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References in Statistical Image Modeling

1. Overview references [100, 89, 50, 54, 162, 4, 44]

2. Type of Random Field Model

(a) Discrete Models

i. Hidden Markov models [134, 135]

ii. Markov Chains [41, 42, 156, 132]

iii. Ising model [127, 126, 122, 130, 100, 131]

iv. Discrete MRF [13, 14, 160, 48, 161, 47, 16, 169,
36, 51, 49, 116, 167, 99, 50, 72, 104, 157, 55, 181,
121, 123, 23, 91, 176, 92, 37, 125, 128, 140, 168,
97, 119, 11, 39, 77, 172, 93]

v. MRF with Line Processes[68, 53, 177, 175, 178,
173, 171]

(b) Continuous Models

i. AR and Simultaneous AR [95, 94, 115]

ii. Gaussian MRF [18, 15, 87, 95, 94, 33, 114, 153,
38, 106, 147]

iii. Nonconvex potential functions [70, 71, 21, 81,
107, 66, 32, 143]

iv. Convex potential functions [17, 75, 107, 108,
155, 24, 146, 90, 25, 27, 32, 149, 26, 148, 150]

3. Regularization approaches

(a) Quadratic [165, 158, 137, 102, 103, 98, 138, 60]

(b) Nonconvex [139, 85, 88, 159, 19, 20]

(c) Convex [155, 3]

4. Simulation and Stochastic Optimization Methods [118,
80, 129, 100, 68, 141, 61, 76, 62, 63]

5. Computational Methods used with MRF Models

(a) Simulation based estimators [116, 157, 55, 39, 26]

(b) Discrete optimization

i. Simulated annealing [68, 167, 55, 181]

ii. Recursive optimization [48, 49, 169, 156, 91, 172,
173, 93]

iii. Greedy optimization [160, 16, 161, 36, 51, 104,
157, 55, 125, 92]

iv. Multiscale optimization [22, 72, 23, 128, 97, 105,
110]

v. Mean field theory [176, 177, 175, 178, 171]

(c) Continuous optimization

i. Simulated annealing [153]

ii. Gradient ascent [87, 149, 150]

iii. Conjugate gradient [10]

iv. EM [70, 71, 81, 107, 75, 82]

v. ICM/Gauss-Seidel/ICD [24, 146, 147, 25, 27]

vi. Continuation methods [19, 20, 153, 143]

6. Parameter Estimation

(a) For MRF

i. Discrete MRF

A. Maximum likelihood [130, 64, 71, 131, 121,
108]
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B. Coding/maximum pseudolikelihood [15, 16,
18, 69, 104]

C. Least squares [49, 77]

ii. Continuous MRF

A. Gaussian [95, 94, 33, 114, 38, 115, 106]

B. Non-Gaussian [124, 148, 26, 133, 145, 144]

iii. EM based [71, 176, 177, 39, 180, 26, 178, 133,
145, 144]

(b) For other models

i. EM algorithm for HMM’s and mixture models
[9, 8, 46, 170, 136, 1]

ii. Order identification [2, 94, 142, 37, 179, 180]

7. Application

(a) Texture classification [95, 33, 38, 115]

(b) Texture modeling [56, 94]

(c) Segmentation remotely sensed imagery [160, 161, 99,
181, 140, 28, 92, 29]

(d) Segmentation of documents [157, 55]

(e) Segmentation (nonspecific) [48, 16, 47, 36, 49, 51,
167, 116, 96, 104, 114, 23, 37, 115, 125, 168, 97, 120,
11, 39, 110, 180, 172, 93]

(f) Boundary and edge detection [41, 42, 57, 156, 65,
175]

(g) Image restoration [87, 68, 169, 96, 153, 91, 90, 177,
82, 150]

(h) Image interpolation [149]

(i) Optical flow estimation [88, 101, 83, 111, 143, 178]

(j) Texture modeling [95, 94, 44, 33, 38, 123, 115, 112,
56, 113]

(k) Tomography [79, 70, 71, 81, 75, 107, 108, 24, 146,
25, 147, 32, 26, 27]

(l) Crystallography [53]

(m) Template matching [166, 154]

(n) Image interpretation [119]

8. Multiscale Bayesian Models

(a) Discrete model [28, 29, 40, 154]

(b) Continuous model [12, 34, 5, 6, 7, 112, 35, 52, 111,
113, 166]

(c) Parameter estimation [34, 29, 166, 154]

9. Multigrid techniques [78, 30, 31, 117, 58]

4



The Bayesian Approach

θ - Random field model parameters

X - Unknown image

φ - Physical system model parameters

Y - Observed data

XRandom Field 
Model

θ

Physical System
Y

Data Collection

φ

• Random field may model:

– Achromatic/color/multispectral image

– Image of discrete pixel classifications

– Model of object cross-section

• Physical system may model:

– Optics of image scanner

– Spectral reflectivity of ground covers (remote sensing)

– Tomographic data collection
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Bayesian Versus Frequentist?

• How does the Bayesian approach differ?

