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We present a novel generative model for simultaneously
recognizing and segmenting object and scene classes. Ou
model is inspired by the traditional bag of words represen-
tation of texts and images as well as a number of related = XUE
generative models, including probabilistic Latent Semati & coherentregionsfor  F. Spatial-LTM . Spatia-TM H. Spatial-LTM
AnalySiS (pLSA) and Latent D|r|chlet AIIocation (LDA) A Spatial-LTM ' initialized topics learned topics segmentation results
major drawback of the pLSA and LDA models is the as-
sumption that each patch in the image is independently gen
erated given its corresponding latent topic. While such rep
resentation provide an efficient computational method, it
lacks the power to describe the visually coherent images - ) BPNEEED
and scenes. Instead, we propose a spatially coherent la-Figure 1. (This figure must be viewed in colors) Comparison of
tent topic model (Spatial-LTM). Spatial-LTM represents an the bag of words model and our proposed model, Spatial-LTM.
image containing objects in a hierarchical way by over- Panel A shows the original input image. Panel E shows thetinpu
segmented image regions of homogeneous appearances arf§9ions to Spatial-LTM provided by a over-segmentationfoet
the salient image patches within the regions. Only one sin- P_anels B and F n Column 2 |||ustrate_the initial 'a“.-‘r.‘t tops>
gle latent topic is assigned to the image patches within each3|gnments to the image patches by either the traditionaldfag

. forcind th tial coh f th del. Thi words model (LDA) or Spatial-LTM. The circles denote theuwdb
region, entorcing the spatial coherency or the moadel. 'S words provided by local interest point detectors. Diffeérenlors

idea gives rise to the following merits of Spatial-LTM: (1) f the circles denote different latent topics of the patcand?s C
Spatial-LTM provides a unified representation for spatiall  and G in Column 3 illustrate the latent topic assignment afte
coherent bag of words topic models; (2) Spatial-LTM can models have learned the object classes. Most of the patehes o
simultaneously segment and classify objects, even in thahe human face are colored in red, indicating that the mduate
case of occlusion and multiple instances; and (3) Spatial- successfully recognized object. Finally, Panel D and H itu@m
LTM can be trained either unsupervised or supervised, as4 show the segmentation results of LDA and Spatial-LTM respe
well as when partial object labels are provided. We verify tively. One can see that by encoding the spatial coherendyeof
the success of our model in a number of segmentation and™Mage patches, Spatial-LTM achieves a much better segffenta

classification experiments. of the object.

Latent Sematic Analysis (pLSA)JLB] and Latent Dirich-
1. Introduction let Allocation (LDA) [2]) have shown much success for
text analysis and information retrieval. Inspired by this,
Understanding images and their semantic contents is ama number of computer vision works have demonstrated
important and challenging problem in computer vision. In impressive results for image analysis and classification
this work, we are especially interested in simultaneously [6, 7, 27, 11, 25, 22, 20] using the bag of words models.
learning object/scene category models and performing segSuch models are attractive due to the computational effi-
mentation on the detected objects. We present a novel genciency and their ability of representing images and objects
erative model for both unsupervised and supervised classiwith dense patches. This is achieved by an assumption in
fication. bag of words models where the spatial relationships of the
In recent years, bag of words models (e.g., probabilistic image patches or object parts are ignored. In contrastgbbje



models that explicitly encode spatial information amorgg th tation [25). Both works employ visual words for the task
parts or regions usually require formidable computational of image segmentation. However, our Spatial-LTM model
costs in inferencell2, 10, 1€], forcing these algorithms to  is fundamentally a nested new representation of the images
often represent objects with a very few number of parts.  and objects as oppose to the pLSA/LDA modelda][ Our

