÌØÄÙÎ!ÒÚÂ¡Ï Û Ü n3) distinct viewpoints (Fig 28).

Fig 26.  The first part of the construction.  (From [7])

Fig 27.  The second part of the construction.  (From [7])
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Fig 28.  An alignment of a pseudo-vertex (formed by a hill edge and pyramid edge) and a prism edge
as seen from a viewpoint in (some region of) the sphere at infinity.  (From [7])

Thus the entire construction consists of a terrain with O(n) edges inducing a grid
of ÝßÞ n2 à (n)) by ÝßÞ n3) actual critical regions in a particular region of the sphere at
infinity (Fig 29).  This immediately implies that the complexity of the VSP in the
orthographic model for this terrain is ÝßÞ n5 à (n)).

Fig 29.  The complete construction.  (From [7])

4.5 Perspective Model

The best known upper bound for the complexity of the VSP of a terrain á  with n edges in
the perspective model arises from an analysis [1] similar to that presented at the
beginning of section 4.4 for the case of the orthographic model. Because many of the
requisite ideas are higher-dimensional analogs of those discussed earlier, we only provide
a sketch of this analysis.  Again, we consider only those viewpoints lying above á , and
again we assume that the actual critical regions of the VSP are in general position.  This
implies that whenever three of these surfaces intersect they do so at discrete points and
that no four of them have common intersection.  As before, this property allows the
complexity of the VSP to be bounded by the number of its vertices.  Here a vertex is
formed by the intersection of three surfaces each associated with an EV- or EEE-event.
There are O(n3n3n2) = O(n8) vertices for which at least one of these is an EV-event.  The
naïve bound on the number of vertices associated with three EEE-events
is O(n3n3n3) = O(n9) and can be improved upon as is now shown.
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Select three edges e1, e2 and e3 from â  and form the collection of continuous, 5-variate,
real-valued, partial functions Fi(s1, s2, s3, x, y), one for each of the other edges ei in â ,
where s1, s2 and s3 parameterize points on e1, e2 and e3, respectively, and the value
of Fi(s1, s2, s3, x, y) is the maximum z-coordinate of the (at most) three points on the
vertical line l passing through (x, y) and met by any of three line segments l1, l2, and l3, if
they exist, which emanate from e1(s1), e2(s2) and e3(s3), respectively, each passing
through ei and terminating at l (if none of these segments exist the value
of Fi(s1, s2, s3, x, y) is undefined).  It can be shown that the functions Fi are well-behaved.
In particular, the graphs of every collection of six of these functions intersect in at most a
constant number of points.

The existence of z = Fi(s1, s2, s3, x, y) implies that one of these three line segments
terminates at (x, y, z) and intersects ã  at ei.  If either of the other two segments exist
(emanating, say, from ek(sk)) then there exists an associated line segment (also emanating
from ek(sk)) terminating at (x, y, z) and passing above ã  at ei.

Let F be the lower envelope of this collection of functions.  If there exists an Fi such that
z = F(s1, s2, s3, x, y) = Fi(s1, s2, s3, x, y) for some (s1, s2, s3, x, y) then a line segment exists
which emanates from either e1(s1), e2(s2) or e3(s3), intersects ã  at ei, terminates at (x, y, z)
and lies above the interiors of all bounded faces of ã  which intersect the vertical plane it
defines.  Furthermore, each segment emanating from one of the other two points and
terminating at (x, y, z) lies above the interiors of all bounded faces of ã  which intersect
the vertical plane it defines.  Similar to the analysis presented for the orthographic model,
functions may be added to the collection Fi to ensure that when F = Fi for
some (s1, s2, s3, x, y), each of the three segments will in addition lie above the interiors of
all faces of ã  which intersect the vertical plane it defines.  Thus, aside from points of
intersection with ã  at edges e1, e2, e3 and ei, all three line segments will lie wholly
above ã .

Those vertices of F formed by the intersection of the graphs of six functions Fi may
therefore be associated with three line segments emanating from e1, e2 and e3,
respectively, tangent to ã  at a total of six other edges, each passing above ã  at all other
points and terminating at a common point above the terrain.  The vertices in this
collection for which exactly two of the six tangencies belong to each of the three line
segments may therefore be associated with three EEE-events inducing actual critical
regions in the VSP.  Moreover, these EEE-events are induced by three distinct triples of
edges, and are visible from the common point of intersection of the three line segments
(since these segments may be regarded as extended sight lines emanating from that
point).  Thus if such an envelope vertex occurs at (s1, s2, s3, x, y) then the point (x, y, z) is
a vertex in the VSP.  Envelope theory tells us that a bound for the number of such
envelope vertices is O(n5+ ä ) where å  > 0 may be selected as small as desired by an
appropriate choice of the implied constant [27].  (As in the orthographic model argument,
points of intersection of the graphs of six functions Fi not appearing on the lower
envelope may be disregarded in the above analysis.)  Applying the foregoing argument to
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all triples of edges e1, e2 and e3 yields a bound of O(n3n5+ æ ) = O(n8+ æ ) for the complexity
of the VSP in the perspective model.