– Bayesian makes assumptions about prior behavior.

– Bayesian requires that you choose a model.

– A good prior model can improve accuracy.

– But model mismatch can impair accuracy

• When should you use the frequentist approach?

– When (# of data samples)>>(# of unknowns).

– When an accurate prior model does not exist.

– When prior model is not needed.

• When should you use the Bayesian approach?

– When (# of data samples)≈(# of unknowns).

– When model mismatch is tolerable.

– When accuracy without prior is poor.
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Examples of Bayesian Versus Frequentist?

XRandom Field 
Model

θ

Physical System
Y

Data Collection

φ

• Bayesian model of image X

– (# of image points)≈(# of data points.)

– Images have unique behaviors which may be modeled.

– Maximum likelihood estimation works poorly.

– Reduce model mismatch by estimating parameter θ.

• Frequentist model for θ and φ

– (# of model parameters)<<(# of data points.)

– Parameters are difficult to model.

– Maximum likelihood estimation works well.
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Markov Chains

• Topics to be covered:

– 1-D properties

– Parameter estimation

– 2-D Markov Chains

• Notation: Upper case ⇒ Random variable
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Markov Chains

X0 X1 X2 X3 X4

• Definition of (homogeneous) Markov chains

p(xn|xi i < n) = p(xn|xn−1)

• Therefore, we may show that the probability of a sequence is given by

p(x) = p(x0)
N
∏

n=1
p(xn|xn−1)

• Notice: Xn is not independent of Xn+1

p(xn|xi i 6= n) = p(xn|xn−1, xn+1)
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Parameters of Markov Chain

• Transition parameters are:

θj,i = p(xn = i|xn−1 = j)

• Example: θ =









1− ρ ρ
ρ 1− ρ
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• ρ is the probability of changing state.

10 20 30 40 50 60 70 80 90 100
−0.5

0
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1

1.5
Binary Valued Markov Chain: rho = 0.050000

discrete time, n

ya
xi

s
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Binary Valued Markov Chain: rho = 0.200000

discrete time, n
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xi

s

ρ = 0.05 ρ = 0.2
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Parameter Estimation for Markov Chains

• Maximum likelihood (ML) parameter estimation

θ̂ = argmax
θ

p(x|θ)

• For Markov chain

θ̂j,i =
hj,i

∑

k
hj,k

where hj,i is the histogram of transitions

hj,i =
∑

n
δ(xn = i & xn−1 = j)

• Example
xn = 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1

θ =









h0,0 h0,1
h1,0 h1,1








=









2 2
1 6
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2-D Markov Chains

X(1,4)X(1,3)X(1,2)X(1,1)X(1,0)

X(2,4)X(2,3)X(2,2)X(2,1)X(2,0)

X(3,4)X(3,3)X(3,2)X(3,1)X(3,0)

X(0,4)X(0,3)X(0,2)X(0,1)X(0,0)

• Advantages:

– Simple expressions for probability

– Simple parameter estimation

• Disadvantages:

– No natural ordering of pixels in image

– Anisotropic model behavior
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Discrete State Markov Random Fields

• Topics to be covered:

– Definitions and theorems

– 1-D MRF’s

– Ising model

– M-Level model

– Line process model
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Markov Random Fields

• Noncausal model

• Advantages of MRF’s

– Isotropic behavior

– Only local dependencies

• Disadvantages of MRF’s

– Computing probability is difficult

– Parameter estimation is difficult

• Key theoretical result: Hammersley-Clifford theorem
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Definition of Neighborhood System and Clique

• Define

S - set of lattice points

s - a lattice point, s ∈ S

Xs - the value of X at s

∂s - the neighboring points of s

• A neighborhood system ∂s must be symmetric

r ∈ ∂s⇒ s ∈ ∂r also s 6∈ ∂s

• A clique is a set of points, c, which are all neighbors of each other

∀s, r ∈ c, r ∈ ∂s
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Example of Neighborhood System and Clique

• Example of 8 point neighborhood

X(1,4)X(1,3)X(1,2)X(1,1)X(1,0)

X(2,4)X(2,3)X(2,2)X(2,1)X(2,0)

X(3,4)X(3,3)X(3,2)X(3,1)X(3,0)

X(0,4)X(0,3)X(0,2)X(0,1)X(0,0)

X(4,4)X(4,3)X(4,2)X(4,1)X(4,0)

Neighbors of X(2,2)

• Example of cliques for 8 point neighborhood

1-point clique

2-point cliques

3-point cliques

4-point cliques

Not a clique
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Gibbs Distribution

xc - The value of X at the points in clique c.

Vc(xc) - A potential function is any function of xc.

• A (discrete) density is a Gibbs distribution if

p(x) =
1

Z
exp











−
∑

c∈C
Vc(xc)











C is the set of all cliques

Z is the normalizing constant for the density.

• Z is known as the partition function.