One should observe, however, there is a distinct differ- model generates the topic distribution at the region level
ence between image and text analysis: there are no natulnstead of the word level as i2}]. Moreover, Our work
ral visual analogues of words. In other words, text doc- treats each image as one document, wiilg freats each
uments are naturally composed of distinctive vocabulariesimage segment as one separate document. This fundamen-
while there is no such obvious word-level representation in tal difference enables us to recognize and segment occluded
images. To borrow the algorithms from text analysis, the objects, whereas Russell et &5] cannot do so.
researchers usually employ various local detectbfsg3], In summary, the contributions of Spatial-LTM are: (1)
and describe them as “visual words” that play the role of vo- Spatial-LTM provides a unified representation for spatiall
cabulary words in the bag of words model. Although mod- coherent bag of words topic models; (2) Spatial-LTM can
ern local detectors and descriptors offer powerful charact Simultaneously segment and classify objects, even in the
ization of images, the bag of visual words representation re case of occlusion and multiple instances; and (3) Spatial-
sulted from these detectors have some inherent weaknessekTM can be trained either unsupervised or supervised, as
First, detected regions on an image are often sparse, tpavinWell as when partial object labels are provided. Fifjus-
many uncovered areas of the images. When one is inter{rates Spatial-LTM's novelty by comparing the segmenta-
ested in segmentation, this kind of sparsity is detrimental tion and recognition results of an image by both the LDA
to the eventual results. Second, spatial relationshipsigmo  (0ne popular bag of words model) and Spatial-LTM.
the different parts of an image are often critical in visual ~ The rest of the paper is organized as follows: Sec#on
recognition tasks. A scrambled collection of patches from introduces a nested representation of the images, which is
a car image does not necessarily evoke the recognition of2 region-based data structure for our model. In Secijon
a car. The current bag of words representation ignores thisie develop Spatial-LTM, a novel generative model of la-

important issue, hence affecting the final accuracy of the tent topics and visual words and discuss the inference and
recognition tasks. training of this model. Note that our model is fit for both

unsupervised learning and supervised learning. Seétion

In this paper, we would like to inherit the strength of , .
the bag of words representation, and improve it by incor- shows the experimental results of Spatial-LTM under these
' two settings.

porating meaningful spatial coherency among the patches.

In traditional bag of words models, one word is assigned a . .
latent topic independently. This often results in segmenta 2. Image Representation for Spatial-LTM

tion results similar to that of Panel G in Fig.In contrast, Given an unknown and unlabeled image, Spatial-LTM
our model believes thatixels should share the the same aims to simultaneously recognize categories of objects in
latent topic assignment if they are in a neighboring region the scene as well as segment out the objects. To explicitly
with similar appearanceIn other words, the latent topics  model the spatially coherent nature of images, we enforce
assignments of the pixels in an image are spatially coherentne pixels to share the same latent topic within a homoge-
inour mOdeI, whereas they are independent of each other irheous region_ Here homogeneous region means that the pix_
the traditional bag of words model. Formally, we call our g|sin the region are similar with respect to some appearance
model thespatially coherent latent topic mogek Spatial-  feature, such as intensity, color, or texture. The visuabso
LTM for short. in the region along with the region’s overall appearance are
A number of approaches recently have looked at thein turn discriminant for object recognition. In Sectinwve
issue of simultaneous classification and segmentation. Awill show the detailed generative model that represenss thi
comparison of our work and the related works is given in hierarchical relationship between patches and regions.
Tablel. In this work, we would like to design a probabilistic As a first step of our algorithm, one starts with an ini-
framework toward general object segmentation and classifi-tial over-segmentation of an image by partitioning an im-
cation. Our model provides a way of unifying color/texture age into multiple homogeneous regions. Here we choose
features with visual words at a low computational cost. Fur- to use a segmentation algorithm proposed by Felzenszwalb
thermore, Spatial-LTM is tolerant to shape deformation and and Huttenlocherd], which incrementally merges regions
transformation without sacrificing the computational effi- of similar appearance with small minimum spanning tree
ciency to model the spatial freedom. In this way, we differ weight. This method is of nearly linear computational com-
from the shape based segmentation work€ji3], 16] and plexity in the number of neighboring pixels. In this paper
classification works in], 18, 17, 11, 5]. Our work is also ~ we use a modified version of the algorithm B] fo obtain
related to Russell et. al’'s recent work on object segmen-coherent regions of homogeneous appearance. It is worth
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Sivicet al. [27] X Vv ~ Vv Vv
Rotheret al. [24] Vv X ~ Vv vV
Todorovicet al. [28] v V4 ~ N4 V4
Russellet al. [25] Vv vV ~ Vv vV
LOCUS [31] Vv Vv ~ X X
Leibeet al. [18, 17] v V4 image label N4 V4
ObjCut [16] Vv X image label Vv X
Borensteiret al. [4, 3] Vv Vv pixel label X X
CRF [19] vV v pixel label Vv vV

