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Scene Labeling by Relaxation Operations
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Abstract-Given a set of objects in a scene whose identifications are
ambiguous, it is often possible to use relationships among the objects to
reduce or eliminate the ambiguity. A striking example of this approach
was given by Waltz [13]. This paper formulates the ambiguity-reduction
process in terms of iterated parallel operations (i.e., relaxation operations)
performed on an array of (object, identification) data. Several different
models of the process are developed, convergence properties of these
models are established, and simple examples are given.

I. INTRODUCTION
S UPPOSE that we are analyzing a picture or scene, with

the aim of describing it, and that we have detected a
set of objects a1, * ,a, in the scene, but have not identified
them unambiguously. The relationships that exist among
the objects can often be used to reduce, or even eliminate,
the ambiguity.
To illustrate this idea, let us suppose that the "objects"

are the individual line segments in an ideal line drawing
representing a set of polyhedra. Each line segment has
several interpretations; it may represent a) a convex dihedral
angle, with both faces visible, b) a concave dihedral angle,
with both faces visible, or c) a dihedral angle (in the limiting
case, a flat cutout) with only one face visible, so that the line
is an occluding edge. In c) there are two subcases, since the
visible face can be on either side of the line. When lines
meet at a vertex, however, not all of the possible combina-
tions of these interpretations will be consistent, so that the
ambiguity of the drawing can be reduced. This problem
domain has been investigated by Clowes [1], Huffman [5],
Waltz [13], and others.
As a simple example, consider the triangle shown in

Fig. l(a). This can be interpreted as

a) a triangular cutout floating above the background
(Fig. 1(b)),

c a triangular hole in the background (Fig. 1(c)),

(In both of these cases, all the lines are occluding edges,
but in a) the triangle face is visible, while in f) the back-
ground face is visible.)

y) a triangular flap of the background, folded toward
the viewer along one of the edges (Figs. l(d)-(f));
here one edge is concave, and the other two are
occluding, with the triangle in front,

() the same, but folded back (Figs. 1(g)-(i)); one edge
is convex, and the other two are occluding, with the
triangle in back.
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a) Picture: A

Interpretations:

b)
Triangle floating
above background

d) Z

e)fz

f) z

Triangular flaps
folded upward

/17
c)

Triangular hole
in background

g) j7

h)

i) 7
Triangular flaps
folded downward

Fig. 1. Simple example of scene labeling.

We thus have a total of eight cases, but this is only a frac-
tion of the 43 = 64 possible combinations. In some circum-
stances, there could be a unique consistent interpretation,
or even no consistent interpretation (i.e., we have an
"impossible object"); these possibilities will be discussed
further elsewhere in this paper.
Up to now, we have treated each interpretation as either

possible or impossible; fuzzy or probabilistic interpretations
were not allowed. This may be reasonable in the ideal line
drawing case, where the individual lines are completely
ambiguous, and we have no evidence favoring one inter-
pretation over another, so that there is no basis for introduc-
ing weights or probabilities. (We exclude here the possibility
that the observer has preferences-e.g., he might favor
occluding edges over convex or concave edges; see Section
VI.) Suppose, however, that we were given a gray-scale
image, rather than a line drawing. It then may not be
equally likely that the edges in this image represent convex,
concave, or occluded dihedrals. For example, under some
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conditions of illumination we might expect a convex dihedral
to have a slight highlight along it and a concave dihedral to
have a slight shadow. If the image is noisy, we may not be
certain that we have detected such highlights or shadows,
but we may still be able to attach weights or probabilities
to the possible interpretations of each edge.

This paper describes several models for ambiguity-
reduction processes. Section II presents a discrete model
in which each interpretation of each object is either pos-
sible or impossible. The process is similar to the filtering
scheme of Waltz [13, Section 2.4], except that it is imple-
mented as an iterated parallel operation on the array of
(object, interpretation) pairs, rather than sequentially, one
object at a time. It is proved that if one initially assigns
every possible interpretation to every object and then
discards incompatible interpretations until no further dis-
carding is possible, what remains is the greatest set of
consistent interpretations (compare Turner [11, Section
10.2]). This set can be used as a starting point in con-
structing consistent ambiguous interpretations.

