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Introduction

Recognition of Specific objects

Rothganger et al. ‘03 Lowe et al. ‘02 Ferrari et al. ‘04



Introduction

Object class recognition




So what’s the novelty?

Loca!l ciiaracter



History

History: of interest point detectors goes a
long way back...

Corner. detectors
Blob detectors
Edgel detectors



So what’s the novelty?

Loca!l ciiaracter
|_evel of invariance

LLocal invariant features: a new paradigm
Not just a method to select interesting locations
In the image, or to speed up analysis

But rather a new image representation, that
allows to describe the objects / parts without the
need for segmentation



Properties of the ideal feature

Local: features are local, so robust to ecclusion
and clutter (no prior segmentation)

Invariant (or covariant)

Roebust: noise, blur, discretization, compression,
etc. do not have a big impact on the feature

Distinctive: individual features can be matched to
a large database of objects

Quantity: many: features, can be generated for
even small objects

Accurate: precise localization
Efficient: close to real-time perfoermance







Tlerminoelogy: Invariant or Covariant?

When a transformation is applied to an image,
an invariant measure remains unchanged.

d covariant measure changes in a way.
consistent with the image transformation.

Terminology: ‘detector’ or ‘extractor’



Geometric transformations

[ Translation

Euclidean (translation + rotation)

¢ Similarity (transl. + rotation + scale)
Affine transformations

Projective transformations
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Photometric transformations

Modelled as a linear transformation:
scaling| + offset



Disturbances

Noise

Image blur
Discretization errors
Compression artefacts

Deviations from the mathematical model
(non-linearities, hen-planarities, etc.)

Intra-class variations



How! to cope with transformations?

Exhaustive search
lnvariance
Robusthness



Exhaustive search




Exhaustive search




Exhaustive search




Exhaustive search

Multi-scale approach




lnvariance

Extract patch from each image individually




lnvariance

Integration, e.g.
moment Invariants, ...
Heuristics, e.g.
Difference of intensity values for photom. offset
Ratio of intensity: values for photom. scalefactor
Selection and normalization, e.g.
Automatic scale selection (Lindeberg et al., 1996)

Orientation assignment
Affine normalization (‘deskewing’)




Automatic scale selection
Lindeberg et al., 1996




Automatic scale selection
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Automatic scale selection




Automatic scale selection




Automatic scale selection




Automatic scale selection




Automatic scale selection

Normalize: rescale to fixed size




Orientation assignment
Lowe, SIFT, 1999

Compute orientation histogram
Select dominant erientation
Normalize: rotate to fixed orientation




Affine nermalization (‘deskewing’)
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Hessian detector (Beaudet, 1978)

Hessian determinant
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Hessian (Beaudet, 1978)
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IHarris detector (Harris; 1988)

Second moment matrix / autocorrelation matrix
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Harrs aetecior (iHarris; 1986)

Second mement matrix / autocorrelation matrix
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Second mement matrix / autocorrelation matrix
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Harris detector: (IHarris, 1988)

Second moment matrix
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Harris detector: (IHarris, 1988)
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Scale invariant detectors
Laplacian of Gaussian
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Scale invariant detectors
Laplacean ofi Gaussian




Lowe’'s DoG

Difference of Gaussians as approximation of
the LLaplacian of Gaussian




Lowe’'s DoG

Difference of Gaussians as approximation of
the LLaplacian of Gaussian

Gaussian




list of (
X, Yy, 0)

Difference of
Gaussian (DOG)




Lowe’s DoG




Appreciation

scale-invariant
g simple, efficient scheme

@ Iaplacian fires more on edges than
determinant of hessian
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Mikolajczyk & Schmid

Harris LLaplace
Hessian LLaplace

Harris Affine
Hessian Affine



Mikolajczyk: Harris Laplace

1. Initialization:
Multiscale Harris
corner. detection

Computing Harris function Detecting local maxima



1.
2.