=h

Table 1. Comparison of other works that combine classification amgingmtation for object recognitiont Our model is
semi-supervised learning.

it for both unsupervised and

mentioning that our model is not tied to a specific segmen- heavily occluded (see Sectiah). In addition, this way of
tation algorithm. Any method that could propose a reason- using the image segments makes our algorithm less vulnera-
able over-segmentation of the images would suit our needsble to the quality of the segmentation step comparedip [

We choose colors (ihab space) or texture featurezd] After the over-segmentation step, we represent an im-
to describe the appearance of a region. To avoid obtainingage in a region-based structure for the Spatial-LTM model.
regions larger than the objects we want to classify, we startThe appearance feature of each region is characterized by
with an over-segmentation of the images. This means wethe average of color or texture features over all the pixels
let the algorithm partition an image into rougtg ~ 50 within the region. Within each region, we find a number of
homogeneous regions. When the segments number by théhterest points by using the scale invariant saliency detec
original algorithm in P] is too small (less than 30) on an tor [15]. Each interest point is described by SIFA3[. Two
image, we constraint the algorithm by forbidding it to merge codebooks are obtained for both the interest point patches
regions larger than a threshold (we choose 3600 as thresholdor visual words) and the region appearance, with the size
for 400 x 300 images). On a computer with Intel 2.16G W andA, respectively. This is done by using unsupervised
CPU, the algorithm takes less tharf second to segment k-means clustering.
one image of the siz¢00 x 300 pixels. Fig.2 shows one Fig. 3 shows the data structure that represents an image.
example of our modified approach. For an imag€d,;, we obtainR, regions. Each region has

It is worth noting that our segmentation step serves a ©ne homogeneous appearance featyreand a set of of
fundamentally different role compared to the segmentation Visual wordsw;., wherel < i < M,. Notea, andw;. take
in [25]. In [25], segments of the images are treated as sepa-discrete values of1,2, ..., A} and{1,2, ..., W} according
rate documents. Each segment is assumed to be a potenti&p the respective codebook. We denote all the words within
objectin its entirety. In our case, we use the over-segndente the region as a vectow, = {w;,wy, ..., w}"}.
pieces as building blocks for the hierarchical model. Our

representation allows further integration of these sedsnen Region Region Region
such that our algorithm could recognize objects that are
Image Id r=1 r=2 r=Rd
E ar wr - -
Figure 2. Example image to illustrate regions of homogeseou appearance visual words

appearance. Left: original image. Center: segmentatiothey  Figure 3. The region-based image representation for $pithd.
original algorithm P]. Right: segmentation by our modified al- The image is partitioned int&, regions, each region has one
gorithm. Over-segmentation of an image is desirable foti§lpa ~ homogeneous appearance featureand a set of of visual words
LTM because regions can easily be merged into the same topicwy, wherel <i < M.

during learning.



3. The Generative Model of Spatial-LTM z,’s for each image. For the classification task, a new image

. . . . is classified as objeét* if
In this section, we introduce the Spatial-LTM model and

compare its difference with the traditional LDA model. We k* = arg max 0q(k) (3)

will also discuss how to learn the parameters for Spatial- 1sksK

LTM in section3.1 To make the presentation clearer, we For the segmentation task, we label the regiowith P

first consider Spatial-LTM in the unsupervised scenario and sych that

then generalize it to the supervised version in secti@n zF = argmax Pr(a,, w,|2,) (4)
Given an imagel; and its partitioned regions = Er

1,2, ..., Rq, We uselatent topicz, to represent the labels ~The regions with the specific: constitute the interested ob-

of regionr. Such label represents category identities of dif- ject.

ferent objects, e.g., animals, grass, cars, backgrount, an  In practice it is intractable to maximiz& directly due to

etc. Suppose there afétopics within the image collection, ~the coupling between hidden variablgsy, 5. To estimate

then for each region;,. = 1,2, ..., K. For the segmentation the parameters and hidden states, we employ variational in-

task, we need to infer latent topig for each region and  ference methodslf, 29] to maximize the lowerbound af.

group all the regions with the samg into one object. For To make the expression more compact, we employ the

the classification task, we choose the latent topic with the Notation as in29. We denote the visible nodes in Fig.