Although there exists a three-dimensional analog of the previously discussed (section 4.4)
two-dimensional result for sparse arrangements with low vertical stabbing number [7],
this is not helpful in finding an improved upper bound for the complexity of the VSP in
the perspective model, as it was in the orthographic model.   This result states that an
arrangement of N well-behaved surface patches in R3 with maximum vertical stabbing
number K, has complexity O(N2K).  As we have seen (section 4.2), the perspective model
VSP is an arrangement of surface patches with K = O( ç è 4(n)) [12] which are not
necessarily well-behaved, so the three-dimensional result cannot be directly applied.
However, each surface patch can be subdivided into a collection of patches which are
well-behaved such that the three-dimensional result is indeed applicable to the entire
collection of resulting patches.  In fact, it can be shown (we omit the details) that,
analogous to the orthographic case, the entire collection of well-behaved patches can be
generated such that the total number of these patches is proportional to the total number
of maximal extended sight lines (line segments in this case) emanating from some
viewpoint in R3, lying wholly above the terrain, intersecting the terrain at four edges and
tangent to the terrain at the first three edges encountered. Aronov and Halperin [3],
unfortunately, have been able to construct an example showing that this number is é ê n4)
in the worst case.  Thus the application of the three-dimensional sparse arrangement
result yields a VSP complexity of O((n4)2 ë ì

4(n)) and does not improve the bounds
previously established.

A worst-case lower bound on the complexity of the VSP in the perspective model
is í î n8 ï (n)) [7] so that the given upper bound is nearly tight.  A construction that
achieves this bound is an augmentation of the construction delineated previously for the
orthographic case (section 4.4).  A second set of pyramids and prisms is placed in front of
a hill at a ninety-degree angle to the first set.  The result of this is the construction of a
terrain with O(n) edges inducing a grid of ðßñ n2 ò (n)) by ðßñ n3) by ðóñ n3) nearly-planar
actual critical regions in a particular region of R3 (note here that the grid is formed by a
collection of two-dimensional surfaces in R3, whereas in the construction of section 4.4
the grid is formed by a collection of one-dimensional curves on S2). This immediately
implies that the complexity of the VSP in the perspective model for this terrain
is ðßñ n8 ò (n)).

5 Related Work

We conclude this survey with a sampling of research efforts that expand the aspect graph
concept in several directions.  One such effort deals with the complexities of aspect
graphs induced by object silhouettes for several different kinds of viewpoint spaces.
Another deals with the approximation of aspect graphs by simpler data structures.  We
also look at some structures that represent alternatives to aspect graphs.  We discuss the
computation of aspect graphs for non-polyhedral objects.  Finally, we mention briefly an
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effort to construct the aspect graph using simpler algorithms than those discussed in this
survey, and cite work on the aspect graph, and related structures, in two dimensions.

5.1 Silhouettes

The silhouette of a convex object with respect to a viewpoint is the projection (into the
image plane or sphere) of the collection of object edges separating visible object faces
from hidden ones.  When the total number of edges in a scene is much greater than the
number of silhouette edges visible from any particular viewpoint (this is often the case
when, for example, non-polyhedral objects are approximated by large numbers of small
polyhedral facets) the VSP induced by considering only silhouette edges associated with
each viewpoint is often simpler than that induced by considering the entire collection of
object edges from each viewpoint.  In some applications it is often sufficient to determine
the VSP for the silhouettes only.

The analysis in [32] examines several variations on this theme.  Bounds on the
complexity of the VSP induced by the arrangement of silhouettes of a collection of
convex objects in a scene (the silhouette arrangement) are derived.  Also, bounds on the
complexity of the VSP induced by the silhouette arrangement with its hidden (with
respect to the viewpoint) edge portions removed (the silhouette map) are derived.
Finally, we consider all points on edges in the silhouette map for which there exists an
extended sight line emanating from the viewpoint intersecting the edge point and then
passing through the interior of some object face.  The structure obtained when all such
edge points are removed from the silhouette map is called the union-of-silhouettes.
Bounds on the complexity of the VSP induced by the union-of-silhouettes are also
determined.   Note that essentially each variation considered arises as a modification to
the definition of an image (see section 2).  Previously an image consisted of the
projections of all object vertices and edges onto the image plane or sphere (transparent
image) or of the projections of visible (with respect to a given viewpoint) object vertices
and edges or edge portions onto the image plane or sphere (opaque image).  Now we will
consider the projection of other selected subsets of object vertices and edges (with respect
to a given viewpoint).  We will redefine the subset of interest in each particular case.

Two different types of scenes are considered in [32].  The first consists of k distinct
convex polyhedra with n edges in total (in this case the viewpoint space is an arbitrary
straight-line flight path).  The second consists of a terrain possessing k convex
‘mountains’ , each with a base formed by a convex polygon in the xy-plane, and with n
edges in total (here the viewpoint space is a vertical flight path).  The silhouette of a
convex mountain with respect to a viewpoint is the projection (into the image plane or
sphere) of the collection of edges separating visible faces from hidden ones plus the
collection of visible edges adjacent to the base.

Recall (section 3.6) that, in the case of convex polyhedra, the total number of actual
critical regions was found to be O(n2k).  It is shown in [32] that, for an arbitrary straight-
line  flight path f, this bound can be improved to O(k2n) when restricting consideration to
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the silhouette arrangement, silhouette map and union-of-silhouettes.  For the first two of
these cases, this bound is, in fact, tight.