• U(x) =
∑

c∈C
Vc(xc) is known as the energy function.
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Markov Random Field

• Definition: A random object X on the lattice S with neighborhood system
∂s is said to be a Markov random field if for all s ∈ S

p(xs|xr for r 6= s) = p(xs|x∂r)

18



Hammersley-Clifford Theorem[14]

















X is a Markov random field
&

∀x, P{X = x} > 0

















⇐⇒









P{X = x} has the form
of a Gibbs distribution









• Gives you a method for writing the density for a MRF

• Does not give the value of Z, the partition function.

• Positivity, P{X = x} > 0, is a technical condition which we will generally
assume.
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Markov Chains are MRF’s

Xn-2 Xn-1 Xn Xn+1 Xn+2

Neighbors of Xn

• Neighbors of n are ∂n = {n− 1, n + 1}

• Cliques have the form c = {n− 1, n}

• Density has the form

p(x) = p(x0)
N
∏

n=1
p(xn|xn−1)

= p(x0) exp











N
∑

n=1
log p(xn|xn−1)











• The potential functions have the form

V (xn, xn−1) = log p(xn|xn−1)
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1-D MRF’s are Markov Chains

• Let Xn be a 1-D MRF with ∂n = {n− 1, n + 1}

• The discrete density has the form of a Gibbs distribution

p(x) = p(x0) exp











N
∑

n=1
V (xn, xn−1)











• It may be shown that this is a Markov Chain.

• Transition probabilities may be difficult to compute.
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The Ising Model: A 2-D MRF[100]

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0

0 1 1 0

1 1 1 0

1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

1 1 0 0

0 1 0 0

0 0 0 0

1

Cliques: Xr Xs Xr

Xs

Boundary:

• Potential functions are given by

V (xr, xs) = βδ(xr 6= xs)

where β is a model parameter.

• Energy function is given by
∑

c∈C
Vc(xc) = β(Boundary length)

• Longer boundaries ⇒ less probable
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Critical Temperature Behavior[127, 126, 100]

Center Pixel X0:

B B B B

B 0 0 0

B 0 0 1

B 0 0 1

B B B B

0 1 1 B

1 1 1 B

1 0 B

B 0 0 0

B 0 0 0

B 0 0 0

B B B B

0 1 0 B

1 1 0 B

0 1 0 B

B B B B

1

B 0 0 0 0 1 1 B

B

0

0

0

0

0

0

B

0

N

N

• 1β is analogous to temperature.

• Peierls showed that for β > βc

lim
N→∞

P (X0 = 0|B = 0) 6= lim
N→∞

P (X0 = 0|B = 1)

• The effect of the boundary does not diminish as N →∞!

• βc ≈ .88 is known as the critical temperature.
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Critical Temperature Analysis[122]

• Amazingly, Onsager was able to compute

E[X0|B = 1] =























(

1− 1
(sinh(β))4

)1/8
if β > βc

0 if β < βc

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

Inverse Temperature

M
ea

n 
F

ie
ld

 V
al

ue

• Onsager also computed an analytic expression for Z(T )!
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M-Level MRF[16]
0 0 0 0

0 2 0 0

0 0 0 1

0 0 0 1

0 0 0 0

0 1 1 0

1 1 1 0

1 0 0

0 0 2 2

0 0 2 2

0 0 0 2

0 0 0 0

2 1 0 0

1 1 0 0

0 1 0 0

0 0 0 0

1

Cliques:

Xr Xs Xr

Xs

Xr

Xs

Xr

Xs

Neighbors: Xs

• Define C1
4
= ( hor./vert. cliques) and C2

4
= ( diag. cliques)

• Then

V (xr, xs) =















β1δ(xr 6= xs) for {xr, xs} ∈ C1
β2δ(xr 6= xs) for {xr, xs} ∈ C2

• Define

t1(x)
4
=

∑

{s,r}∈C1

δ(xr 6= xs)

t2(x)
4
=

∑

{s,r}∈C2

δ(xr 6= xs)

• Then the probability is given by

p(x) =
1

Z
exp {−(β1t1(x) + β2t2(x))}
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Conditional Probability of a Pixel

Neighbors Xs

Xs

Cliques Containing Xs

X4 Xs

X1

Xs

X7

Xs

X6

Xs

X3

Xs

X2Xs

X8

Xs

X5

Xs

X4

X1

X7

X6

X3

X2

X8

X5

• The probability of a pixel given all other pixels is

p(xs|xi6=s) =
1
Z exp {−

∑

c∈C Vc(xc)}
∑M−1
xs=0

1
Z exp {−

∑

c∈C Vc(xc)}

• Notice: Any term Vc(xc) which does not include xs cancels.

p(xs|xi6=s) =
exp

{

−β1
∑4
i=1 δ(xs 6= xi)− β2

∑8
i=5 δ(xs 6= xi)

}

∑M−1
xs=0 exp {−β1

∑4
i=1 δ(xs 6= xi)− β2

∑8
i=5 δ(xs 6= xi)}

26



Conditional Probability of a Pixel (Continued)