Mikoelajczyk: Harris Laplace

Initialization: Multiscale Harris corner detection
Scale selection based on Laplacian

Harris points

- e

Harris-Laplace points




Mikolajczyk: Harris Affine

Initialization with Harris Laplace

Estimate shape based on second moment matrix
Using noermalization / deskewing

Iterative alqorlthm
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Mikolajczyk: Harris Affine

Detect multi-scale Harris points
Automatically select the scales
Adapt affine shape based on second order moment matrix

Refine point location
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Harris Affine




Hessian Affine




Appreciation

Scale or affine invariant

Detects blob- and corner-like structures
S large number of regions

@ el suited for object class recognition
g less accurate than some competitors



Overview: of existing detectors

Lowe: DoG
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Tuytelaars: edge-based regions

1. Select Harris corners




Tuytelaars: edge-based regions
. Select Harris corners ﬂj' H" :
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Tuytelaars: edge-based regions

. Select Harris corners
. Find Canny edges

. Evaluate relative affine ’p
invariant parameter along
edges



Tuytelaars: edge-based regions

. Select Harris corners
Find Canny edges

Evaluate relative affine 2.
invariant parameter along ke
edges

. Construct 1-dimensional
family of parallelograms



Tuytelaars: edge-based regions

Select Harris corners
Eind Canny edges

Evaluate relative affine \ 7
invariant parameter along
edges
. Construct 1-dimensional
family of parallelograms
S -

Select parallelogram
based on local extrema of |
invariant function ﬁ
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Tuytelaars: edge-based regions

\ariant for straight
lines...




Edge-based regions




based regions

Edge




Appreciation

Affine invariant

Detects corner-like structures

@ \Works well in structured scenes

@ Doesn’t cross edges/object contours
S Depends on presence of edges
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Tluytelaars: intensity-based
[egions

Select intensity extrema

Consider intensity profile along rays

Select maximum of invariant function f(t) along each ray
Connect all local maxima

Fit an ellipse




Intensity-based regions




Appreciation

Affine invariant

Detects ‘blob-like structures

9 Accurate regions

g Especially good on printed material



Overview: of existing detectors

Lowe: DoG
LLindeberg: scale selection

Mikolajczyk & Schmid:
Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR
Matas: MSER

Kadir & Brady: Salient Regions
Others



Matas: Maximally’ Stable Extremal
Regions (MSERS)

Based on watershed algorithm
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Matas: Maximally’ Stable Extremal
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Based on watershed algorithm
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Matas: Maximally’ Stable Extremal
Regions (MSERS)

Extremal region: region such that Nest)

HpHRHgL0: )

Order regions
o 0..0000,0.0,

Maximally Stable Extremal Region:
local minimum of

q(i) = Qa O, p 110,



Maximally Stable Extremal Regions




Appreciation

Affine invariant

Detects blob-like structures

& Simple, efficient scheme

(- High repeatability

g Fires on similar features as IBR

(regions need not be convex, but need
to be closed)

@ Secnsitive to image blur
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Kadir & Brady’s salient regions

Based on entropy




Kadir & Brady’s salient regions

Maxima in entropy, combined with inter-
scale saliency.

Extended to affine invariance

Saliency over scale




Salient regions




Appreciation

Scale or affine invariant

Detects blob-like structures

(- Very good for ebject class recognition
@ |imited number of regions

@ slow to extract
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Other feature detectors

Edge-based detectors
Jurie et al., Mikolajczyk et al., ...

Combinations of small-scale features
Brown & LLowe

Vertical line segments
Goedeme et al.

Speeded-Up Robust Features (SURF)
Bay et al.
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Eva
Eva
Eva

Quantitative comparisons

uation of interest points (Schmid & Mohr, ICCV98)

uation of descriptors, (Mikelajczyk & Schmid, CVPR0O3)
uation of affine invariant features (Mikolajczyk et al.,

PAMI05)

Eva
Eva
Eva

uation oni 3D objects (Moreels & Perona, ICCV05)

uation on 3D objects (Fraundorfer & Bischof, ICCV05)
uation in the context of object class recognition

(Mikelajczyk et al., ICCVO05)



Evaluation criteria: repeatability

Repeatability rate : percentage of corresponding points
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Evaluation criteria: repeatability

Repeatability rate :
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nercentage of corresponding points

#correspondences = 3
#detected = 5
Repeatability=60%




Evaluation criteria: repeatability

Repeatability rate : percentage of corresponding points
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Evaluation criteria: repeatability

Repeatability rate : percentage of corresponding points

o

g2l “| homography

o -

- - ' - - =R a8
-_" b - T T el =y _
A S & - 1 5 -
‘ f"v'-. - 3
_ L et o e
rl'.| - P 5 -
] - - -
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Repeatability.
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Quantitative evaluation

Repeatability: often lower than 50%

Performance often depends oniscene type,
different detectors are complementary

Number of detected features varies greatly:
Accuracy of detected features varies
Performance depends on application

Speed



Qualitative Comparison

Difficult to declare a ‘winner
Different methods are complementary
‘Best features” depends on application:

L_evel of invariance needed
Number/density: of features wanted

Typical scene types
Accuracy of features
Generalization power of features
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The ideal feature descriptor

Repeatable (invariant/robust)
Distinctive

Compact

Efficient



Normalized crosscorrelation

Z (11(xay)_1_1)(12(xay)_1_2)
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After ‘deskewing’ the region:




SIET descriptor

Orientation assignment
Distribution-based
Focusing on image gradients




SIET descriptor
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Others

Steerable filters, moment invariants, local
jet, complex filters, shape contexts,

PCA-SIFT, GLOH;, HOG,
SURFE



Distance measures

Euclidean distance
Mahalanobis distance

dyg = \/(:c — ez -2
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Wide baseline matching




Wide baseline matching

Extract features in each image
Compute feature descriptors

Find correspondences
Matching strategy:

Check consistency — filter out mismatches
(Refined matching)



Wide baseline matching

Which features to use ?

Affine invariant features if large viewpoint
changes are expected (>30degrees)

Accurate features

Limited number of good matches > large number
of medium guality matches

Tlake into account typical image content
(blobs/corners/prints/...)

MSER, IBR, EBR, ...



Matching strategy

Match to nearest neighbour

Match to nearest neighbour if distance
below: a threshold

Match to nearest neighbour it much closer
than second-best match (Lowe, 1999)

Possibly: match in both directions



Consistency checks

Global constraints
Epipolar geometry (ransac)
Homography: (ransac)

Semi-local constraints
(Same neighboring regions) (Schmid, 1998)
Geometric constraints (Tuytelaars & Van Gool, 2000)
(Topologic constraints) (Ferrari et al., 2004)
Photometric constraints




Refined matching

Search only aloeng epipolar lines
Construct additional matches (Ferrari et al., 2004)



Wide baseline matching




Wide baseline matching




Applications

Wide baseline: matching
Recognition of Specific objects
Recognition of object classes



Recognition of specific objects

Object recognition can be cast as feature
matching problem




Recognition of specific objects

Training:
Extract features in each model image
Compute feature descriptors

Store in database
Efficient search structures

Testing:
Extract features
Compute feature descriptors
Match features to database

Count number of votes

Post—processing (Lowe, 1999; Rothganger & Ponce, 2003;;
Ferrari et al., 2004)



Recognition of specific objects

Which features to use ?

Affine invariant features if large viewpoint changes are
expected (>30 degrees)

|_evel of invariance needed depends on number of model
Images

Features need to be distinctive:

risk for false matches is much larger

At least a few good matches
(if time for post-processing is not an issue)

Tlake into account typical image content
(blobs/corners/prints/). .

MSER, IBR, EBR, DoG, Harris/Hessian-
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Image Retrieval

Efficient matching to a database of images
Kd-tree
Best bin first (Lowe, 1999)

Visual vocabulary & inverted files
(Sivic & Zisserman, 2003)



Kd-tree

Split longer dimension near data median




Kd-tree




Best bin first

Kd-tree less effective in high-dimensional
SpPACes.

Examine only the N closest bins, of the kd-
tree



Recognition of specific objects

Postprocessing:

Hough-like scheme
3D model
Image exploration
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Recognition of specific objects

Postprocessing:

* Hough-like scheme
* 3D model
* Image exploration
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Recognition of object classes

Motorbikes Airplanes Faces Cars (Side) Cars (Rear) Spotted Cats ~ Background
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Recognition of object classes

Trraining
Extract local features
Compute feature descriptors

Cluster features in object parts / codebooks /
visual words

Build model wWit|um
Constellation '
Implicit shape
Bag-of-visual-

Train classifier




Recognition of object classes

Which features to use ?
Scale invariant features
Robust features

LLarge number: of features
(depends on model used)

Accuracy not important
Salient Regions, Harris/Hessian-Laplace



Recognition of object classes

Clustering features, into ‘visual words’

K-means
Jurie & Triggs, ICCV0O5




Recognition of object classes

Bag-of-visual-woerds image representation:

o] 100 200 300 400 500 600 700

Visual word

L,

o)




Other applications

Image mosaicking
Mobile robot navigation
Scene classification
Tiexture classification
Video data mining
Object discovery

3D reconstruction
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Do’s and Don'ts

DO

Think about the right level of invariance
Rely on statistics

DO NOT
Expect wonders
Rely on a single local feature
Evaluate methoeds based on a single image
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