The analysis, as in section 3.6, derives a bound on the number of distinct edge triples that
may participate in EEE-events such that each edge belongs to a distinct polyhedron.
Note however that here we are concerned exclusively with silhouette edges (in fact, to be
more precise, silhouette arrangement edges).  Recall that the complexity of a
polyhedron P (the number of its vertices, edges and faces) is denoted by |P|.  Assume,
without loss of generality, that f coincides with the positive z-axis.  Consider two
polyhedra Pi and Pj.  We imagine a half-plane with boundary f sweeping about f with
longitude ô  (denoted by õ ( ö )), for 0 ÷  ø  ù  2 ú , and consider the slope of the outer lower bi-
tangent line to Pi and Pj passing through f and coplanar with (and lying on) û ( ü ).  For each
interval of ü  for which the lower outer bi-tangent line is determined by exactly one edge
of Pi and one edge of Pj, the function ý ij( þ ) representing this slope will be continuous and
well-behaved.  These intervals start or terminate at values of þ  for which one of the edges
of Pi (Pj) determining the bi-tangent line is replaced by another edge of Pi (Pj,
respectively), or when the bi-tangent line becomes coplanar with a face of Pi or Pj (so that
it is determined by three edges in total).  The first event clearly occurs O(|Pi| + |Pj|) times
as the sweep proceeds.  The second event is also seen to occur O(|Pi| + |Pj|) times during
the sweep by noting that when the bi-tangent line is coplanar with a face of Pi (Pj) there
are at most two possible ways it may also be tangent to Pj (Pi, respectively).  (Note that
the planar region swept out by all rays emanating from f and coplanar with the face of
one polyhedron intersects the other polyhedron, if at all, in a convex polygon, and that
only at most two rays in this collection are tangent to that polygon (Fig 30)).  This analysis
shows that the domain of ý ij( þ ) consists of O(|Pi| + |Pj|) intervals on each of which the
function is well-behaved and continuous.

Fig 30.  At most two rays originating on f and coplanar with a facet of P are tangent to Q (the
diagram shows the slice of P and Q in the plane of the facet of P).  (From [32])

Q
P
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One kind of EEE-event (we shall consider the other kinds shortly) involving three
silhouette arrangement edges of distinct polyhedra Pi, Pj and Pl occurs when the lower
outer bi-tangent line (passing through f) of Pi and Pj is collinear with the lower outer bi-
tangent line of Pj and Pl (also passing through f).  This can potentially occur only when
these two lines have the same slope, or, in other words, for all values of ÿ  for
which � ij( ÿ ) = � jl( ÿ ).  Since � ij( ÿ ) consists of O(|Pi| + |Pj|) well-behaved, continuous
curves and � jl( ÿ ) consists of O(|Pj| + |Pl|) well-behaved, continuous curves there can be at
most O(|Pi| + |Pj| + |Pl|) such points of intersection.  Thus, for fixed polyhedra Pi, Pj

and Pl the number of distinct edge triples of the silhouette arrangement participating in
EEE-events associated with only the lower outer bi-tangents intersecting f is bounded
by O(|Pi| + |Pj| + |Pl|).  Summing these results over all polyhedra  Pi,  Pj and  Pl yields

�
 i � j� l O(|Pi| + |Pj| + |Pl|)   =  �  i � j� l O(|Pl|)   =  �  i �  j �  l O(|Pl|)   =   O(k2n)

triples in total.  This entire foregoing analysis must be repeated for EEE-events involving
all combinations of lower outer bi-tangents, upper outer bi-tangents and both inner
tangents among triples of polyhedra (for example an EEE-event may also occur when the
lower outer bi-tangent of Pi and Pj is collinear with the upper outer bi-tangent of Pj

and Pl, etc.)  There are sixteen such combinations and, since a similar analysis may be
performed in each case, they each yield the same O(k2n) result.  Thus the total number of
critical surfaces overall i s O(k2n).  This, therefore, is the maximum complexity of the
VSP induced by the silhouette arrangement of k convex polyhedra (with n total edges) for
a straight-line flight path.  Since the silhouette arrangement is a refinement of the
silhouette map and union-of-silhouettes, the maximum complexity of the induced VSP in
both of these cases is also O(k2n).

A lower bound construction is obtained [32] by placing k long and narrow convex
polyhedra of negligible thickness (‘needles’) in a small volume around a viewpoint at
which the silhouette arrangement (silhouette map, union-of-silhouettes) takes on its
worst-case complexity.  The needles are placed so that along a straight-line flight path in
this volume each needle edge will align with each vertex in the silhouette arrangement
(silhouette map, union-of-silhouettes) along some extended sight line (to produce an EV-
or EEE-event depending on whether the vertex is the projection of an actual vertex in the
scene or is a T-junction – see section 2) and so that each such alignment occurs at a
distinct viewpoint.  Since the worst-case complexities for the silhouette arrangement,
silhouette map and union-of-silhouettes of k convex polyhedra with total complexity n���	��
��	��
�������������������
 �  kn) [20] !#"  kn) [32] $�%'&)(+* k2 + , - (k)) [5] where - (k) is the inverse
Ackermann function, the complexities of the induced VSPs are therefore, respectively,. /

k2n 021'3+4 k2n 576�8'9;:+< k3 + =�>�? (k)).

For the case of a general polyhedral terrain with n total edges and vertical flight path,
recall (section 4.2) that, when considering all edges in the scene, worst-case lower and
upper bounds on the number of actual critical regions were found to be @+A > B 3(n)) and
O( C�D 4(n)), respectively.  The case of a terrain with k convex mountains (with n total
edges) and vertical flight path, considered in [32], is just a special case of this, so those
bounds apply here also. However, the analysis in [32] shows that the above E F k2n)
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bounds for convex polyhedra also apply in this case for the silhouette arrangement and
silhouette map and, in fact, can be further improved to G H kn) and O( I J 4(k)) respectively
for the union-of-silhouettes.

