
Tinne Tuytelaars
Tutorial ECCV 2006
May 7th, 2006
Overview

Local Invariant Features: What? Why?
- Introduction
- Overview of existing detectors
- Quantitative and qualitative comparison

Local Invariant Features: When? How?
- Feature descriptors
- Applications
- Conclusions
Overview

Local Invariant Features: What? Why?
- Introduction
- Overview of existing detectors
- Quantitative and qualitative comparison

Local Invariant Features: When? How?
- Feature descriptors
- Applications
- Conclusions
Introduction

Wide baseline matching
Introduction

Recognition of specific objects

Rothganger et al. ‘03

Lowe et al. ‘02

Ferrari et al. ‘04
Introduction

Object class recognition
So what’s the novelty?

Local character
History of interest point detectors goes a long way back…

- Corner detectors
- Blob detectors
- Edgel detectors
So what’s the novelty?

Local invariant features: a new paradigm

- Not just a method to select interesting locations in the image, or to speed up analysis
- But rather a new image representation, that allows to describe the objects / parts without the need for segmentation
Properties of the ideal feature

Local: features are local, so robust to occlusion and clutter (no prior segmentation)

Invariant (or covariant)

Robust: noise, blur, discretization, compression, etc. do not have a big impact on the feature

Distinctive: individual features can be matched to a large database of objects

Quantity: many features can be generated for even small objects

Accurate: precise localization

Efficient: close to real-time performance
The need for invariance
Terminology: Invariant or Covariant?

When a transformation is applied to an image, an invariant measure remains unchanged. A covariant measure changes in a way consistent with the image transformation.

Terminology: ‘detector’ or ‘extractor’
Geometric transformations

Translation
Euclidean (translation + rotation)
Similarity (transl. + rotation + scale)
Affine transformations
Projective transformations

Only holds for planar patches!
Photometric transformations

Modelled as a linear transformation:
scaling + offset
Disturbances

Noise
Image blur
Discretization errors
Compression artefacts
Deviations from the mathematical model (non-linearities, non-planarities, etc.)
Intra-class variations
How to cope with transformations?

Exhaustive search
Invariance
Robustness
Exhaustive search

Multi-scale approach
Exhaustive search

Multi-scale approach
Exhaustive search

Multi-scale approach
Exhaustive search

Multi-scale approach
Invariance

Extract patch from each image individually
Invariance

Integration, e.g.
- moment invariants, ...

Heuristics, e.g.
- Difference of intensity values for photom. offset
- Ratio of intensity values for photom. scalefactor

Selection and normalization, e.g.
- Automatic scale selection (Lindeberg et al., 1996)
- Orientation assignment
- Affine normalization (‘deskewing’)

...
Automatic scale selection

Lindeberg et al., 1996
Automatic scale selection

Function responses for increasing scale
Scale trace (signature)

\[f(I_{1,\ldots,\sigma}(x,\sigma)) \]
Automatic scale selection

Function responses for increasing scale
Scale trace (signature)
Automatic scale selection

Function responses for increasing scale
Scale trace (signature)

\[f(I_{t_1...t_m}(x, \sigma)) \]
Automatic scale selection

Function responses for increasing scale
Scale trace (signature)
Automatic scale selection

Function responses for increasing scale
Scale trace (signature)

\[f(I_{L..I_{\text{max}}}(x, \sigma)) \]
Automatic scale selection

Function responses for increasing scale
Scale trace (signature)
Automatic scale selection

Function responses for increasing scale
Scale trace (signature)
Automatic scale selection

Function responses for increasing scale
Scale trace (signature)

\[f(I_{i_1...i_m}(x, \sigma)) \]

\[f(I_{i_1...i_m}(x', \sigma)) \]
Automatic scale selection

Function responses for increasing scale
Scale trace (signature)
Automatic scale selection

Function responses for increasing scale

Scale trace (signature)

\[f(I_{i_1, i_m}(x, \sigma)) \]

\[f(I_{i_1, i_m}(x', \sigma)) \]
Automatic scale selection

Function responses for increasing scale
Scale trace (signature)
Automatic scale selection

Function responses for increasing scale
Scale trace (signature)
Automatic scale selection

Function responses for increasing scale
Scale trace (signature)

\[f\left(I_{i_1...i_m}(x, \sigma)\right) \]

\[f\left(I_{i_1...i_m}(x', \sigma')\right) \]
Automatic scale selection

Normalize: rescale to fixed size
Orientation assignment

Lowe, SIFT, 1999

Compute orientation histogram
Select dominant orientation
Normalize: rotate to fixed orientation
Affine normalization (‘deskewing’)
Overview