Section III introduces a fuzzy model which generalizes
the discrete model by allowing each interpretation to have
a weight between 0 and 1. Here again, we initially assign
every interpretation to every object with weight 1 and then
repeatedly weaken the weights, as dictated by quantitative
compatibility relations, by performing an iterated parallel
operation on the array of (object, interpretation weight)
pairs. It is shown that this process converges to a strongest
set of compatible weights.

In Section IV we develop a probabilistic model in which
the sum of the weights of the interpretations of any given
object is required to be 1, so that the weights can be inter-
preted as probabilities. We first study a linear process of
weight modification (again, performed in parallel on the
array of (object, weight) pairs), but this turns out, in many
cases, to converge to a fixed limit no matter how the initial
weights are chosen. Section V discusses nonlinear weight
modification processes which do not have this disadvantage.
An early use of constraint satisfaction in problem solving

is described by Fikes [3]. More recently, Gaschnig [4] has
used discrete relaxation techniques for applying con-
straints in solving cryptarithmetic problems, and Tenen-
baum [10] proposes the use of a generalized relaxation
scheme for region merging in a scene analysis system. The
present authors and their colleagues are also applying
relaxation methods to a variety of scene processing and
labeling problems, including curve detection, cluster
detection, noise cleaning, and template matching; the
results will be described in a series of forthcoming reports.

II. THE DISCRETE MODEL
The model developed in this section generalizes the ideal

line drawing example discussed in Section I. As already
mentioned, it is basically a parallel version of the filtering
process implemented by Waltz [13].

Let A = {a,,...,al} be the set of objects to be labeled,
and A = {Al, 4-m} the set of possible labels. For any
given object ai, not every label in A may be appropriate;

for example, if the objects are the junctions (rather than
the lines) in an ideal line drawing, some labels will be
appropriate for L-junctions, others for fork junctions, others
for arrow junctions, etc. (see Waltz [13, Fig. 2.3]). Let
Ai ' A be the set of labels that are compatible with (i.e.,
possible for) object ai, 1 < i < n.

For each pair of objects (ai,aj), where i # j, some pairs
of labels may be compatible and others may not. Let
Aij c A, x Aj be the set of compatible pairs of labels; thus
(X,X') E j means that it is possible that ai has label A and
aj has label i'. Here Aij depends on the relationship between
ai and a. in the scene. If ai and aj are irrelevant to one
another, then there are no restrictions on the possible pairs
of labels that they can have, so that Aij = Ai x Ai. In the
line drawing models studied by Waltz et al., two junctions
constrain (i.e., are relevant to) one another only if there
is a line connecting them. For uniformity of notation we
define Aii = {(A,A) A E Ai} for all i. We can, if desired,
also assume that Aij = Aji for all i and]j.
By a labeling 9' = (L1, .. ,Ln) of A we mean an assign-

ment of a set of labels Li ' A to each ai E A. We say that
the labeling 9 is contained in the labeling 9' = (L1',
Ln') if Li c Li', 1 < i < n; in this case we write Y c 9.
By the union 9 u 9' of two labelings 9 and 9', we mean
the labeling that assigns to each ai E A the label set L, t' Li';
the intersection can be defined similarly.
The labeling 9 is called consistent if, for all i,j, we have

for all A E Li.

For i + j, this means that for each pair of objects (ai,a)
and each label )i in Li there exists a label A' in Li that is
compatible with A, i.e., (A,A') E Aij. Note that if Aij =
Ai x Aj, this is no restriction, provided Lj # 0. For
i= j, the condition reduces to

A E Li implies (A,A) c Aii,
in other words, to Li c A., which means that every label in
Li is a possible label for ai.
There always exist consistent labelings; in particular,

the null labeling 9 - (0, ,0) is trivially consistent
(the "for all A E Li" condition is vacuously satisfied). On
the other hand, if Y = (L1,...*L,) is a nonnull consistent
labeling, then every Li must be nonempty. Indeed, if we had
Li 0 and Lj = 0 for some i,j, the definition of con-
sistency would be immediately violated. We can also prove
that there exists a greatest consistent labeling, i.e., a labeling
9'(') such that

1) 9(') is consistent.
2) For any consistent labeling 9 we have 9 c Y(').