The argument for the upper bound for the union-of-silhouettes proceeds similarly to that
for the case of convex polyhedra.  For a vertical flight path f, a bound is sought on the
number of distinct edge triples participating in EEE-events such that each edge belongs to
a distinct mountain.  This can be found by determining for each triple of
mountains, Mi, Mj and Ml, the number of collinearities that can occur between the upper
outer bi-tangent of Mi and Mj and the upper outer bi-tangent of Mj and Ml, both passing
through f.  If we denote the complexity of mountain M by |M| then, similar to the previous
argument, the function representing the slope of the upper outer bi-tangent of Mi and Mj,K

ij( L ), will consist of O(|Mi| + |Mj|) well-behaved, continuous curves in its domain of
definition (in fact, here it is important to further specify that the curves intersect pairwise
at most twice – see section 4.2 for a similar analysis with regard to the functions gi).

Since we are dealing with a terrain and a vertical flight path, a partial order for all
mountains M may be obtained by defining Mi < Mj whenever any ray emanating from f
and passing through both Mi and Mj intersects Mi before intersecting Mj (such a partial
order is possible once cycles are eliminated - we have seen a comparable analysis in
section 4.2 but omit the similar details here).  The partial order may be completed to a
total order by a topological sort.  For a given mountain Ml, we consider the O(k) slope
functions M il ( L ), for 0 < i < l, and the O(k) slope functions N lj( O ), for l < j P  k.  Note that,
for a given Q , only the function in R il with minimum value is associated with an upper
outer bi-tangent that does not pass through any of the mountains from M1 to Ml (see
section 4.2 for a similar analysis in a slightly different context).  Likewise, for a given Q ,
only the function in R lj with maximum value is associated with an upper outer bi-tangent
that does not pass through any of the mountains from Ml to Mk.  Thus, a collinearity of
two such bi-tangents can only be visible from f at those values of Q  for which the lower
envelope of the functions R il ( Q ) coincides with the upper envelope of the functions R lj( Q ).
It can be shown that the overlay of the upper and lower envelopes of these two O(k)
collections of functions, each function consisting of O(|Ml| + |Mj|) (0 < j P  k, j S  l) well-
behaved, continuous curves in its domain of definition, where these curves intersect
pairwise at most twice, has complexity O((T 4(k)/k) U  j (|Ml| + |Mj|)).  Repeating the entire
argument for each Ml, 1 < l < k, and noting that the number of edge triples associated
with EEE-events involving inner tangents of mountain pairs (Fig 31) does not affect the
upper bound (the details of this are omitted from [32]) yields a final bound on the number
distinct edge triples associated with EEE-events of

U  l  O((V 4(k)/k) W  j (|Ml| + |Mj|))   =   O((V 4(k)/k) kn)  =   O( X�Y 4(k)).

A lower bound construction may be obtained [32] by considering a terrain consisting
of Z [ k) mountains (‘peaks’) in front of (with respect to all viewpoints on a vertical flight
path f) a single mountain (‘drum’) with \^] n) horizontal edges (Fig 32).  As the viewpoint
moves along f, each time it crosses a plane containing one of the facets of the drum, one
drum edge adjacent to the facet will replace the other drum edge adjacent to the facet on
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the union-of-silhouettes (at the instant of crossing the two facets will be coplanar with the
viewpoint).  Each time this occurs there will be an alignment along an extended sight line
from that viewpoint of the two drum edges and a point on each of the _a` k) peak edges.
Each such alignment corresponds to an EEE-event.  Furthermore, each alignment willbdc�cfe�ghbji^k�l�mne�i'opbji�q�bdr�qts	ovuwl�b�e�mfkxkymzs|{zs}s	m�m�i~rxg	b'��k�l�{�k���o�m�����bjo�i�k����'o�i�c�m+�^� n) planes may be
crossed there can, therefore, be as many as �a� kn) EEE-events involving edges on the
union-of-silhouettes.  Thus the worst-case lower bound complexity of the induced VSP
is � � kn).  As we have seen, this bound is nearly tight.

Fig 31.  Two possible ways an EEE-event involving silhouette edges from three distinct mountains
may occur.  (From [32])

Fig 32.  The lower bound construction for a terrain with � � k) mountains with total complexity �|� n).
(From [32])

Not addressed in [32] are new results pertaining to complexity bounds for the
orthographic model and perspective model VSP induced by the silhouette arrangement,
silhouette map and union-of-silhouettes of � � k) convex polyhedra with �^� n) total
complexity.  The recent construction [4] demonstrating the lower bound worst-case
complexity of the VSP induced by all edges in such a scene (section 3.6) may be
modified to obtain a lower bound worst-case complexity for the union-of-silhouettes
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case.  This is accomplished by replacing the drum in that construction (see Fig 18) with a
second collection of �a� k) needles.  An analysis similar to the one outlined in section 3.6
shows that the induced VSP will have a worst-case lower bound complexity
of �+��� nk2)2) = �+� n2k4) in the orthographic model and �+� (nk2)3) = �^� n3k6) in the
perspective model.  Since the silhouette arrangement and silhouette map are refinements
of the union-of-silhouettes, the stated bounds apply equally well to these cases also.