Local Invariant Features: What? Why?
- Introduction
- Overview of existing detectors
- Quantitative and qualitative comparison

Local Invariant Features: When? How?
- Feature descriptors
- Applications
- Conclusions
Overview of existing detectors

Hessian & Harris
Lowe: DoG
Mikolajczyk & Schmid:
 Hessian/Harris-Laplacian/Affine
Tuytelaars & Van Gool: EBR and IBR
Matas: MSER
Kadir & Brady: Salient Regions
Others
Overview of existing detectors

Hessian & Harris
Lowe: DoG
Mikolajczyk & Schmid:
 Hessian/Harris-Laplacian/Affine
Tuytelaars & Van Gool: EBR and IBR
Matas: MSER
Kadir & Brady: Salient Regions
Others
Hessian detector (Beaudet, 1978)

Hessian determinant

\[
Hessian(I) = \begin{bmatrix}
I_{xx} & I_{xy} \\
I_{xy} & I_{yy}
\end{bmatrix}
\]

\[
det(Hessian(I)) = I_{xx} I_{yy} - I_{xy}^2
\]
Hessian (Beaudet, 1978)
Harris detector (Harris, 1988)

Second moment matrix / autocorrelation matrix

\[
\mu(\sigma_I, \sigma_D) = g(\sigma_I)^* \begin{bmatrix}
I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\
I_x I_y(\sigma_D) & I_y^2(\sigma_D)
\end{bmatrix}
\]

1. Image derivatives
\[g_x(\sigma_D), g_y(\sigma_D),\]
Harris detector (Harris, 1988)

Second moment matrix / autocorrelation matrix

$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) \ast \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

1. Image derivatives
$$g_x(\sigma_D), g_y(\sigma_D),$$

2. Square of derivatives
Harris detector (Harris, 1988)

Second moment matrix / autocorrelation matrix

\[\mu(\sigma_I, \sigma_D) = g(\sigma_I)^* \begin{bmatrix} I_x^2(\sigma_D) & I_xI_y(\sigma_D) \\ I_xI_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix} \]

1. Image derivatives
2. Square of derivatives
3. Gaussian filter \(g(\sigma_I) \)
Harris detector (Harris, 1988)

Second moment matrix
autocorrelation matrix

1. Image derivatives
2. Square of derivatives
3. Gaussian filter \(g(\sigma_I) \)

4. Cornerness function – both eigenvalues are strong
\[\text{har} = \det[\mu(\sigma_I, \sigma_D)] - \alpha[\text{trace}(\mu(\sigma_I, \sigma_D))] = \]
\[g(I_x^2) g(I_y^2) - [g(I_x I_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2 \]

5. Non-maxima suppression
Harris detector (Harris, 1988)
Overview of existing detectors

- Hessian & Harris
- **Lowe: DoG**
- Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine
- Tuytelaars & Van Gool: EBR and IBR
- Matas: MSER
- Kadir & Brady: Salient Regions
- Others
Scale invariant detectors

Laplacian of Gaussian

Local maxima in scale space of Laplacian of Gaussian LoG

\[L_{xx}(\sigma) + L_{yy}(\sigma) \rightarrow \sigma \]

list of \((x, y, \sigma)\)
Scale invariant detectors
Laplacean of Gaussian
Lowe’s DoG

Difference of Gaussians as approximation of the Laplacian of Gaussian

\[\text{Difference of Gaussians} = \text{Laplacian of Gaussian} \]
Lowe’s DoG

Difference of Gaussians as approximation of the Laplacian of Gaussian

\[\sigma = 2^{\frac{1}{4}} \]

Sampling with step \(\sigma' = 2 \)
list of (x, y, σ)
Lowe’s DoG
Appreciation

scale-invariant

😊 simple, efficient scheme

恓(minutesLOB) laplacian fires more on edges than
determinant of hessian
Overview of existing detectors

Hessian & Harris
Lowe: DoG
Mikolajczyk & Schmid:
 Hessian/Harris-Laplacian/Affine
Tuytelaars & Van Gool: EBR and IBR
Matas: MSER
Kadir & Brady: Salient Regions
Others
Mikolajczyk & Schmid

Harris Laplace
Hessian Laplace
Harris Affine
Hessian Affine
Mikolajczyk: Harris Laplace