We first prove the following proposition.
Proposition 1: If9 and 9' are consistent, so is Y u 9'.

Proof: For all A e (Li u Li') we have A e Li or Ae Li'.
In the former case there exists A' E Lj, for any j, such that
(,A') cE Aij, and in the latter case there exists such a A' E Li'.
Thus in either case there is such a A' E (Lj u Li).

Corollary 2: There is a greatest consistent labeling 9(').
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Proof: There are only finitely many possible labelings,
since A and A are finite. Thus by induction on Proposition 1,
any union of consistent labelings is consistent. (In fact, the
proof of Proposition 1 could be easily extended to infinite
unions, if necessary.) Thus the union Y(') of all consistent
labelings is consistent, and clearly any consistent labeling
c this union.

It should be pointed out that Y(9) may be null; in other
words, there may not exist a nonnull consistent labeling.
Even if Y(9) is not null, it is possible that there is no way
to assign single labels consistently to the objects. For
example, suppose that A {a1,a2,a3}, and that

A = A1 = A2 = A3 = {R,W}
A12 = A23 {(=,AV,P))
A13 = {(RiY),IM)}

Then readily, the labeling (')-= (A,A,A) is consistent, but
it can be verified that no labeling using single labels is con-
sistent. (If we discard, let us say, p from a,, we must discard
p from a2 and A from a3; this in turn implies that we must
discard p from a3, so that the whole labeling becomes null.)
Thus this situation corresponds to an "impossible object."
We call a labeling unambiguous if it is consistent and assigns
only a single label to each object.
A useful way of representing labelings is in terms of

what we shall call the labeling network. This is a graph G
whose nodes are the pairs (i,A), for all 1 . i < n and all
A E Ai. The nodes (i,A) and (j,A') are joined by an arc if and
only if (A,A') E A ij. To any labeling ' = (L1, .*,L") there
corresponds a subgraph G, of G whose nodes are the pairs
(i,A) for all A E Li. For example, the graph corresponding
to the labeling Y(9) in the preceding paragraph can be
represented schematically by

a, a2 a3

9 is consistent if and only if, for each node (i,A) of Gy
and each j, there exists a node (j,A') of Gy that is joined
to (i,A) by an arc. 9 is unambiguous if and only if it is
consistent and has only one node (i,A), for each i. Readily,
if 9 is unambiguous, the subgraph Gy is a clique, since
every (i,A) must be joined by an arc to every other. An
ambiguous consistent labeling, on the other hand, need not

even have a connected graph. For example, the graph
defined by

a, a2 a3

has two disjoint connected components, but corresponds to
a consistent labeling. When the network is disconnected,
the scene labeling problem can be broken up into disjoint
subproblems, each involving only the labels associated
with a particular connected component.

To illustrate these ideas in greater detail, let us examine
more closely the triangle example of Fig. l. We shall use
the (+, ,-*) line labels used by Waltz [13] et al.; their
meaning is as follows:

Label Meaning
+ convex,
- concave,

occluding, with the right-hand region (when one
faces along the line in the direction of the arrow)
hiding the left-hand region.