Neighbors Xs

xs

1 V1(0,x∂s) = 21

1

0 0 0

0

0

V1(1,x∂s) = 2

V2(0,x∂s) = 1

V2(1,x∂s) = 3

• Define

v1(xs, ∂xs)
4
= # of horz./vert. neighbors 6= xs

v2(xs, ∂xs)
4
= # of diag. neighbors 6= xs

• Then

p(xs|xi6=s) =
1

Z ′
exp {−β1v1(xs, ∂xs)− β2v2(xs, ∂xs)}

where Z ′ is an easily computed normalizing constant

•When β1, β2 > 0, Xs is most likely to be the majority neighboring class.
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Line Process MRF [68]
Pixels

Line sites

MRF

β1=0

β2=2.7

β3=1.8

β4=0.9

β5=1.8

β6=2.7

Clique Potentials

• Line sites fall between pixels

• The values β1, · · · , β2 determine the potential of line sites

• The potential of pixel values is

V (xs, xr, lr,s) =















(xs − xr)
2 if lr,s = 0

0 if lr,s = 1

• The field is

– Smooth between line sites

– Discontinuous at line sites
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Simulation

• Topics to be covered:

– Metropolis sampler

– Gibbs sampler

– Generalized Metropolis sampler
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Generating Samples from a Gibbs Distribution

• How do we generate a random variable X with a Gibbs distribution?

p(x) =
1

Z
exp {−U(x)}

• Generally, this problem is difficult.

• Markov Chains can be generated sequentially

• Non-causal structure of MRF’s makes simulation difficult.
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The Metropolis Sampler[118, 100]

• How do we generate a sample from a Gibbs distribution?

p(x) =
1

Z
exp {−U(x)}

• Start with the sample xk, and generate a new sample W with probability
q(w|xk).

Note: q(w|xk) must be symmetric.

q(w|xk) = q(xk|w)

• Compute ∆E(W ) = U(W )− U(xk), then do the following:

If ∆E(W ) < 0

– Accept: Xk+1 = W

If ∆E(W ) ≥ 0

– Accept: Xk+1 = W with probability exp{−∆E(W )}

– Reject: Xk+1 = xk with probability 1− exp{−∆E(W )}
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Ergodic Behavior of Metropolis Sampler

• The sequence of random fields, Xk, form a Markov chain.

• Let p(xk+1|xk) be the transition probabilities of the Markov chain.

• Then Xk is reversible

p(xk+1|xk) exp{−U(xk)} = exp{−U(xk+1)}p(xk|xk+1)

• Therefore, if the Markov chain is irreducible, then

lim
k→∞

P{Xk = x} =
1

Z
exp{−U(x)}

• If every state can be reached, then as k → ∞, Xk will be a sample from
the Gibbs distribution.
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Example Metropolis Sampler for Ising Model

xs

0

1

0

0

• Assume xks = 0.

• Generate a binary R.V., W , such that P{W = 0} = 0.5.

∆E(W ) = U(W )− U(xks)

=















0 if W = 0
2β if W = 1

If ∆E(W ) < 0

– Accept Xk+1
s = W

If ∆E(W ) ≥ 0

– Accept: Xk+1
s = W with probability exp{−∆E(W )}

– Reject: Xk+1
s = xks with probability 1− exp{−∆E(W )}

• Repeat this procedure for each pixel.

•Warning: for β > βc convergence can be extremely slow!
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Example Simulation for Ising Model(β = 1.0)

• Test 1

2 4 6 8 10 12 14 16
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• Test 2
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• Test 3
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• Test 3
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Advantages and Disadvantages of Metropolis
Sampler

• Advantages

– Can be implemented whenever ∆E is easy to compute.

– Has guaranteed geometric convergence.

• Disadvantages

– Can be slow if there are many rejections.

– Is constrained to use a symmetric transition function q(xk+1|xk).
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Gibbs Sampler[68]

• Replace each point with a sample from its conditional distribution

p(xs|x
k
i i 6= s) = p(xs|x∂s)

• Scan through all the points in the image.

• Advantage

– Eliminates need for rejections ⇒ faster convergence

• Disadvantage

– Generating samples from p(xs|x∂s) can be difficult.
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Generalized Metropolis Sampler[80, 129]

• Hastings and Peskun generalized the Metropolis sampler for transition func-
tions q(w|xk) which are not symmetric.

• The acceptance probability is then

α(xks, w) = min















1,
q(xk|w)

q(w|xk)
exp{−∆E(w)}















• Special cases

q(w|xk) = q(xk|z) ⇒ conventional Metropolis

q(ws|x
k) = p(xks|x

k
∂s)

∣

∣

∣

∣xks=ws
⇒ Gibbs sampler

• Advantage

– Transition function may be chosen to minimize rejections[76]
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Parameter Estimation for Discrete State MRF’s

• Topics to be covered:

– Why is it difficult?

– Coding/maximum pseudolikehood

– Least squares
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Why is Parameter Estimation Difficult?

• Consider the ML estimate of β for an Ising model.

• Remember that

t1(x) = (# horz. and vert. neighbors of different value.)