1. Initialization:
 Multiscale Harris corner detection

Computing Harris function Detecting local maxima
Mikolajczyk: Harris Laplace

1. Initialization: Multiscale Harris corner detection
2. Scale selection based on Laplacian

Harris points

Harris-Laplace points
Mikolajczyk: Harris Affine

Initialization with Harris Laplace
Estimate shape based on second moment matrix
Using normalization / deskewing
Iterative algorithm
Mikolajczyk: Harris Affine

1. Detect multi-scale Harris points
2. Automatically select the scales
3. Adapt affine shape based on second order moment matrix
4. Refine point location
Harris Affine
Hessian Affine
Appreciation

Scale or affine invariant
Detects blob- and corner-like structures
- large number of regions
- well suited for object class recognition
- less accurate than some competitors
Overview of existing detectors

Lowe: DoG
Lindeberg: scale selection
Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine
Tuytelaars & Van Gool: EBR and IBR
Matas: MSER
Kadir & Brady: Salient Regions
Others
Tuytelaars: edge-based regions

1. Select Harris corners
Tuytelaars: edge-based regions

1. Select Harris corners
2. Find Canny edges
1. Select Harris corners
2. Find Canny edges
3. Evaluate relative affine invariant parameter along edges

\[l_i = \int \text{abs}(|p_i^{(1)}(s_i)|, p - p_i(s_i)|)ds_i \]
1. Select Harris corners
2. Find Canny edges
3. Evaluate relative affine invariant parameter along edges
4. Construct 1-dimensional family of parallelograms
Tuytelaars: edge-based regions

1. Select Harris corners
2. Find Canny edges
3. Evaluate relative affine invariant parameter along edges
4. Construct 1-dimensional family of parallelograms
5. Select parallelogram based on local extrema of invariant function

\[f(\Omega) = \frac{|p_1 - p_p|}{|p = p_1|} \frac{|p_2 - p_p|}{\sqrt{M_{00} M_{00} - M_{00} M_{00}}} \]

\[P_g = \left(\frac{M_{10}}{M_{00}}, \frac{M_{10}}{M_{00}} \right) \]

\[M_{pq}^a = \int [I(x, y)]^a x^p y^q dxdy \]
Tuytelaars: edge-based regions

Variant for straight lines...
Edge-based regions
Edge-based regions
Appreciation

Affine invariant

Detects corner-like structures

- Works well in structured scenes
- Doesn’t cross edges/object contours
- Depends on presence of edges
Tuytelaars: intensity-based regions

1. Select intensity extrema
2. Consider intensity profile along rays
3. Select maximum of invariant function $f(t)$ along each ray
4. Connect all local maxima
5. Fit an ellipse

$$f(t) = \frac{\text{abs}(I_0 - I)}{\max\left(\int \text{abs}(I_0 - I)dt, d\right)}$$
Intensity-based regions
Appreciation

Affine invariant
Detects ‘blob’-like structures

- Accurate regions
- Especially good on printed material
Overview of existing detectors

Lowe: DoG
Lindeberg: scale selection
Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine
Tuytelaars & Van Gool: EBR and IBR
Matas: MSER
Kadir & Brady: Salient Regions
Others
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Matas: Maximally Stable Extremal Regions (MSERs)

Based on watershed algorithm
Extremal region: region such that

\[\forall p \in Q, \forall q \in \delta Q: I(p) > I(q) \]
\[I(p) < I(q) \]

Order regions

\[Q_1 \subset ... \subset Q_i \subset Q_{i+1} \subset ... Q_n \]

Maximally Stable Extremal Region: local minimum of

\[q(i) = |Q_{i+\Delta} \setminus Q_{i-\Delta} \cup Q_i | \]
Maximally Stable Extremal Regions
Appreciation

Affine invariant
Detects blob-like structures

- Simple, efficient scheme
- High repeatability
- Fires on similar features as IBR
 (regions need not be convex, but need to be closed)
- Sensitive to image blur
Overview of existing detectors

- Lowe: DoG
- Lindeberg: scale selection
- Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine
- Tuytelaars & Van Gool: EBR and IBR
- Matas: MSER
- Kadir & Brady: Salient Regions
- Others
Kadir & Brady’s salient regions

Based on entropy
Kadir & Brady’s salient regions

Maxima in entropy, combined with inter-scale saliency

Extended to affine invariance
Salient regions
Appreciation

Scale or affine invariant
Detects blob-like structures
- very good for object class recognition
- limited number of regions
- slow to extract
Overview of existing detectors

Lowe: DoG
Lindeberg: scale selection
Mikolajczyk & Schmid:
 Hessian/Harris-Laplacian/Affine
Tuytelaars & Van Gool: EBR and IBR
Matas: MSER
Kadir & Brady: Salient Regions
Others
Other feature detectors

Edge-based detectors
- Jurie et al., Mikolajczyk et al., …

Combinations of small-scale features
- Brown & Lowe

Vertical line segments
- Goedeme et al.