Note that when a line is labeled with an arrow, the arrow can
point in either direction; thus the arrow should actually be
regarded as two different labels. A priori, each line can have
any one of these labels, but at an L junction, only six of the
42 = 16 possible label pairs are compatible:

Label pair

A

A -A/AA\

Meaning

junction floating above background

junction on hole in background

one line ofjunction is a concave edge,
the other is above background

one line of junction is a convex edge,
the other is on a hole in background

In our triangle example, for each of the three lines a1,
a2, a3 we have Ai= {±,-,+-,+-+}, and for each pair of
lines (ai,a,), Aij is the set of six pairs shown above. The
network for this concept of compatibility is shown in Fig.
2(a). It consists of two components, one involving only +'s
and *-'s, the other only -'s and -+'s; only the first of these
components is shown in the figure. Each of these com-

ponents contains four cliques, as shown in Fig. 2(b); these
cliques correspond to the unambiguous labelings of Fig. 1.
We now establish the validity of a parallel algorithm for

constructing 9('), the greatest consistent labeling. As in-
dicated earlier, this algorithm is basically a parallel version
of the filtering process used by Waltz [13]. In terms of the
network, this algorithm discards any node (i,A) if, for some

j, there does not exist a node (j,A') that is joined to (i,A)
by an arc. Such nodes cannot possibly belong to any un-

ambiguous labeling; hence if our main interest is in un-

ambiguous labelings, it is safe to discard such nodes.
Our algorithm operates as follows. We start with the

initial labeling 9(O) - {A,,. . .,An}. Let 27(k) be the labeling
at the kth application of the algorithm. To obtain the label-
ing at the (k + 1)st step, we discard from each Lijk) any label
A such that ({A} x L (k)) n Aij = 0 for some j. In other
words, we keep the label A at a, if, for every aj, there is a

label A' E L(k) at aj which is compatible with A; otherwise,
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a) Labelling network for this example

a1 a2 a3

+

(only the component involving +'s and -'s is shown; the

other component is an isomorphic graph involving -Is and

+-s instead.)

b) Cliques (for the component
involving +'s and -'s)

a1 a2 a3

a1 a2 a3

a1 a2 a3

+ **

a 1 a2 a3

Corresponding interpreta-
tions of Figure 1

(c)

(g)

(h)

(i)

+

Fig. 2. Compatibilities for example in Fig. 1.

we discard A. We shall refer to this algorithm in what fol-
lows as A.
As an immediate consequence of the definitions of A and

of consistency, we have the following propositions.
Proposition 3: AS = S if and only if S is consistent.
Proposition 4:

yS(oo) C . ... C,(k+1) C ,(k)
... ,(0)

Proof: Since A discards labels, but never adds them, we
clearly have 29(k+1) C (k) for all k = 0,1,2,-. We now

prove by induction that S(I) c 2?(k for all k. Since S(I)

is a consistent labeling, we have Li(') c Ai for all i, from
the definition of consistency; thus S(') c Y(°). Suppose
that SI(c) c: ?(k) and let A E Li(") c Li(k). Then for every
j, there exists A' E L(c) ca L (k) such that (A,4') e Aij, by
definition of consistency. Hence A is not discarded from
object ai at the kth step, so that A E L.k+I). Since i and A
were arbitrary, we have thus shown that L,(') ca L(k+ 1) for
all i, so that 6(cQ) c- (k+ 1).
We can now prove the following theorem.
Theorem 5: There exists a k such that T,(k) =- (o).
Proof: A and A are finite, so that we cannot have

,T(kI1) i T(k) for infinitely many k, since y(k+1) g (k)
means that at least one label was discarded from at least one
object. Hence for some k we have 9(k) = (k+l), and by
Proposition 3, this means that T(k) is consistent. However,

c(0) C ,(k) (Proposition 4), and S(') is the greatest
consistent labeling (Corollary 2); hence we must have

(co) = ?y(k)
We have thus shown that A, after a finite number of

repetitions, must stop at the unique greatest consistent
labeling S(I). The number of repetitions required is at
most mn, since as just pointed out, at each step before the
process stops, at least one label must be discarded from at
least one object.
To actually find unambiguous labelings, we can use a

tree search procedure similar to that used by Waltz [13].
The number ofcombinations to be tested is, in general, much
smaller when we start with T(') than if we had to start with
g(O). The search procedure can be as follows: for any object
ai such that L/(') is not a singleton, pick a particular label
A E Li(G) and discard all other labels. If the labeling

= _ r L,(OCi)}.){A1 i0') *.L (o'))
is consistent, we can repeat the process for another object
aj. If SI' is not consistent, we can repeatedly apply A to Y'.
By the proofs of Propositions 3 and 4 and Theorem 5, this
will stop, after finitely many steps, at the greatest consistent
labeling S"' that is contained in Y'. If S"' is null, there is
no unambiguous labeling in which ai has label A, and we
should start again with a different A or a different ai. If S"'
is nonnull, we have a consistent labeling which is now un-
ambiguous at i, and we can repeat the process for some
other aj for which Lj" is not a singleton. In this way we can
eventually find all the unambiguous labelings of the given
scene, if any exist.