• Then the ML estimate of β is

β̂ = argmax
β















1

Z(β)
exp {−βt1(x)}















= argmax
β
{−βt1(x)− logZ(β)}

• However, logZ(β) has an intractable form

logZ(β) = log
∑

x
exp {−βt1(x)}

• Partition function can not be computed.
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Coding Method/Maximum Pseudolikelihood[15, 16]

4 pt
Neighborhood Code 1

Code 2

Code 3

Code 4

• Assume a 4 point neighborhood

• Separate points into four groups or codes.

• Group (code) contains points which are conditionally independent given the
other groups (codes).

β̂ = argmax
β

∏

s∈Codek
p(xs|x∂s)

• This is tractable (but not necessarily easy) to compute
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Least Squares Parameter Estimation[49]

• It can be shown that for an Ising model

log
P{Xs = 1|x∂s}

P{Xs = 0|x∂s}
= −β (V1(1|x∂s)− V1(0|x∂s))

• For each unique set of neighboring pixel values, x∂s, we may compute

– The observed rate of log P{Xs=1|x∂s}
P{Xs=0|x∂s}

– The value of (V1(1|x∂s)− V1(0|x∂s))

– This produces a set of over-determined linear equations which can be
solved for β.

• This least squares method is easily implemented.
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Theoretical Results in Parameter Estimation for
MRF’s

• Inconsistency of ML estimate for Ising model[130, 131]

– Caused by critical temperature behavior.

– Single sample of Ising model cannot distinguish between high β with
mean 1/2, and low β with large mean.

– Not identifiable

• Consistency of maximum pseudolikelihood estimate[69]

– Requires an identifiable parameterization.
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Application of MRF’s to Segmentation

• Topics to be covered:

– The Model

– Bayesian Estimation

– MAP Optimization

– Parameter Estimation

– Other Approaches
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Bayesian Segmentation Model

1

2

3

0

Y - Texture feature vectors 
observed from image.

X - Unobserved field containing
the class of each pixel

• Discrete MRF is used to model the segmentation field.

• Each class is represented by a value Xs ∈ {0, · · · ,M − 1}

• The joint probability of the data and segmentation is

P{Y ∈ dy,X = x} = p(y|x)p(x)

where

– p(y|x) is the data model

– p(x) is the segmentation model

44



Bayes Estimation

• C(x,X) is the cost of guessing x when X is the correct answer.

• X̂ is the estimated value of X .

• E[C(X̂,X)] is the expected cost (risk).

• Objective: Choose the estimator X̂ which minimizes E[C(X̂,X)].
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Maximum A Posteriori (MAP) Estimation

• Let C(x,X) = δ(x 6= X)

• Then the optimum estimator is given by

X̂MAP = argmax
x

px|y(x|Y )

= argmax
x
log

py,x(Y, x)

py(Y )

= argmax
x
{log p(Y |x) + log p(x)}

• Advantage:

– Can be computed through direct optimization

• Disadvantage:

– Cost function is unreasonable for many applications
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Maximizer of the Posterior Marginals (MPM)
Estimation[116]

• Let C(x,X) =
∑

s∈S
δ(xs 6= Xs)

• Then the optimum estimator is given by

X̂MPM = argmax
xs

pxs|Y (xs|Y )

• Compute the most likely class for each pixel

• Method:

– Use simulation method to generate samples from px|y(x|y).

– For each pixel, choose the most frequent class.

• Advantage:

– Minimizes number of misclassified pixels

• Disadvantage:

– Difficult to compute
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MAP Optimization for Segmentation

• Assume the data model

py|x(y|x) =
∏

s∈S
p(ys|xs)

• And the prior model (Ising model)

px(x) =
1

Z ′
exp{−βt1(x)}

• Then the MAP estimate has the form

x̂ = argmin
x

{

− log py|x(y|x) + βt1(x)
}

• This optimization problem is very difficult

48



Iterated Conditional Modes [16]

• The problem:

x̂MAP = argminx











−
∑

s∈S
log pys|xs(ys|xs) + βt1(x)











• Iteratively minimize the function with respect to each pixel, xs.

x̂s = argminxs

{

− log pys|xs(ys|xs) + βv1(xs|x∂s)
}

• This converges to a local minimum in the cost function
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Simulated Annealing [68]

• Consider the Gibbs distribution

1

Z
exp











−
1

T
U(x)











where
U(x) =

∑

s∈S
log pys|xs(ys|xs) + βt1(x)

• As T → 0, the distribution becomes clustered about x̂MAP .

• Use simulation method to generate samples from distribution.

• Slowly let T → 0.

• If Tk =
T1

1+log k for iteration k, the the simulation converges to x̂MAP almost
surely.

• Problem: This is very slow!
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Multiscale MAP Segmentation

• Renormalization theory[72]

– Theoretically results in the exact MAP segmentation

– Requires the computation of intractable functions

– Can be implemented with approximation

• Multiscale resolution segmentation[23]

– Performs ICM segmentation in a coarse-to-fine sequence

– Each MAP optimization is initialized with the solution from the previous
coarser resolution

– Used the fact that a discrete MRF constrained to be block constant is
still a MRF.

