Local Invariant Features: What? Why? When? How?

Tinne Tuytelaars
Tutorial ECCV 2006
May 7th, 2006

Overview

Local Invariant Features: What? Why?

- Introduction
- Overview of existing detectors
- Quantitative and qualitative comparison

Local Invariant Features: When? How?

- Feature descriptors
- Applications
- Conclusions

Overview

Local Invariant Features: What? Why?

- Introduction
- Overview of existing detectors
- Quantitative and qualitative comparison

Local Invariant Features: When? How?

- Feature descriptors
- Applications
- Conclusions

Introduction

Wide baseline matching

Introduction

Recognition of specific objects

Rothganger et al. '03

Lowe et al. '02

Ferrari et al. '04

Introduction

Object class recognition

So what's the novelty?

Local character

History

History of interest point detectors goes a long way back...

- Corner detectors
- Blob detectors
- Edgel detectors

So what's the novelty?

Local character

Level of invariance

Local invariant features: a new paradigm

- Not just a method to select interesting locations in the image, or to speed up analysis
- But rather a new image representation, that allows to describe the objects / parts without the need for segmentation

Properties of the ideal feature

Local: features are local, so robust to occlusion and clutter (no prior segmentation)

Invariant (or covariant)

Robust: noise, blur, discretization, compression, etc. do not have a big impact on the feature

Distinctive: individual features can be matched to a large database of objects

Quantity: many features can be generated for even small objects

Accurate: precise localization

Efficient: close to real-time performance

The need for invariance

Terminology: Invariant or Covariant?

When a transformation is applied to an image, an invariant measure remains unchanged. a covariant measure changes in a way consistent with the image transformation.

Terminology: 'detector' or 'extractor'

Geometric transformations

Translation

Euclidean (translation + rotation)

Similarity (transl. + rotation + scale)

Affine transformations

Projective transformations

Only holds

for planar patches

Photometric transformations

scaling + offset

Disturbances

Noise Image blur Discretizati

Discretization errors

Compression artefacts

Deviations from the mathematical model (non-linearities, non-planarities, etc.)

Intra-class variations

How to cope with transformations?

Exhaustive search Invariance Robustness

Invariance

Extract patch from each image individually

Invariance

Integration, e.g.

moment invariants, ...

Heuristics, e.g.

- Difference of intensity values for photom. offset
- Ratio of intensity values for photom. scalefactor

Selection and normalization, e.g.

- Automatic scale selection (Lindeberg et al., 1996)
- Orientation assignment
- Affine normalization ('deskewing')

4 4 5

Lindeberg et al., 1996

 $f(I_{i_1...i_m}(x,\sigma))$

 $f(I_{i_1...i_m}(x,\sigma))$

 $f(I_{i_1...i_m}(x,\sigma))$

 $f(I_{i_1...i_m}(x,\sigma))$

 $f(I_{i_1...i_m}(x,\sigma))$

$$f(I_{i_1...i_m}(x',\sigma))$$

$$f(I_{i_1...i_m}(x',\sigma))$$

 $f(I_{i_1...i_m}(x',\sigma))$

Automatic scale selection

Normalize: rescale to fixed size

Orientation assignment

Lowe, SIFT, 1999

Compute orientation histogram

Select dominant orientation

Normalize: rotate to fixed orientation

Affine normalization ('deskewing')

rotate

Overview

Local Invariant Features: What? Why?

- Introduction
- Overview of existing detectors
- Quantitative and qualitative comparison

Local Invariant Features: When? How?

- Feature descriptors
- Applications
- Conclusions

Overview of existing detectors

Hessian & Harris

Lowe: DoG

Mikolajczyk & Schmid:

Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR

Matas: MSER

Kadir & Brady: Salient Regions

Others

Overview of existing detectors

Hessian & Harris

Lowe: DoG

Mikolajczyk & Schmid:

Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR

Matas: MSER

Kadir & Brady: Salient Regions

Others

Hessian detector (Beaudet, 1978)

Hessian determinant

$$Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}^{xy}$$

$$\det(Hessian(I)) = I_{xx}I_{yy} - I_{xy}^{2}$$

Hessian (Beaudet, 1978)