Another new result concerning an upper bound on the orthographic model VSP can be
determined by combining results pertaining to sparse arrangements of well-behaved
surface patches (sections 4.4 and 4.5) with results specified above.  Since, as shown
above, no vertical line (in fact, no line in any direction and, in particular, no vertical line
at infinity) will intersect more than O(nk2) critical regions and since the number of such
critical regions is bounded by the number of critical regions induced by all edges in the
scene (which, as we have seen, section 3.6, is O(n2k)), we immediately derive an upper
bound on the complexity of the orthographic model VSP of O((n2k)(nk2)) = O(n3k3).

Since the surface patches of the VSP in the perspective model are not necessarily well-
behaved, the preceding analysis concerning sparse arrangements does not apply.
Trivially, however, the O(n6k3) bound on the complexity of the perspective model VSP
induced by all edges in the scene (recall section 3.6), serves as an upper bound for the
complexity of the perspective model VSP induced by the silhouette arrangement,
silhouette map and union-of-silhouettes for that scene.

5.2 Approximations to Aspect Graphs

The relatively prohibitive complexity of the aspect graph ���a� n6) and �a� n9) in the worst
case for general non-convex polyhedra in the orthographic and perspective models,
respectively, section 3.3) has motivated a number of researchers to seek approximations
to aspect graphs.  The goal of this research is to build simpler data structures with lower
complexities while still providing sufficient utility for the problem domain at hand.  In
this section we examine several instances of these structures including finite-resolution
aspect graphs, scale space aspect graphs and weighted aspect graphs.

5.2.1 Finite-Resolution Aspect Graphs

Up to now it has been assumed that any object feature visible from a given viewpoint is,
in addition, resolvable from that viewpoint.  This means that a viewer positioned at that
viewpoint is able to distinguish the projection of that feature from the projection of all
nearby features, regardless of how close the projections are to each other in the image
plane or sphere.  Such a viewer is said to possess infinite spatial resolution capability.
Since, in fact, any real-world viewer has only finite spatial resolution capability,
Shimshoni and Ponce [28] have suggested that the construction of an aspect graph taking
this real-world limitation into account would yield a data structure of relatively low
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complexity that would still retain enough information to prove useful for the kinds of
matching problems discussed in the introduction to this survey.  Such an aspect graph
would store finite-resolution opaque views at its nodes, rather than infinite-resolution
opaque views.

An algorithm to construct a finite-resolution aspect graph for the case of non-convex
polyhedra with n edges in the orthographic model is presented in [28].  A threshold
parameter �  represents the minimum distance between feature projections in the (infinite-
resolution transparent image) image plane that would allow them to be distinguished by a
viewer with finite-resolution capability.  Thus, for example, two vertices are resolvable
when their projections in the infinite-resolution transparent image are greater than �  apart.
In S2 this condition can be shown to occur for all viewpoints outside two diametrically
opposite circular caps.  The boundaries of these caps consist of viewpoints for which the
projections of the two vertices are exactly �  apart.  From viewpoints inside the caps these
projections are less than �  apart and the two vertices are not resolvable.  In general, any
two features will not be resolvable in some two-dimensional area on S2.

The infinite-resolution transparent image consists of vertices, edges and T-junctions
(section 2).  In the context of finite resolution, potential critical events occur at those
viewpoints for which any pair of image features are exactly �  apart.  A complete catalog
of all such events, and the potential critical curves they induce, is provided in [28].

Once the finite-resolution potential critical curves are calculated, standard algorithms
(section 3.2) may be employed to perform region pruning (due to occlusion) and to
compute the resulting arrangement in S2.  At this point, in the infinite-resolution case,
each remaining (actual) critical curve would separate regions with distinct infinite-
resolution opaque views.  However, in the finite-resolution case, it may still occur that
some of the remaining critical curves separate cells that are associated with identical
finite-resolution opaque views.  A simple example showing why this can occur is as
follows.  Suppose that on one side of a potential critical curve vertices p and q are
separated (in the infinite-resolution opaque view) by a distance greater than � , but that p
is within �  of the two edges adjacent to q.  Suppose that on the other side of this potential
critical curve p and q are separated by a distance less than � .  In the latter case, p and q
are merged when calculating the finite-resolution opaque view.  In the former case, p is
merged with each of the edges adjacent to q when calculating the finite-resolution opaque
view, which forces it to be merged with q also.  In either case, the finite-resolution
opaque view consists of a ‘ thick vertex’ replacing both p and q and is identical on either
side of the potential critical curve (Fig 33).

A supplementary pruning step is required to solve this problem.  This step involves
computing the infinite-resolution opaque view at each cell in the arrangement, and
repeatedly merging all feature pairs in each view which are separated by a distance less
than the �  threshold (a detailed catalog of merge steps and the order in which they are to
be applied is supplied in [28]).  This repeated merging of opaque image features may
simpli fy the images to the point where they become identical in adjacent cells.  When all
merging steps are complete the final finite-resolution opaque view at each cell has been
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determined, and those potential critical regions found to separate cells with identical
finite-resolution opaque views are removed from the arrangement.