III. A Fuzzy MODEL
In this section we present a generalization of the dis-

crete model, in which the labels have weights between 0 and
1, rather than simply being either absent or present. The
weights of the labels of a given object are not required to
sum to 1; the model is fuzzy, rather than probabilistic. (On
probabilistic models see Sections IV and V.) This fuzzy
model is not as satisfactory as the probabilistic models,
because the algorithm for applying compatibility constraints
in the fuzzy model can only decrease the weights of labels,
but never increase them. Nevertheless, we present the model
here because it does constitute a generalization of the

+ **

+
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discrete model, and it also can serve to introduce the idea
of weighted scene labeling.

Let A = {a1, ,al} and A = {Al,* ,m} be the object
and label sets, as defined in Section II. For each i, we are
given a fuzzy label set Ai associated with the object ai. This
Ai is a fuzzy subset of A, i.e., a mapping from A into the
interval [0,1]. We can think of it as defining, for each
A E A, the degree to which A is compatible with the object
ai. (In the discrete case, Ai can take on only the values 0
and 1, so that we can regard it as a subset of A, consisting
of those A's that are mapped into 1; these are the A's that
are compatible with a,.)

In addition, for each pair of objects (ai,aj), where i # j,
we are given a fuzzy set Aij of pairs of labels; this is a
mapping from A x A into [0,1]. Here Aij(A,A') can be
thought of as the degree to which label A of object ai is
compatible with label A' of object aj. We shall assume here
that

Aij(AiA') < inf (A,(A),Aj(A'))
for all i, j, A, 2'; this corresponds to the requirement, in
Section II, that Aij ' Ai x Aj. (In the discrete case, Aij
takes on only the values 0 and 1, so that it can be regarded
as a subset of Ai x Aj, consisting of those pairs (Q,A') that
are mapped into 1.) Thus ai and aj impose no constraints
on one another provided that Aij(A,A') = inf (Ai(A),Aj(A'))
for all 2,4'. As in Section II, for uniformity of notation we
define Aii(A,2) = Ai(A) for all 2, and Aii(A,A') = 0 for all
2 0 2'. We can, if desired, also assume that Aij = Aji for
all i and j.
By a fuzzy labeling 9' = (LI, * *,Ln) of A we mean an

assignment of a fuzzy subset Li of A to each ai 1 < i < n;
in other words, for each ai, we are given a mapping Li from
A into [0,1], which assigns a weight to each label. We say
that Y <.9 = (L1', . -,L.') if Li < Li' (i.e., Li(A) < Li'(A)
for all A), 1 < i < n. We also define 9 v 9' = (L1 v

Ll', ,,Ln v Ln'), where v means "sup." Here Li v L,'
is the mapping which gives any 2 E A the value sup (Li(2),
Li'(A)). These definitions are the standard fuzzy-set analogs
of inclusion and union, respectively. -

The fuzzy labeling 9 is called consistent if, for all i, j,
and 2, we have

sup [Lj(A') A Aij(2,2')] 2 Li(A)
Al

where A means "inf." For i =j, this reduces to Ai(2) >

Li(A) for all i, which means that no label has greater weight
at any object than its compatibility with that object. For
i ]j, the definition means that for each pair of objects
(ai,aj), and each label 2, there exists a label 2' whose weight
at ai and whose compatibility A,j with A are both at least as

great as the weight of 2 at ai. It is not hard to see that if the
fuzzy sets involved are allowed to take on only the values 0
and 1, this definition of consistency reduces to that in
Section II. Indeed, Li(2) = 1 requires that sup. [Lj(2') A

A,j(2,A')] = 1, so that for some 2' we have L(X') =

A,j(A,A') = 1. In other words, if 2 E Li, there exists 2' such
that 2' E Li and (2,2') E Aij, just as in Section II.