Second moment matrix / autocorrelation matrix

$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

1. Image derivatives $g_{x}(\sigma_{D}), g_{y}(\sigma_{D}),$

Second moment matrix / autocorrelation matrix

$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

1. Image derivatives $g_x(\sigma_D)$, $g_y(\sigma_D)$,

2. Square of derivatives

Second moment matrix / autocorrelation matrix

Second Moment Matrix / autocorrelation
$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_xI_y(\sigma_D) \\ I_xI_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$
1. Image derivatives

2. Square of derivatives

3. Gaussian filter $g(\sigma_i)$

Second moment matrix autocorrelation matrix

1. Image derivatives

2. Square of derivatives

3. Gaussian filter $g(\sigma_i)$

4. Cornerness function – both eigenvalues are $\frac{\text{strong}_{har}}{\text{strong}_{har}} = \det[\mu(\sigma_I, \sigma_D)] - \alpha[\operatorname{trace}(\mu(\sigma_I, \sigma_D))] = g(I_x^2)g(I_y^2) - [g(I_xI_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2$

5. Non-maxima suppression

Overview of existing detectors

Hessian & Harris

Lowe: DoG

Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR

Matas: MSER

Kadir & Brady: Salient Regions

Others

Scale invariant detectors Laplacian of Gaussian

Local maxima in scale space of Laplacian of Gaussian LoG

list of (x, y, σ)

Scale invariant detectors Laplacean of Gaussian

Lowe's DoG

Difference of Gaussians as approximation of the Laplacian of Gaussian

Lowe's DoG

Difference of Gaussians as approximation of the Laplacian of Gaussian

list of (x, y, σ)

Lowe's DoG

Appreciation

scale-invariant

- simple, efficient scheme
- laplacian fires more on edges than determinant of hessian

Overview of existing detectors

Hessian & Harris

Lowe: DoG

Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR

Matas: MSER

Kadir & Brady: Salient Regions

Others

Mikolajczyk & Schmid

Harris Laplace
Hessian Laplace
Harris Affine
Hessian Affine

Mikolajczyk: Harris Laplace

Initialization:
 Multiscale Harris
 corner detection

Computing Harris function

Detecting local maxima

Mikolajczyk: Harris Laplace

- 1. Initialization: Multiscale Harris corner detection
- 2. Scale selection based on Laplacian

Harris points

Harris-Laplace points

Mikolajczyk: Harris Affine

Initialization with Harris Laplace Estimate shape based on second moment matrix Using normalization / deskewing

Iterative algorithm

Mikolajczyk: Harris Affine

- Detect multi-scale Harris points
- 2. Automatically select the scales
- 3. Adapt affine shape based on second order moment matrix
- 4. Refine point location

Harris Affine

Hessian Affine

Appreciation

- Scale or affine invariant

 Detects blob- and corner-like structures
- large number of regions
- well suited for object class recognition
- less accurate than some competitors

Overview of existing detectors

Lowe: DoG

Lindeberg: scale selection

Mikolajczyk & Schmid:

Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR

Matas: MSER

Kadir & Brady: Salient Regions

Others

1. Select Harris corners

- Select Harris corners
- 2. Find Canny edges

- Select Harris corners
- Find Canny edges
- Evaluate relative affine invariant parameter along edges

$$l_i = \int abs(|p_i^{(1)}(s_i)| p - p_i(s_i)|)ds_i$$

- 1. Select Harris corners
- Find Canny edges
- Evaluate relative affine invariant parameter along edges
- 4. Construct 1-dimensional family of parallelograms

- Select Harris corners
- Find Canny edges
- 3. Evaluate relative affine invariant parameter along edges
- Construct 1-dimensional family of parallelograms
- 5. Select parallelogram based on local extrema of invariant function

$$M_{pq}^{a} = \int [I(x, y)]^{a} x^{p} y^{q} dx dy$$

Tuytelaars: edge-based regions

Variant for straight lines...

Edge-based regions

Edge-based regions

Appreciation

Affine invariant

Detects corner-like structures

- Works well in structured scenes
- Doesn't cross edges/object contours
- Depends on presence of edges

Tuytelaars: intensity-based regions

- 1. Select intensity extrema
- 2. Consider intensity profile along rays
- 3. Select maximum of invariant function f(t) along each ray
- 4. Connect all local maxima
- 5. Fit an ellipse

$$f(t) = \frac{abs(I_0 - I)}{\max(\frac{\int abs(I_0 - I)dt}{t}, d)}$$

Intensity-based regions

Appreciation

Affine invariant

Detects 'blob'-like structures

- Accurate regions
- Especially good on printed material

Overview of existing detectors

Lowe: DoG

Lindeberg: scale selection

Mikolajczyk & Schmid:

Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR

Matas: MSER

Kadir & Brady: Salient Regions

Others

Extremal region: region such that

$$\forall p \in Q, \forall q \in \delta Q: \frac{I(p)>I(q)}{I(p)< I(q)}$$

Order regions

$$Q_1 \subset ... \subset Q_i \subset Q_{i+1} \subset ...Q_n$$

Maximally Stable Extremal Region: local minimum of

$$q(i) = Q_{i+\Delta} \setminus Q_{i-\Delta} \mid / Q_i$$

Maximally Stable Extremal Regions

Appreciation

- Affine invariant
 Detects blob-like structures
 - Simple, efficient scheme
 - High repeatability
 - Fires on similar features as IBR (regions need not be convex, but need to be closed)
 - Sensitive to image blur

Overview of existing detectors

Lowe: DoG

Lindeberg: scale selection

Mikolajczyk & Schmid:

Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR

Matas: MSER

Kadir & Brady: Salient Regions

Others

Kadir & Brady's salient regions

Based on entropy

Kadir & Brady's salient regions

Maxima in entropy, combined with interscale saliency

Extended to affine invariance

Salient regions

Appreciation

Scale or affine invariant
Detects blob-like structures

- very good for object class recognition
- limited number of regions
- slow to extract

Overview of existing detectors

Lowe: DoG

Lindeberg: scale selection

Mikolajczyk & Schmid:

Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR

Matas: MSER

Kadir & Brady: Salient Regions

Others

Other feature detectors

Edge-based detectors

Jurie et al., Mikolajczyk et al., ...

Combinations of small-scale features

Brown & Lowe

Vertical line segments

Goedeme et al.

Speeded-Up Robust Features (SURF)

Bay et al.

Overview

Local Invariant Features: What? Why?

- Introduction
- Overview of existing detectors
- Quantitative and qualitative comparison

Local Invariant Features: When? How?

- Feature descriptors
- Applications
- Conclusions

Quantitative comparisons

Evaluation of interest points (Schmid & Mohr, ICCV98) Evaluation of descriptors (Mikolajczyk & Schmid, CVPR03) Evaluation of affine invariant features (Mikolajczyk et al., PAMI05)

Evaluation on 3D objects (Moreels & Perona, ICCV05) Evaluation on 3D objects (Fraundorfer & Bischof, ICCV05) Evaluation in the context of object class recognition (Mikolajczyk et al., ICCV05)

$$repeatability = \frac{\#correspondences}{\#detected} \cdot 100\%$$

$$repeatability = \frac{\#correspondences}{\#detected} \cdot 100\%$$

•Two points are corresponding if
$$\frac{A \cap B}{A \cup B} > T$$

Repeatability

Quantitative evaluation

Repeatability often lower than 50% Performance often depends on scene type, different detectors are complementary Number of detected features varies greatly Accuracy of detected features varies Performance depends on application Speed

Qualitative Comparison

Difficult to declare a 'winner'
Different methods are complementary
'Best features' depends on application:

- Level of invariance needed
- Number/density of features wanted
- Typical scene types
- Accuracy of features
- Generalization power of features

Overview

Local Invariant Features: What? Why?

- Introduction
- Overview of existing detectors
- Quantitative and qualitative comparison

Local Invariant Features: When? How?

- Feature descriptors
- Applications
- Conclusions

The ideal feature descriptor

Repeatable (invariant/robust)

Distinctive

Compact

Efficient

Normalized crosscorrelation

$$NCC = \frac{\sum_{x=-N}^{N} \sum_{y=-N}^{N} (I_1(x, y) - \bar{I}_1)(I_2(x, y) - \bar{I}_2)}{\sqrt{\sum_{x=-N}^{N} \sum_{y=-N}^{N} (I_1(x, y) - \bar{I}_1)^2 \sum_{x=-N}^{N} \sum_{y=-N}^{N} (I_2(x, y) - \bar{I}_2)^2}}$$

After 'deskewing' the region:

SIFT descriptor

Orientation assignment
Distribution-based
Focusing on image gradients

SIFT descriptor

Others

Steerable filters, moment invariants, local jet, complex filters, shape contexts, PCA-SIFT, GLOH, HOG, SURF

Distance measures

Euclidean distance Mahalanobis distance

$$d_M = \sqrt{(x - x')^T \mathbf{C}^{-1} (x - x')}$$

Overview

Local Invariant Features: What? Why?