Fig 33.  Both configurations (a) and (b) lead to an identical finite-resolution opaque view (c).
(From [28])

There are O(n) vertices, O(n) edges and O(n2) T-junctions (since each arises as the
overlap of a pair of edge projections) in the infinite-resolution transparent image.  Thus,
in the context of finite resolution, there are O(n4) potential critical events to be dealt with
(and O(n4) associated potential critical curves).  These potential critical curves are not
necessarily quadric.  For example, such curves arising due to the interaction of two T-
junctions are of degree six.  However, it can be shown that they are well-behaved.  Thus
the arrangement of these curves has complexity O(n8), which is worse than the infinite-
resolution case (a worst-case lower bound on the complexity of this arrangement is not
considered in [28]).  Shimshoni and Ponce postulate, however, that in most instances the
supplementary pruning step, described above, will be sufficiently effective so as to yield
a final arrangement (and hence aspect graph) of complexity less than its infinite-
resolution counterpart.

Since there are O(n4) well-behaved potential critical curves, there exist O(n5) event
occlusion endpoints (EOE points, section 3.2).  As in a previously discussed algorithm,
these points are sorted (in O(n5 log n) time) and, assuming a complexity of O(m) for the
arrangement induced by these curves, this portion of the algorithm can be completed
in O(n5 log n + m log m) time.  However, the time for the supplementary pruning step
potentially requires the determination of distances between O(n4) image feature pairs (in
the infinite-resolution opaque image) for each of the O(m) cells in the arrangement,
yielding a complexity of O(mn4) for this step.  Since m = O(n8), the time for the
supplementary pruning step dominates the rest of the algorithm in the worst case.  The
time complexity of this algorithm is inferior to that of its infinite-resolution counterpart.
It is to be hoped that for most situations the simplicity of the resulting finite-resolution
aspect graph relative to its infinite-resolution counterpart will justify the added cost
associated with its computation.
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5.2.2 Scale Space Aspect Graphs

In the previous discussion it seems intuitive that in general, as ¤  increases, the complexity
of the resulting finite-resolution aspect graph should decrease. (Consider first, for
example, the case where ¤  = 0;  this implies that all object features are resolvable, and
thus that the finite-resolution aspect graph is identical to the infinite-resolution aspect
graph.  Next consider the case where ¤  is so large that no two features are resolvable; the
resulting finite-resolution aspect graph will consist of a single amorphous opaque view.)
We may generalize this notion and consider a parameter that takes on a continuous range
of values such that (ideally) the complexity of the associated aspect graph monotonically
decreases as this parameter value increases. Such an analysis is presented in [16] where
an analogy is obtained with the notion of scale in the domain of signal processing.  Note,
however, that any analogy between aspect graphs and signals is imperfect.  In particular,
it is difficult to find a parameter that reflects any real-world property such that this
idealized monotonic behavior actually occurs.

In signal processing, scale allows for the ‘smoothing out’ of a signal in a controlled way
as a parameter ¥   (the scale parameter) increases.  For ¥  = 0 the original signal remains
intact and as ¥  increases the signal is gradually smoothed out to a flat line.  One may
equate the ‘ importance’ of a signal feature with the value of ¥  at which it disappears.
With these considerations, the (idealized) notion of a scale space aspect graph may be
formulated as follows [16]: for a given object, the scale space aspect graph induced
at ¥  = 0 is the infinite-resolution aspect graph computed by standard algorithms
(section 3.2).  As ¥  increases, the induced scale space aspect graph monotonically
decreases in complexity until, finally, the complexity is reduced to zero.  In this way
scale may be employed to obtain aspect graphs of any desired complexity merely by
selecting a sufficiently large scale value.

The term scale space in the above terminology denotes the Cartesian product of
viewpoint space and the (uni-dimensional) space defined by the scale parameter.
Parallels between the notions of scale space and configuration space (section 3.8), in the
case where there exists only a single degree of freedom, are drawn in [16].  Just as for
configuration space, one may consider both the direct and hierarchical visual potentials
induced by the scale space.

The threshold parameter described for the finite-resolution case (for the orthographic
model), which sets a minimum distance between projected features in the image plane,
provides a (nearly) suitable scale parameter.  The parallel to this in the perspective model
is angular distance between projected features along the image sphere.  Other possible
definitions, examined in [16], for the scale parameter include physical size of the viewer
(in the infinite-resolution case the viewer is assumed to be a point located at a unique
viewpoint) and degree of smoothing of the object under consideration (in the infinite-
resolution case every indentation or extrusion of the object, no matter how miniscule, is
equally significant in the aspect graph).
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Using angular distance along the image sphere as the scale parameter, the scale space
aspect graph is analyzed in detail in [16] for the case of non-convex polyhedra (polygons)
in the perspective model in two dimensions.  As for finite-resolution aspect graphs,
potential critical regions arise at viewpoints from which pairs of image features are at a
distance from each other equal to the scale parameter.  Here, in addition, when the scale
value is non-zero, potential critical regions associated with feature pairs arise at
viewpoints far enough away from the object.  The analysis details how these regions
deform with changing scale value.  It is shown that an appropriate choice of scale value
must be made to obtain an aspect graph with complexity less than its infinite-resolution
counterpart.

5.2.3 Weighted Aspect Graphs

Another approach to obtaining simpler aspect graphs is found in [6].  Here the
observation probability (weight) of a point on an object feature is defined to be
proportional to that fraction of viewpoint space from which it is visible.  For example, in
the orthographic model, a point in the relative interior of the face of a cube is visible from
a hemisphere on S2.  Thus its observation probability is one-half.  The observation
probability of an object feature is proportional to the fraction of viewpoint space from
which any point on that feature is visible.  Finally, the observation probability of any
opaque view is proportional to the portion of viewpoint space from which all of its
features are visible.  Equivalently, this is the relative volume of its associated cell in the
VSP.  However, as detailed in [6], it is possible to compute the observation probability of
an opaque view without first computing the VSP.  An aspect graph node may be
associated with each opaque view, and the observation probability of that view assigned
to the node.  We can consider those views associated with observation probabilities equal
to or below a certain specified threshold as, in some sense, unimportant and remove the
associated nodes from the aspect graph, yielding a data structure of greater simplicity.