• Multiscale Markov random fields[97]

– Extended MRF to the third dimension of scale

– Formulated a parallel computational approach
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Segmentation Example

• Iterated Conditional Modes (ICM): ML ; ICM 1; ICM 5; ICM 10
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• Simulated Annealing (SA): ML ; SA 1; SA 5; SA 10
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Texture Segmentation Example

a b
c d

a) Synthetic image with 3 textures b) ICM - 29 iterations c) Simulated
Annealing - 100 iterations d) Multiresolution - 7.8 iterations
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Parameter Estimation

XRandom Field 
Model

θ

Physical System
Y

Data Collection

φ

• Question: How do we estimate θ from Y ?

• Problem: We don’t know X !

• Solution 1: Joint MAP estimation [104]

(θ̂, x̂) = argmax
θ,x

p(y, x|θ)

– Problem: The solution is biased.

• Solution 2: Expectation maximization algorithm [9, 70]

θ̂k+1 = argmax
θ

E[log p(Y,X|θ)|Y = y, θk]

– Expectation may be computed using simulation techniques or mean field
theory.

54



Other Approaches to using Discrete MRFs

• Dynamic programming does not work in 2-D, but a number of researchers
have formulated approximate recursive solutions to MAP estimation[48,
169].

• Mean field theory has also been studied as a method for computing the
MPM estimate[176].
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Gaussian Random Process Models

• Topics to be covered:

– Autoregressive (AR) models

– Simultaneous Autoregressive (SAR) models

– Gaussian MRF’s

– Generalization to 2-D
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Autoregressive (AR) Models

en = xn −
∞
∑

k=1
xn−khk

Xn-2 Xn-1 Xn Xn+1 Xn+2Xn-3 Xn+3

H(ejω)
+

-

en

• H(ejω) is an optimal predictor ⇒ e(n) is white noise.

• The density for the N point vector X is given by

px(x) =
1

Z
exp







−
1

2
xtAtAx







where

A =















1 −hm−n
. . .

0 1















Z = (2π)N/2|A|−1 = (2π)N/2

• The power spectrum of X is

Sx(e
jω) =

σ2
e

|1−H(ejω)|2
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Simultaneous Autoregressive (SAR) Models[95, 94]

en = xn −
∞
∑

k=1
(xn−k − xn+k)hk

Xn-2 Xn-1 Xn Xn+1 Xn+2Xn-3 Xn+3

H(ejω)
+

-

en

• e(n) is white noise ⇒ H(ejω) is not an optimal non-causal predictor.

• The density for the N point vector X is given by

px(x) =
1

Z
exp







−
1

2
xtAtAx







where

A =















1 −hm−n
. . .

−hn−m 1















Z = (2π)N/2|A|−1 ≈ (2π)N/2 exp







−
N

2π

∫ π

−π
log |1−H(ejω)|dω







• The power spectrum of X is

Sx(e
jω) =

σ2
e

|1−H(ejω)|2
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Conditional Markov (CM) Models (i.e.
MRF’s)[95, 94]

en = xn −
∞
∑

k=1
(xn−k − xn+k)gk

Xn-2 Xn-1 Xn Xn+1 Xn+2Xn-3 Xn+3

G(ejω)
+

-

en

• G(ejω) is an optimal non-causal predictor ⇒ e(n) is not white noise.

• The density for the N point vector X is given by

px(x) =
1

Z
exp







−
1

2
xtBx







where

B =















1 −gm−n
. . .

−gn−m 1















Z = (2π)N/2|B|−1/2 ≈ (2π)N/2 exp







−
N

4π

∫ π

−π
log(1−G(ejω))dω







• The power spectrum of X is

Sx(e
jω) =

σ2
e

1−G(ejω)
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Generalization to 2-D

• Same basic properties hold.

• Circulant matrices become circulant block circulant.

• Toeplitz matrices become Toeplitz block Toeplitz.

• SAR and MRF models are more important in 2-D.
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Non-Gaussian Continuous State MRF’s

• Topics to be covered:

– Quadratic functions

– Non-Convex functions

– Continuous MAP estimation

– Convex functions
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Why use Non-Gaussian MRF’s?

• Gaussian MRF’s do not model edges well.

• In applications such as image restoration and tomography, Gaussian MRF’s
either

– Blur edges

– Leave excessive amounts of noise
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Gaussian MRF’s

• Gaussian MRF’s have density functions with the form

p(x) =
1

Z
exp















−
∑

s∈S
asx

2
s −

∑

{s,r}∈C
bsr|xs − xr|

2















•We will assume as = 0.

• The terms |xs − xr|
2 penalize rapid changes in gray level.

• MAP estimate has the form

x̂ = argmin
x















− log p(y|x) +
∑

{s,r}∈C
bsr|xs − xr|

2















• Problem: Quadratic function, | · |2, excessively penalizes image edges.
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Non-Gaussian MRF’s Based on Pair-Wise Cliques

•We will consider MRF’s with pair-wise cliques

p(x) =
1

Z
exp















−
∑

{s,r}∈C
bsrρ







xs − xr
σ





















|xs − xr| - is the change in gray level.