There always exist consistent fuzzy labelings; in partic-
ular, the null labeling 9' = (0,.. ,0) (each Li is the con-
stant function 0, corresponding to the empty set) is trivially
consistent. If 9 is a nonnull consistent fuzzy labeling,
then no Lj can be 0; if Li # Oand Li = 0, i and j cannot
satisfy the consistency condition. We now prove, as in Sec-
tion II, that there exists a greatest consistent fuzzy labeling
9'(%), such that for any consistent fuzzy labeling 9 we have
9'< (9)

Proposition 6: If 9 and 9" are consistent, so is 9 v 9'.
Indeed, the sup of any set of consistent fuzzy labelings is
consistent.

Proof: For all 9 we have sup,, [Lj(A') A Aij(2,2')] .

Li(2) and supt, [L1'(2') A Aij(2,2')] > Li'(2); hence, the
sup of the left members > the sup of the right members,
i.e.,

sup [(Lj v Lj')(A') A Aij(2,2')] > (Li VLi')(v).
The same argument holds for an arbitrary set of consistent
9's, taking the sup of all the left members and the sup of all
right members.

Corollary 7: There is a greatest consistent fuzzy labeling
y(o.
Proof: The sup of all the consistent fuzzy labelings is

consistent, by Proposition 6.
Note that here again, there is no guarantee that 9(') is

not null. Even if it is not, there may not exist unambiguous
'consistent fuzzy labelings, which give nonzero weight to
just one label for each object.
As in Section II, we can define a fuzzy labeling network

in which the node (i,2) has weight A,(2), and the arc joining
(i,2) to (j,2) has weight Aij(2,2'). It can be verified that
this network is a fuzzy graph in the sense of [7]. If we
threshold these weights (e.g., we keep only those nodes and
arcs whose weights >0), we obtain an ordinary graph.
To illustrate these ideas, consider the triangle example

of Figs. 1 and 2. Suppose that the a priori weights of the
labels -> for any line are 1; and of + and -, 0.7. Suppose
further that the compatibilities of the pairs of labels, when

lines meet at an L-junction, are 1 forA andA; 0.7, for

the other four pairs shown in Section II; and 0, for all
other pairs. Thus the fuzzy labeling network for this ex-
ample is as shown in Fig. 2(a), except that the nodes and
arcs should have weights attached to them as just specified.
It is not hard to see that for this choice of a priori weights,
the greatest compatible fuzzy labeling of the triangle assigns
weight 1 to the -+ labels, and weight 0.7 to + and -, at each
line. The unambiguous fuzzy labelings are as in Fig. 2, ex-

cept that the first one has all weights 1, while the other
three involve weights of 0.7.
We can define a label weakening algorithm Q2 that is

guaranteed to converge to 9('); it is a generalization of the
algorithm A in Section 2. We start with the initial fuzzy
labeling 9(O) = (A1, -,A.). To obtain r(kk+1) given 2?(k),
we let

Lj(k+ 1)(i) = inf [sup [Lj(k)(2') A Aj(A,A )]]
j Al
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for all i, j, and A. If only the values 0 and 1 are allowed,
this definition reduces to

L,k+1)(A) = 1 (j)(3')[L(k)(') = 1 and Aij(Q,)') = 1]
which is the same as the criterion for keeping label A at
object ai in Section II. It is easy to establish the following
propositions.