We note that the analysis of [6] assumes a model of homogeneous prior probabilities.
This implies that each viewpoint in the viewpoint space is equally likely to serve as the
viewing location.  Other models are possible, however.  It is shown in [6] that, under the
assumption of homogeneous prior probabilities, the perspective model is equivalent to the
orthographic model since all cells with finite volume in R3 will be assigned an
observation probability of zero.  Only cells with infinite volume will have non-zero
probability and, given an observation probability threshold of zero, will not be eliminated
from consideration.  But such cells are exactly those of the orthographic model.

5.3 Alternatives to Aspect Graphs

There exist various alternative structures to the aspect graph that answer the same kinds
of visibility questions that are often handled by aspect graphs.  The 3d visibility complex,
for example, can be used to encode the view from any viewpoint in the perspective
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model.  In contrast, other structures have been developed to answer more limited queries
than those handled by aspect graphs but are advantageous in that they may be less costly
to build or have smaller complexity.  The uniform tessellation of the viewpoint space
associated with a scene provides one example of this kind of alternative structure.  It can
be used to answer visibility queries of more limited types, for example those involving
questions related to the notion of conservative visibility in a densely populated outdoor
urban scene.

5.3.1 3D Visibility Complex

The set of all lines in R3 can be mapped to a four-dimensional dual space [13].  We
associate a line having direction ( ¦ § ¨ ) with the plane oriented orthogonally to that line
and passing through the origin.  If the line intersects this plane at point (u, v) then the line
maps to the dual point ( ©zª ¨'ª  u, v).  The set of lines tangent to a single convex polyhedral
object maps to a three-dimensional surface patch in this dual space.

Given a scene consisting of a collection of convex polyhedral objects, the analysis in [13]
considers the arrangement of such three-dimensional surface patches in the dual space.
The set of lines in R3 passing through a given perspective model viewpoint (each of
which can be associated with a pair of extended sight lines, oriented in opposite
directions, emanating from that viewpoint) map to a two-dimensional set of points in the
dual space.  The silhouette arrangement (section 5.1) induced by the scene with respect to
that viewpoint, which is equivalent to the transparent image when considering object
silhouette edges only, can be constructed by taking the intersection of this two-
dimensional set with the arrangement of surface patches.  This is because each point in
the set that is also on one of the surface patches represents an extended sight line that is
tangent to the polyhedron inducing that surface patch.  The silhouette of any object with
respect to the viewpoint may be determined by finding all such points of intersection with
the object’s corresponding surface patch.  The silhouette arrangement is simply the union
of these silhouettes.

Likewise, the entire transparent image induced by the scene with respect to a given
viewpoint can be constructed by taking the intersection of the two-dimensional set with
the set of four-dimensional volumes enclosed by the three-dimensional surface patches.
This is because each point in the intersection represents an extended sight line that
penetrates the interior of the polyhedron inducing the enclosing surface patch.  The image
of any object with respect to the viewpoint may be determined by finding all such points
of intersection with the volume enclosed by the object’s corresponding surface patch.

The determination of the silhouette map (section 5.1) induced by the scene with respect
to a given viewpoint, which is equivalent to the opaque image when considering object
silhouette edges only, requires a slight modification to the above scheme.  Instead of
mapping each line to a point in the dual space, one maps a set of collinear segments to
each such point [13].  Consider the set of all line segments in R3 such that the relative
interior of each segment lies entirely outside any of the objects in the scene and such that
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each segment endpoint meets the boundary of an object or else lies at infinity.  Assuming
there are n convex objects, there are potentially as many as n+1 segments collinear to any
line (Fig 34).  If this line maps to ( «z¬ ­d¬  u, v) in the dual space, then each of the colli near
segments maps to that point also.  Thus as many as n+1 distinct values may be associated
with each point in the dual space under this mapping.  Because of this, as many as n+1
branches may be encountered when, for example, traversing a one-dimensional slice in
the dual space (Fig 35).  (As a second example, this mapping appears as a collection of
surfaces on a two-dimensional slice in the dual space (Fig 36).)  From a slightly different
perspective, this is referred to in [13] as the introduction of a fifth “pseudo-dimension” in
the four-dimensional dual space.  This dual mapping of line segments is known as
the 3d visibility complex induced by the scene.

Similar to the silhouette arrangement computation, the silhouette map with respect to a
given viewpoint is determined by intersecting the 3d visibil ity complex with the two-
dimensional dual set corresponding to the collection of extended sight lines associated
with the viewpoint in R3.  The difficulty here is that the opaque image must be found by
following the correct branch at each branch point.  Thus at each branch point the relative
location of the viewpoint with respect to each object must be considered and branches
corresponding to segments meeting occluded objects must be ignored.

In a similar fashion, the entire opaque image with respect to a viewpoint can be found by
taking the intersection of the two-dimensional set with the volumes enclosed by the
surfaces of the 3d visibility complex, taking care to follow the correct branch at each such
intersection point.