Speeded-Up Robust Features (SURF)
- Bay et al.
Overview

Local Invariant Features: What? Why?

- Introduction
- Overview of existing detectors
- Quantitative and qualitative comparison

Local Invariant Features: When? How?

- Feature descriptors
- Applications
- Conclusions
Quantitative comparisons

Evaluation of interest points (Schmid & Mohr, ICCV98)
Evaluation of descriptors (Mikolajczyk & Schmid, CVPR03)
Evaluation of affine invariant features (Mikolajczyk et al., PAMI05)
Evaluation on 3D objects (Moreels & Perona, ICCV05)
Evaluation on 3D objects (Fraundorfer & Bischof, ICCV05)
Evaluation in the context of object class recognition (Mikolajczyk et al., ICCV05)
Evaluation criteria: repeatability

Repeatability rate: percentage of corresponding points

\[
\text{repeatability} = \frac{\# \text{correspondences}}{\# \text{detected}} \cdot 100\%
\]
Evaluation criteria: repeatability

Repeatability rate: percentage of corresponding points

repeatability = \frac{\#\text{correspondences}}{\#\text{detected}} \cdot 100\%

#correspondences = 3
#detected = 5
Repeatability=60%
Evaluation criteria: repeatability

Repeatability rate: percentage of corresponding points

A homography → B
Evaluation criteria: repeatability

Repeatability rate: percentage of corresponding points

Two points are corresponding if\[\frac{A \cap B}{A \cup B} > T\]

Two points are corresponding if \(T=60\%\)
Repeatability
Quantitative evaluation

Repeatability often lower than 50%
Performance often depends on scene type, different detectors are complementary
Number of detected features varies greatly
Accuracy of detected features varies
Performance depends on application
Speed
Qualitative Comparison

Difficult to declare a ‘winner’

Different methods are complementary

‘Best features’ depends on application:
 - Level of invariance needed
 - Number/density of features wanted
 - Typical scene types
 - Accuracy of features
 - Generalization power of features
 - …
BREAK
Overview

Local Invariant Features: What? Why?
- Introduction
- Overview of existing detectors
- Quantitative and qualitative comparison

Local Invariant Features: When? How?
- Feature descriptors
- Applications
- Conclusions
The ideal feature descriptor

Repeatable (invariant/robust)
Distinctive
Compact
Efficient
Normalized crosscorrelation

\[NCC = \frac{\sum_{x=-N}^{N} \sum_{y=-N}^{N} (I_1(x, y) - \overline{I}_1)(I_2(x, y) - \overline{I}_2)}{\sqrt{\sum_{x=-N}^{N} \sum_{y=-N}^{N} (I_1(x, y) - \overline{I}_1)^2 \sum_{x=-N}^{N} \sum_{y=-N}^{N} (I_2(x, y) - \overline{I}_2)^2}} \]

After 'deskewing' the region:
SIFT descriptor

Orientation assignment
Distribution-based
Focusing on image gradients
SIFT descriptor
Others

Steerable filters, moment invariants, local jet, complex filters, shape contexts, PCA-SIFT, GLOH, HOG, SURF
Distance measures

Euclidean distance

Mahalanobis distance

\[d_M = \sqrt{(x - x')^T C^{-1} (x - x')} \]
Overview

Local Invariant Features: What? Why?
- Introduction
- Overview of existing detectors
- Quantitative and qualitative comparison

Local Invariant Features: When? How?
- Feature descriptors
- Applications
- Conclusions
Applications

Wide baseline matching
Recognition of specific objects
Recognition of object classes
Applications

Wide baseline matching
Recognition of specific objects
Recognition of object classes
Wide baseline matching
Wide baseline matching

Extract features in each image
Compute feature descriptors
Find correspondences
 - Matching strategy
Check consistency – filter out mismatches
 (Refined matching)
Wide baseline matching

Which features to use?