: o - (w,a) as'V and the invisible node(6, o, 3) asH. To
highest probability as the category label of the image. approximate the true posterior distributiBiiH| V), we in-

Our generative model behaves as following: first we yoq,ce the variational distributio(H). We obtain the
draw a distribution of topics for each imadig represented 5riational lowerbound for the likelihood

by 8,. As in [2], the prior distribution of, is described by

a Dirichlet distribution with parametex. Givené,, we se- InL = Z QH)In w}’lv) + KL(Q|P)

lect a topicz,. for each region in the image. Given region H Q(H)

and its corresponding., we choose the overall appearance >3 Q(H)In Pr(H, V) _ Lo )
of the region (either color or texture) according to a distri e Q(H)

bution governed bw. Finally, for each of thel/,. patches
within the region-, we draw a visual codeword to represent
the patch according to the topic distributi@nFig. 4(a) and

whereK L(Q|P) > 0 is the Kullback-Leibler divergence.

(b) compares the different graphical model representation
of LDA and Spatial-LTM for unsupervised learning. j
The joint distribution of{a,., w,., 2.} given an imagd QOO W - CE%K
can be written as o
@)
Pr(ar,wr,zr|/\,a,ﬁ) (1)
o @
= Pr(04|\) Pr(z.|0)Pr(a,|z,, a) H Pr(wt |z, ) - ok
1 @>-b@ @
A W<
whereq, § are parameters describing the probability of gen- . b =
erating appearance and visual words given the topic, respec (o)
tively. Pr(z,|0) is a Multinomial distribution and®r(6|\)
is a K -dimensional Dirichlet distribution. c
Then the likelihood of a single image for Spatial-LTM is S a < @ADK
orod
¥ — s
L4 =log / d0q [ | Dir(0alX) Pr(ar, w.|a, B, 04) ) | i
r=1
Rg (0)
= log/dad H Z Dir(0a|X) Pr(ar, wr, zr|0a, o, B) Figure 4. Graphical model representation of Spatial-LTM #re

r=1 z,p

comparison with a traditional bag of words mode LDA. (a) La-
tent Dirichlet Allocation model (LDA). (b) Unsupervised &al-

In the training step, we maximize the total likelihood of LTM. (c) Supervised Spatial-LTM. The cyan and the red frames
the training image& = ZdD:1 L4 subject to all the model  denote groups of visual words and homogeneous regiongaesp
variables\, a, # andz,.. In the testing step, the learnada tively. The shaded circles stand for the observations fioenim-
are fixed. We need only to estimate the paraméjesind age, while the others are variables to be inferred.



Maximizing £ is intractable, we therefore choose to There are two possible ways of introducing user super-
maximize L to approximately estimate the parameters. vision. One way is to provide a category label for each
In Section3.1 we introduce the framework of Winn and image. Such supervision information is important for an-
Bishop’s Variational Message Passing (VMP) for our varia- alyzing complex scene§]. For example, users can assign

tional estimation29]. a “beach” or “kitchen” category label to one image. In this
_ case, an additional categorical label is given to the entire
3.1. Model Inference using VMP image (Fig4(b)) as oppose to the object categorization case

where latent topics for each region represent the categjoric
label (Fig4(c)).
To incorporate this information of image categories, we

[1, Qi(H,), in a conjugate-exponential modieWinn and add a new node in the graphical model for each image.
Bishop shows that the variational estimation for each nodeEach possible value efcorresponds to a distribution over
can be obtained by iteratively passing messages betweeff€ t©OPicsd, which now becomes & x K matrix. Each

nodes in the network and updating posterior beliefs using W of this matrix denotes a Dirichlet distribution@®fiven
local operationsgd]. categorye. Fig.4 (c) shows the graphical model representa-

Note the parents and children of nodas pa; andch; tion of Spatial-LTM with category labels. To learn the su-
respectively, we can obtain pervised Spatial-LTM, we can still use VMP for inference.
Most of the inferring steps are similar with its unsuperdise

Qi (H;) = <InP(Hilpa;) > qm,) + (6) counterpart. Only the update equations for theode are

S° < InP(Hylpar) > g, +const slightly modified.
kech;

In this section we discuss how to maximize the varia-
tional lower boundlg. Suppose we could factorize the
variational distribution in the following form:Q(H) =