σ - controls the gray level variation or scale.

ρ(∆):

– Known as the potential function.

– Determines the cost of abrupt changes in gray level.

– ρ(∆) = |∆|2 is the Gaussian model.

ρ′(∆) = dρ(∆)
d∆ :

– Known as the influence function from “M-estimation”[139, 85].

– Determines the attraction of a pixel to neighboring gray levels.
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Non-Convex Potential Functions

Authors ρ(∆) Ref. Potential func. Influence func.

Geman and McClure ∆2

1+∆2 [70, 71] −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
Geman_McClure Potential Function

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3
Geman_McClure Influence Function

Blake and Zisserman min
{

∆2, 1
}

[20, 19] −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
Blake_Zisserman Potential Function

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3
Blake_Zisserman Influence Function

Hebert and Leahy log
(

1 + ∆2
)

[81] −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
Hebert_Leahy Potential Function

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3
Hebert_Leahy Influence Function

Geman and Reynolds |∆|
1+|∆| [66] −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3
Geman_Reynolds Potential Function

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3
Geman_Reynolds Influence Function
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Properties of Non-Convex Potential Functions

• Advantages

– Very sharp edges

– Very general class of potential functions

• Disadvantages

– Difficult (impossible) to compute MAP estimate

– Usually requires the choice of an edge threshold

– MAP estimate is a discontinuous function of the data
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Continuous (Stable) MAP Estimation[25]

• Minimum of non-convex function can change abruptly.

1x x2

location of
minimum

1 2x x

location of
minimum

• Discontinuous MAP estimate for Blake and Zisserman potential.
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Unstable Reconstructions
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• Theorem:[25] - If the log of the posterior density is strictly convex, then
the MAP estimate is a continuous function of the data.
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Convex Potential Functions
Authors(Name) ρ(∆) Ref. Potential func. Influence func.

Besag |∆| [17] −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
Besage Potential Function

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3
Besage Influence Function

Green log cosh∆ [75] −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
Green Potential Function

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3
Green Influence Function

Stevenson and Delp
(Huber function)

min
{

|∆|2, 2|∆|−1
}

[155] −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
Stevenson_Delp Potential Function

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3
Stevenson_Delp Influence Function

Bouman and Sauer
(Generalized Gaus-
sian MRF)

|∆|p [25] −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
Bouman_Sauer Potential Function

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3
Bouman_Sauer Influence Function
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Properties of Convex Potential Functions

• Both log cosh(∆) and Huber functions

– Quadratic for |∆| << 1

– Linear for |∆| >> 1

– Transition from quadratic to linear determines edge threshold.

• Generalized Gaussian MRF (GGMRF) functions

– Include |∆| function

– Do not require an edge threshold parameter.

– Convex and differentable for p > 1.
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Parameter Estimation for Continuous MRF’s

• Topics to be covered:

– Estimation of scale parameter, σ

– Estimation of temperature, T , and shape, p
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ML Estimation of Scale Parameter, σ, for
Continuous MRF’s [26]

• For any continuous state Gibbs distribution

p(x) =
1

Z(σ)
exp {−U(x/σ)}

the partition function has the form

Z(σ) = σNZ(1)

• Using this result the ML estimate of σ is given by

σ

N

d

dσ
U(x/σ)

∣

∣

∣

∣

∣

∣

∣σ=σ̂
− 1 = 0

• This equation can be solved numerically using any root finding method.
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ML Estimation of σ for GGMRF’s [108, 26]

• For a Generalized Gaussian MRF (GGMRF)

p(x) =
1

σNZ(1)
exp















−
1

pσp
U(x)















where the energy function has the property that for all α > 0

U(αx) = αpU(x)

• Then the ML estimate of σ is

σ̂ =






1

N
U(x)







(1/p)

• Notice for that for the i.i.d. Gaussian case, this is

σ̂ =

√

√

√

√

√

√

1

N

∑

s
|xs|2
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Estimation of Temperature, T , and Shape, p,
Parameters

• ML estimation of T [71]

– Used to estimate T for any distribution.

– Based on “off line” computation of log partition function.

• Adaptive method [133]

– Used to estimate p parameter of GGMRF.

– Based on measurement of kurtosis.

• ML estimation of p[145, 144]

– Used to estimate p parameter of GGMRF.

– Based on “off line” computation of log partition function.
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Example Estimation of p Parameter
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(c)

• ML estimation of p for (a) transmission phantom (b) natural image (c) image corrupted

with Gaussian noise. The plot below each image shows the corresponding negative log-

likelihood as a function of p. The ML estimate is the value of p that minimizes the plotted

function.
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Application to Tomography

• Topics to be covered:

– Tomographic system and data models

– MAP Optimization

– Parameter estimation
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The Tomography Problem

• Recover image cross-section from integral projections

• Transmission problem

Emitter

Detector  i

Y  - detected events i

yT - dosage

x   - absorption of pixel jj

• Emission problem

Detector  i

Detector  i

x  - detection rate jP ij

x  - emission ratej
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Statistical Data Model[27]

• Notation

– y - vector of photon counts

– x - vector of image pixels

– P - projection matrix

– Pj,∗ - j
th row of projection matrix

• Emission formulation

log p(y|x) =
M
∑

i=1
(−Pi∗x + yi log{Pi∗x} − log(yi!))