Proposition 8: Q. = Y if and only ifY is consistent.
Proposition 9:y(cx) < ... < ,(k+1) < ... < (0)

Proof: TheJ = i term of L(k+ 1)(Q) is sup' [Li(k)(Y) A
Ai(A,A-)]= Li(k)(A) A AQi() < Li(k)(); hence, the inf (onj)
of all the terms is also <Li (k)((A), for all i and A, so that
(k+l) < ~9(k) for all k. It remains to show that Y(X) <
,T(k) for all k. Since Y(') is consistent, we have T(')' <
g(O) by the case i = j of the definition of consistency; we
proceed by induction. If Y(x' < we have

L(ik+ 1)(i) = inf [sup [Lj(k)(xA) A A,j(Q,Y)]]
j A'

. inf [sup [Li(00)') A Aii(A,A )]].
i A'

Since ?(') is consistent, the expression in the outer brackets
on the right side is 2 Li(Q)(A) for allj; hence the inf of these
is also >Li(")(A), so that we have proved L0k+1)(A) >

Li(00)(A), i.e., Y(00)> (k1
By definition of Q, each L0k+1)(9) is either one of the

Lj(k)(A''S or one of the Aij(9,A')'s; hence, the Li(k)()'s can
take on only finitely many possible values (Li(0)(A)'s=
Ai(A)'s, or Aij(9,)')'s). Thus the sequence Y(0),Y(),*
must stop after finitely many steps, just as in Section II.
When it stops, let us say at T£°(m), we have Qy(m) = 2(m),
so that 2(m) is consistent (Proposition 8). Since 27(m) >
Y(M), which is the greatest consistent fuzzy labeling, this
implies 27(m) =- (OO)
Even if the Li(k)(A)'s can take on infinitely many values

(as would be the case, e.g., if we used * in place of A in
the definition of Q), we can still show that we converge to
Y() when Q is iterated, although we do not necessarily
reach T() in a finite number of steps. Indeed, by Propo-
sition 9 the sequence O),42(1),(2),... produced by
applying Q) repeatedly is monotonically nonincreasing, and
is bounded below by ?('). Hence this sequence must con-
verge to a limit Y > T('). If we can show that Y is con-
sistent, then it must actually be Y('), since T(x) is the
greatest consistent fuzzy labeling. Now a fuzzy labeling
that does not change under Ql is consistent (Proposition 8).
In fact, ' cannot change under Q, since Q is a continuous
operator, so that we have

=() Q(lim T(k)) = lim (Q(k)) = lim (_T(k+ 1))
k k k

= lim (jr(k)) =
k

Thus Y is consistent, and so must be (00), which proves the
following theorem.

Theorem 10: liMk ,y(k) =-T0)

Given , we can look for unambiguous fuzzy labelings
by a tree search procedure analogous to that discussed at
the end of Section II. If we want to find such labelings in
which the unique nonzero label weight for each object is as
high as possible, we can design the search procedure to try
the labels having the highest weights first. For each choice,
Q is applied to obtain a consistent labeling, and the process
is repeated. If desired, this procedure can be cut short if all
weights for some object drop below a prespecified threshold.
A difficulty with algorithm Q1 is that low weights are

contagious. For example, suppose that for some object aj,
we have Lj(")(A') < i for all i'. Then for all i, when we
apply Q, we obtain

L(k+)(A) < [I A sup Aij(.I')] < 2'
A'

In other words, if all weights are low for some object, apply-
ing Q2 causes all weights to become low at all objects. This
is analogous, in the discrete case, to the fact that if some
object has an empty label set, and we apply algorithm A, the
label sets of all objects become empty. (Note that as long as
some weight is high for object aj, let us say Lj(k)(") = 1,
we can keep object j from having any effect on object i by
setting Aij(A,A') = 1, since this implies

1(ik+ )(,j) < SUp [Lj(k)(i) A Aij(Ai)]
A'

- Lj(k)(') A Aij(A,A") = 1

which is no restriction.) This behavior of algorithm Ql results
from the fact that weights can decrease, but never increase,
under it. In Sections IV and V we discuss algorithms which
allow weights to either increase or decrease; this will permit
us to give the weights a probabilistic interpretation.