Ry
which can be solved by passing variational message be- '** ~ O (O)er = e =)o — 1)+ ;5(zr’k) +1, (14

tween neighboring nodeg9).
Following the VMP framework, we can obtain the varia- i K
tional estimation for node, as: E[Q"] = EnOkly] = ¥(ver) — ¥ _vex)  (15)
k=1

Eln Pr(z, = k)] = 0k +In Pr(ar|zr) + Zln Pr(w;lz), (7)o estimate the class label of each image, we choose the
! category label with the highest probability.
To update node,, one can fit a Dirichlet distribution with

6 by maximize likelihood estimatior2[l]. For other nodes, ¢’ = arg max 1] Pr(a, w.l6.) (16)

the update equations are rely
By =W(m) — ¥(Ti, ) (8) Another way of introducing supervision is to provide
Elnpg] = 9(u,)— ‘I’(wal fiw) 9) some of the topic labels and position of the objects. Given

the position of an objectin one image, we can assign the ob-
ject label to the corresponding topig if regionr belongs

to the given object. To learn the model with partially known
zr, We treat the nodes of the given as visible nodes and

Ellnal =) — U (X2, v) (10)

whereV is a digamma function and

Ve = Ayt Zf:dl 0(zr, k) (11) do not update the corresponding parameters.
o = er Num(w,) + 13 (12) _
ve =Y. Num(a,)+ 1 13) 4 Experimental Results

Here we omit the details due to the space limit. The reader®-1- Unsupervised Spatial-LTM

may refer to P9 for detailed explanation. We first apply the Spatial-LTM algorithm to automati-
. . cally extract horses and cows, using the Weizmann dataset
3.2. Supervised Spatial-LTM (327 horses, 4]) and the Microsoft object recognition
Till now we have been discussing how to learn the dataset (182 cows,3[]). Note that our method differs
Spatial-LTM without supervision. As most generative mod- from [16] and [4] since both of their methods require hu-

els, Spatial-LMT also enjoys the flexibility of handling bot ~man labels of the training images. The only unsupervised
labeled and unlabeled data. algorithm on horse databases is LOCWE3][ LOCUS is a

1the distributions of variables conditioned on their paseaite drawn shapg-based method. It therefo.re rngres a”. the horses in
from the exponential family and are conjugate with respe¢he distribu- the pictures to face the same d_|rect|0n. SpatlaI-LTM dqes
tion over these parent variables. not need to make such assumptions. The Microsoft cow is a
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Figure 6.Segmentation and classification results of the Caltechéctbj
database. The four foreground classes of objects (airglanirad, motor-
bike, and face) are shown in different color masks.

Overall classigcation precision: 66.4%
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Figure 5.Segmentation and classification results of horses and coies. insidecity | 4 | 2 U 65 R2R [R4RINaR|i70) ReN|N5
regions in red color are the segmentations of the animals. ré&gions of steet | 115,21 1 3|10]72) 4
other colors stand for three classes of backgrounds. Thelashows that ) tllbulidly | 2 |6 e vl elsln
our method can find the object in inverted direction and ursitgmificant Figure 7.Confusion matrix of classifying 13 classes of scene images.
occlusion. The rows denote true label and the columns denote estinettet IAll the
numbers stand for the percentage number.
more challenging dataset, where the animals face three dif- ) )
ferent directions (left, right, front). In addition, someve  Inferred from the images as in E)(We compare the clas-
pictures also contain multiple instances and significant oc Sification performance of Spatial-LTM and the pLSA model
clusions. used in R7]. Our performance is measured by the aver-

age of classification precision for each class. The Spatial-
ET™M model obtains a classification precisiond#.6%, bet-
ter than the results obtained by the pLSA algoritt&8%)

We obtain an average segmentation accurac§1a8%
on the horse dataset. This is measured by the percentag

of pixels in agreement with the ground truth segmentation. h forming th Iassificati qditi
We cannot measure quantitatively the segmentation resultdV€n performing the 5-way classification. In addition, our
method is capable of segmenting out the objects from the