Fig 34.  A set of collinear maximal line segments in R3.
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Fig 35.  The mapping of segments on a one-dimensional slice in the dual space (b) for the given
configuration of objects (a).  The mapping is locally one-dimensional for all but a finite set of points
(at which as many as n+1 branches may occur).  (From [26])

Fig 36.  The mapping of segments on a two-dimensional slice in the dual space (c) for the given
configuration of objects (a).  In (b) the mapping is ‘exploded’ so that the var ious sur faces  in (b) are
more easily seen.  (From [13])
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5.3.2 Uniform Tessellation

Rather than partitioning viewpoint space into the (irregularly shaped) regions of the VSP
it is sometimes sufficient to tessellate viewpoint space into uniform cells and to compute
a representative view for each uniform cell rather than for each VSP region.  Although it
is obviously easier to partition the viewpoint space uniformly than to compute the VSP,
the danger is that if the tessellation is not fine enough, certain views will be lost (for
example, in those cells which admit more than one view).  On the other hand, if the
tessellation is too fine, work may be duplicated as identical views are computed for cells
that would exist in the same region of the VSP.  Nevertheless, this technique often
provides a reasonable alternative to computing the VSP, and for that reason is widely
used.

The analysis in [11] considers the special case of dense configurations of large numbers
of randomly distributed objects, as are often found in outdoor urban scenes.  Here, the
perspective model viewpoint space is tessellated into uniform cells.  In addition, for each
uniform cell, the objects in the scene are classified into three categories.  Visible objects
are those for which at least a portion of the object is visible from some viewpoint within
the cell.  Strongly occluded objects are those which are completely occluded by a single
object (called a strong occluder) from any viewpoint within the cell, and moreover the
identity of the occluding object does not change as the viewpoint varies within the cell.
Weakly occluded objects are those which are completely occluded from any viewpoint
within the cell, but have no associated strong occluder.  The union of visible and weakly
occluded objects constitutes the conservative visibility set (it is worth noting here that this
definition of conservative visibility is, in fact, but one of several to be found in the
literature and that the conservative visibility set is often defined more loosely as any
superset of the set of visible objects with respect to a given cell [31]).  Instead of
determining the opaque view associated with each cell, what is actually computed in the
analysis of [11] is the conservative visibility set associated with each cell in the
tessellation.  It can be shown that in dense scenes of the type mentioned above, for any
given cell, the number of weakly occluded objects is small in comparison to the number
of strongly occluded objects.  Thus the conservative visibility set provides a reasonable
approximation to the set of visible objects from the cell.  Cohen-Or et al [11], go on to
describe an algorithm that finds the conservative visibility set for each cell and does so
much more efficiently than any known algorithm to find the set of all visible objects for
each cell.  Thus if obtaining the conservative visibility set is sufficient within some
problem domain, this algorithm provides a viable alternative to aspect graph related
algorithms.

Some auxiliary results proved in [11] are also worth mentioning.  It is shown that for
densely occluded scenes with randomly distributed objects of identical size, the
probability that an object is visible from a given cell decreases exponentially with the
number of objects that can potentially lie between it and the cell.  This latter number, in
turn, increases directly with the number of objects in the scene and the distance of the
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object from the cell.  A similar exponential relationship also holds for those objects in the
conservative visibility set associated with the cell, although here it is shown that this
relationship only holds when the size of the cell is less than the size of the object.

5.4 Miscellaneous Topics

In this survey we have restricted ourselves to scenes consisting of polyhedral objects.
However a great deal of effort has been expended on the analysis of algorithms for
computing aspect graphs induced by smooth objects with non-planar faces.  A description
that is representative of these efforts can be found in [22], which provides a brief
discussion of algorithms for the general case and then supplies a more detailed analysis
for the special case of a single solid of revolution in the orthographic model.

In the general case it is shown that there exist events corresponding to the EV- and EEE-
events with which we are familiar, and that, in addition, there are other kinds of events
which do not correspond to either of these (for example, the projections of two curved
edges becoming tangent at a common point in the relative interior of both).  It is also
shown that the three steps of computing potential critical regions, finding the view at
each region in the resulting arrangement and pruning the potential critical regions can
each be reduced to finding the roots of a system of polynomial equations.

In the particular case of a single solid of revolution it is shown in detail that
simplifications exist for the computations required at each of these three steps.  A solid of
revolution is a piecewise smooth surface generated by an algebraic curve rotated about
the z-axis.  It is shown that all views from any viewpoint on a line of latitude on S2 are
identical.  Thus all potential critical regions are also lines of latitude.  Thus the VSP in
this case is simpler than in the more general case.

In [23] an algorithm is described for finding the VSP of a collection of n disjoint spheres
where the viewpoint space is a flight path along a geodesic in S2.  The algorithm proceeds
by tracking the movements of the centers of the spheres as the flight path is traversed.

A complete implementation of a simplified algorithm to compute the aspect graph for a
convex polyhedron in the perspective model is detailed in [30].  The algorithm presented
is not optimal in time or space (both are O(n4)).  However, this work is representative of
others that describe alternative algorithms for computing VSPs which are easier to
implement than those discussed in this survey.

Finally, we mention research efforts dealing with aspect graph related issues in two
dimensions. A thorough treatment of aspect graphs induced by a single convex polygon
in the perspective model in two dimensions can be found in [19].  Also, the mathematical
theory behind a two-dimensional analog of the 3d visibility complex (section 5.3.1) is
detailed in [26].
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