- Introduction
- Overview of existing detectors
- Quantitative and qualitative comparison

Local Invariant Features: When? How?

- Feature descriptors
- Applications
- Conclusions

Applications

Wide baseline matching
Recognition of specific objects
Recognition of object classes

Applications

Wide baseline matching
Recognition of specific objects
Recognition of object classes

Extract features in each image Compute feature descriptors Find correspondences

Matching strategy

Check consistency – filter out mismatches (Refined matching)

Which features to use?

- Affine invariant features if large viewpoint changes are expected (>30degrees)
- Accurate features
- Limited number of good matches > large number of medium quality matches
- Take into account typical image content (blobs/corners/prints/...)

MSER, IBR, EBR, ...

Matching strategy

Match to nearest neighbour Match to nearest neighbour if distance

below a threshold

Match to nearest neighbour if much closer than second-best match (Lowe, 1999)

Possibly match in both directions

Consistency checks

Global constraints

- Epipolar geometry (ransac)
- Homography (ransac)

Semi-local constraints

- (Same neighboring regions) (Schmid, 1998)
- Geometric constraints (Tuytelaars & Van Gool, 2000)
- (Topologic constraints) (Ferrari et al., 2004)
- Photometric constraints

$$\det \begin{bmatrix} a_{23} - b_{23} & b_{13} - a_{13} \\ a_{22} - b_{22} & b_{12} - a_{12} \\ a_{21} - b_{21} & b_{11} - a_{11} \end{bmatrix}$$

Refined matching

Search only along epipolar lines Construct additional matches (Ferrari et al., 2004)

Applications

Wide baseline matching
Recognition of specific objects
Recognition of object classes

Object recognition can be cast as feature matching problem

Training:

Extract features in each model image Compute feature descriptors
Store in database

Efficient search structures

Testing:

Extract features
Compute feature descriptors
Match features to database
Count number of votes
Post-processing (Lowe, 1999; Rothganger & Ponce, 2003; Ferrari et al., 2004)

Which features to use?

- Affine invariant features if large viewpoint changes are expected (>30 degrees)
- Level of invariance needed depends on number of model images
- Features need to be distinctive: risk for false matches is much larger
- At least a few good matches (if time for post-processing is not an issue)
- Take into account typical image content (blobs/corners/prints/)..

MSER, IBR, EBR, DoG, Harris/Hessian-

Image Retrieval

Efficient matching to a database of images

- Kd-tree
- Best bin first (Lowe, 1999)
- Visual vocabulary & inverted files (Sivic & Zisserman, 2003)

Kd-tree

Kd-tree

Best bin first

Kd-tree less effective in high-dimensional spaces.

Examine only the N closest bins of the kd-tree

Postprocessing:

- Hough-like scheme
- 3D model
- Image exploration

Postprocessing:

- Hough-like scheme
- 3D model
- Image exploration

Postprocessing:

- Hough-like scheme
- 3D model
- Image exploration

Applications

Wide baseline matching
Recognition of specific objects
Recognition of object classes

Training

- Extract local features
- Compute feature descriptors
- Cluster features in object parts / codebooks / visual words

Build model wit

- Constellation m
- Implicit shape
- Bag-of-visual-w

Train classifier

Which features to use?

- Scale invariant features
- Robust features
- Large number of features (depends on model used)
- Accuracy not important

Salient Regions, Harris/Hessian-Laplace

Clustering features into 'visual words'

- K-means
- Jurie & Triggs, ICCV05

Bag-of-visual-words image representation:

Other applications

Image mosaicking Mobile robot navigation Scene classification Texture classification Video data mining Object discovery 3D reconstruction

4 4 7

Overview

Local Invariant Features: What? Why?

- Introduction
- Overview of existing detectors
- Quantitative and qualitative comparison

Local Invariant Features: When? How?

- Feature descriptors
- Applications
- Conclusions

Do's and Don'ts

DO

- Think about the right level of invariance
- Rely on statistics

DO NOT

- Expect wonders
- Rely on a single local feature
- Evaluate methods based on a single image

Questions?

Tinne.Tuytelaars@esat.kuleuven.be http://homes.esat.kuleuven.be/~tuytelaa/ECCV06tutorial.html

http://www.robots.ox.ac.uk/~vgg/research/affine