for the cow images due to the lack of ground-truth of this | i
dataset. However, Figi shows Spatial-LTM can success- Mmages whereas pLSAf] cannot do so (see examples in
fully recognize the cows facing different directions andrmev Fig.6).
under significant occlusions. Moreover, we test our algo- . .
rithm Wit?w images in which the horses are inverted or gc- 4.2. Supervised Spatial-LTM
cluded by vertical bars (last row in Fif). Our results show We illustrate the results of Spatial-LTM with supervised
that our algorithm can handle such situations. LOCUS on |earning in two different experiments. The first experiment
the other hand cannot recognize horses facing opposite diuses the scene datasé}, which contains 13 classes of na-
rections, or under such occlusions. ture scenes. For each category, we randomly select 100
We next test the Spatial-LTM on the Caltech 5 dataset images with their category labels for training the model in
(four objects and one background). Figgives examples of  Fig. 4(b). For this data set we set the number of topig&ito
unsupervised segmentation results. Spatial-LTM alsc clas and the number of categories 18. In testing, we use the
sifies the images according to the object category they con-trained model to concurrently classify and segment the im-
tain. This is done by selecting the most probable latenttopi ages. Fig7 shows the confusion table of the classification



Overall classification precision: 69.4%
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Figure 8.Segmentation results of the scene imaggs[The topics of 5 2 imIR  m— 5242 smazﬁaé

regions are represented by different colors, superimposetie original .
image. Figure 9.Confusion matrix for the classification of 28 classes from th
Caltech101 databasé@][ Each row denotes ground-true label of the object
class. And each column denotes class label predicted by tialmAll

the numbers stand for the percentage number. The overa8ifitation
precision is obtained by average the diagonal entries afdh&usion table.

result. Spatial-LTM obtains an overall classification prec
sion 0f66.4%, comparable with the results i][(65.2%).
We also conduct the segmentation for the scene images. 1
Note that this task is harder compared with segmentation

of the horses/cows database or Caltech5 database, since the By
scene images are cluttered with different types of objects.
Fig. 7 shows some of the examples of the segmentation re-
sults.

Average segmentation accuracy:0.67

=
o

e
<

As discussed in Sectio® 2, Spatial-LTM can also train
with partially labeled latent topics. In this experimeng w
select28 classes of objects among the subset of categories
that contain more tha0 images from the Caltech101 .l
dataset §] to illustrate our results. These categories con-
tain objects with jagged boundaries (e.g. sunflower), thin TE5Eg=838s
regions (e.g. flamingo), or peripheral structures (e.g.).cup
For each class, we randomly sel@6timages for training Figure 10.Segmentation accuracy of for the 28 classes from the Cal-
and30 images for testing. In training, we use the knowledge tech101 databasé]f Thg hor|29nta| axis shows the abbrew_ated names of

. . each class and the vertical axis represents the segmengatioracy. The
that the foreground object in each category has a known assick bars stand for the average accuracy for each classharttiin bars
signment (groundtruth mask annotated by human subjects)are the standard deviation of the accuracy within each class
We choose@s topics for describing the object classes, énd
more topics for the background. Note that only ¥3core- )
ground topics are labeled during training. THeackground - Conclusion
classes are left unlabeled. Given a new image, the most
probable latent topié is selected as the category label of
the object. The union of regions wherg = k provide the
segmentation result of the object given by By.(It takes
less than 10 seconds to classify and segment a new imag
including computing the local descriptors and preparirgg th
region-based over-segmentation.

segmentation accuracy
o
5

T T
2958588828
TFs 23589538858

uik

In this paper, we propose a novel model Spatial-LTM
for object segmentation and classification. Our model aims
to close the gap between bag of words models and image
analysis. By considering neighboring appearance of local
edescriptors, Spatial-LTM exceeds the bag of words model
with satisfactory segmentation ability as well as bettas€l
sification performance.

To the best of our knowledge, we are the first one to
provide both the segmentation and classification results O”Acknowledgement
nearly 30 classes of objects. Figand Fig.10 show the
confusion table of the classification and the segmentationWe would like to thank Silvio Savarese, Sinisa Todorovic
accuracy, respectively. The extensive segmentationtsesul and anonymous reviewers for helpful comments. L.F-Fis
in Fig. 11 and Fig.12 validates the success of our method. supported by Microsoft Research New Faculty Fellowship.



Figure 11.Examples of the object segmentation results for some of gheldses from the Caltech101 databae Note our method can also provide
the class label of the segmented object. For each tripldteoékxamples, we first show the original testing image. Thallaithage shows the foreground
object in white color and the background topics in black. Amellast image shows the segmented object free of background

Figure 12 More segmentation results for some of the Caltech101 objasses.
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