- Affine invariant features if large viewpoint changes are expected (>30 degrees)
- Accurate features
- Limited number of good matches > large number of medium quality matches
- Take into account typical image content (blobs/corners/prints/…)

MSER, IBR, EBR, …
Matching strategy

Match to nearest neighbour
Match to nearest neighbour if distance below a threshold
Match to nearest neighbour if much closer than second-best match (Lowe, 1999)

Possibly match in both directions
Consistency checks

Global constraints
- Epipolar geometry (ransac)
- Homography (ransac)

Semi-local constraints
- (Same neighboring regions) (Schmid, 1998)
- Geometric constraints (Tuytelaars & Van Gool, 2000)
- (Topologic constraints) (Ferrari et al., 2004)
- Photometric constraints

\[
\begin{vmatrix}
 a_{23} - b_{23} & b_{13} - a_{13} \\
 a_{22} - b_{22} & b_{12} - a_{12} \\
 a_{21} - b_{21} & b_{11} - a_{11}
\end{vmatrix}
\]
Refined matching

Search only along epipolar lines
Construct additional matches (Ferrari et al., 2004)
Wide baseline matching
Wide baseline matching
Applications

Wide baseline matching
Recognition of specific objects
Recognition of object classes
Recognition of specific objects

Object recognition can be cast as feature matching problem
Recognition of specific objects

Training:
- Extract features in each model image
- Compute feature descriptors
- Store in database
 - Efficient search structures

Testing:
- Extract features
- Compute feature descriptors
- Match features to database
- Count number of votes

Post-processing (Lowe, 1999; Rothganger & Ponce, 2003; Ferrari et al., 2004)
Recognition of specific objects

Which features to use?

- Affine invariant features if large viewpoint changes are expected (>30 degrees)
- Level of invariance needed depends on number of model images
- Features need to be distinctive: risk for false matches is much larger
- At least a few good matches (if time for post-processing is not an issue)
- Take into account typical image content (blobs/corners/prints/...)

MSER, IBR, EBR, DoG, Harris/Hessian-Laplace/Affine
Image Retrieval

Efficient matching to a database of images

- Kd-tree
- Best bin first (Lowe, 1999)
- Visual vocabulary & inverted files (Sivic & Zisserman, 2003)
Kd-tree

Split longer dimension near data median
Kd-tree
Best bin first

Kd-tree less effective in high-dimensional spaces.
Examine only the N closest bins of the kd-tree
Recognition of specific objects

Postprocessing:

- Hough-like scheme
- 3D model
- Image exploration
Recognition of specific objects

Postprocessing:

- Hough-like scheme
- 3D model
- Image exploration
Recognition of specific objects

Postprocessing:

- Hough-like scheme
- 3D model
- Image exploration
Applications

Wide baseline matching
Recognition of specific objects
Recognition of object classes
Recognition of object classes

<table>
<thead>
<tr>
<th>Motorbikes</th>
<th>Airplanes</th>
<th>Faces</th>
<th>Cars (Side)</th>
<th>Cars (Rear)</th>
<th>Spotted Cats</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recognition of object classes

Training

Extract local features

Compute feature descriptors

Cluster features in object parts / codebooks / visual words

Build model with
- Constellation model (Fergus & Zisserman, 2001)
- Implicit shape model (Leibe & Schiele, 2003)
- Bag-of-visual-words (Csurka et al., 2004)

Train classifier
Recognition of object classes

Which features to use?

- Scale invariant features
- Robust features
- Large number of features (depends on model used)
- Accuracy not important

Salient Regions, Harris/Hessian-Laplace
Recognition of object classes

Clustering features into ‘visual words’

- K-means
- Jurie & Triggs, ICCV05
Recognition of object classes

Bag-of-visual-words image representation:
Other applications

- Image mosaicking
- Mobile robot navigation
- Scene classification
- Texture classification
- Video data mining
- Object discovery
- 3D reconstruction
- ...

Overview

Local Invariant Features: What? Why?
- Introduction
- Overview of existing detectors
- Quantitative and qualitative comparison

Local Invariant Features: When? How?
- Feature descriptors
- Applications
- Conclusions
Do’s and Don’ts

DO

- Think about the right level of invariance
- Rely on statistics

DO NOT

- Expect wonders
- Rely on a single local feature
- Evaluate methods based on a single image
Questions?

Tinne.Tuytelaars@esat.kuleuven.be
http://homes.esat.kuleuven.be/~tuytelaa/ECCV06tutorial.html

http://www.robots.ox.ac.uk/~vgg/research/affine