• Transmission formulation

log p(y|x) =
M
∑

i=1

(

−yTe
−Pi∗x + yi(log yT − Pi∗x)− log(yi!)

)

• Common form
log p(y|x) = − ∑M

i=1 fi(Pi∗x)

– fi(·) is a convex function

– Not a hard problem!
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Maximum A Posteriori Estimation (MAP)

• MAP estimate incorporates prior knowledge about image

x̂ = argmax
x

p(x|y)

= argmax
x>0















−
M
∑

i=1
fi(Pi∗x)−

∑

k<j
bk,j ρ(xk − xj)















• Can be solved using direct optimization

• Incorporates positivity constraint
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MAP Optimization Strategies

• Expectation maximization (EM) based optimization strategies

– ML reconstruction[151, 107]

– MAP reconstruction[81, 75, 84]

– Slow convergence; Similar to gradient search.

– Accelerated EM approach[59]

• Direct optimization

– Preconditioned gradient descent with soft positivity constraint[45]

– ICM iterations (also known as ICD and Gauss-Seidel)[27]
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Convergence of ICM Iterations:
MAP with Generalized Gaussian Prior q = 1.1

• ICM also known as iterative coordinate descent (ICD) and Gauss-Seidel

0 10 20 30 40 50
Iteration Number
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GGMRF Prior, q=1.1
γ = 3.0

ICD/NR
GEM
OSL
DePierro’s

• Convergence of MAP estimates using ICD/Newton-Raphson updates, Green’s
(OSL), and Hebert/Leahy’s GEM, and De Pierro’s method, and a general-
ized Gaussian prior model with q = 1.1 and γ = 3.0.
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Estimation of σ from Tomographic Data

• Assume a GGMRF prior distribution of the form

p(x) =
1

σNZ(1)
exp















1

pσp
U(x)















• Problem: We don’t know X !

• EM formulation for incomplete data problem

σ(k+1) = argmax
σ

E
{

log p(X|σ)|Y = y, σ(k)
}

=




E











1

N
U(X)|Y = y, σ(k)

















1/p

• Iterations converge toward the ML estimate.

• Expectations may be computed using stochastic simulation.
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Example of Estimation of σ from Tomographic Data

Accelerated Metropolis

Metropolis            

Projected sigma       
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• The above plot shows the EM updates for σ for the emission phantom
modeled by a GGMRF prior (p = 1.1) using conventional Metropolis (CM)
method, accelerated Metropolis (AM) and the extrapolation method. The
parameter s denotes the standard deviation of the symmetric transition
distribution for the CM method.
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Example of Tomographic Reconstructions

a b c d e

• (a) Original transmission phantom and (b) CBP reconstruction. Recon-
structed transmission phantom using GGMRF prior with p = 1.1 The scale
parameter σ is (c) σ̂ML ≈ σ̂CBP , (d)

1
2σ̂ML, and (e) 2σ̂ML

• Phantom courtesy of J. Fessler, University of Michigan
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Multiscale Stochastic Models

• Generate a Markov chain in scale

• Some references

– Continuous models[12, 5, 111]

– Discrete models[29, 111]

• Advantages:

– Does not require a causal ordering of image pixels

– Computational advantages of Markov chain versus MRF

– Allows joint and marginal probabilities to be computed using forward/backward
algorithm of HMM’s.
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Multiscale Stochastic Models for Continuous State
Estimation

• Theory of 1-D systems can be extended to multiscale trees[6, 7].

• Can be used to efficiently estimate optical flow[111].

• These models can approximate MRF’s[112].

• The structure of the model allows exact calculation of log likelihoods for
texture segmentation[113].
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Multiscale Stochastic Models for Segmentation[29]

• Multiscale model results in non-iterative segmentation

• Sequential MAP (SMAP) criteria minimizes size of largest misclassification.

• Computational comparison

Replacements per pixel

SMAP
SMAP
+ par.
est.

SA 500 SA 100 ICM

image1 1.33 3.13 504 105 28
image2 1.33 3.55 506 108 28
image3 1.33 3.14 505 104 10
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Segmentation of Synthetic Test Image

Synthetic Image Correct Segmentation

SMAP 100 Iterations of SA
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Multispectral Spot Image Segmentation

SPOT image

SMAP Maximum Likelihood
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High Level Image Models

• MRF’s have been used to

– model the relative location of objects in a scene[119].

– model relational constraints for object matching problems[109].

• Multiscale stochastic models

– have been used to model complex assemblies for automated inspection[166].

– have been used to model 2-D patterns for application in image search[154].
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