IV. A LINEAR PROBABILISTIC MODEL
We now consider a model in which we require that the

sum of the label weights for each object is 1. We shall call
such a weighted labeling a stochastic labeling. We can think
of the weight assigned to label A of object ai as the prob-
ability that A is the correct label of ai. Thus in a stochastic
labeling, to each object ai there corresponds a probability
vector pi, where for each A E A, pi(i) is the weight of label
A at object ai, where 0 < pi(i) < 1, and m=1p19) = 1.
The vector pi is essentially the same thing as the fuzzy
subset Li of A in Section III, but it will be more convenient
for us to use vector terminology here.
The entropy of the object ai under a given stochastic

labeling is defined to be
m

Hi - 2 P1(GA) log p1(Ai).
j=1

It is well known that Hi is zero if and only if pi is a unit
vector of the form (O, .. . ,0,1A * * ,O) and that Hi takes on
its maximum value when the pi(A.) are all equal (to 1/Im).
Thus Hi is a measure of our uncertainty as to the nature of
object ai. A desirable feature of a weight modification
algorithm is that it should tend to decrease the entropies
of the objects, i.e., to make us increasingly certain about
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the objects' correct labels, particularly if the label prob-
abilities are initially biased.

In this section, we study a linear relaxation algorithm for
weight modification. This algorithm does not, in general,
decrease entropy; rather, it converges to a unique stable set
of weights dictated by the initially given label weight com-
patibilities. Section V will consider a nonlinear approach
which does tend to converge to an unambiguous set of
weights, given the proper initial weight biases.

Before introducing the label weight compatibilities, we
make some general remarks about the convergence of relaxa-
tion processes. Suppose that we are given an arbitrary
definition of labeling consistency which requires that, for
all i and 2, Pi(i) is some specified function FiA of the pj(A')s.
Let us denote this requirement symbolically by pi(i) =

FiA(Y), where Y is the given labeling. We can then define
a relaxation process as follows: starting with an arbitrary
initial labeling Y(O), we define 3(k) = (pl(k),. n.,P(k)) in-
ductively by

Pik+ (i) - (k))

If this process converges and if the F's are continuous func-
tion, then just as we saw in the proof of Theorem 10, the
limit Y(£) of the process must be stable under the F's, i.e.,
Y(') must be consistent: Pi(0)() = FiA(Y(0)) for all i and A.
There are many different definitions of consistency for

which the F's are continuous, but it is less easy to prove
that the process of iterating the F's, as just described, con-
verges. Suppose, however, that application of the F's takes
probability vectors into probability vectors, i.e., that
E Pi(k)(A) = 1 implies E. pik + 1)(A) = 1 for all i. If we think
of the F operation as applied to the mn-dimensional vector
space (Pl, ,pn), then this operation maps the compact,
convex subspace defined by pi(i) . 0 and Y;.pi(A) = 1,
1 . i < n, into itself. By the Brouwer fixed point theorem
[9], it follows that the F operation has a fixed point-i.e.,
there does exist a (Pl(0) . pn(X)) which the operation
takes into itself. We shall now define a set of linear (hence
continuous) F's that take probability vectors into probability
vectors.

For each i and j, 1 < i, j < n, let Pij be a mapping from
A x A into [0,1] such that

E Pe,(22i ) = 1, for all i, j, and 2'.

We can think of pij(A 2') as the conditional probability
that object ai has label 2, given that object aj has label 2'.
When i = j, we shall assume that for all i,

Pii( I2') =

where the c's are coefficients which satisfy Ej cij = 1 for all
i. Note that the expression in brackets is the expected prob-
ability that object ai has label 2, based on the evidence at
object aj. We are saying that the labeling is consistent if
pi(A) is a weighted sum, overj, of these expectations.

The F operations defined by this concept of consistency
are certainly continuous. Moreover, they take probability
vectors into probability vectors, since

A E [= j [ pi(2 i

cii [ Pp[(E]])( 2)

cCii [ Pi( c)JE Ci 1

(which, incidentally, explains why we required Ej cij = 1).
Thus, as shown above, these F operations must have a fixed
point.
Our F operations constitute a linear operator, which we

shall hereafter refer to as the F operator, that maps the mn-
dimensional space of labelings into itself. For a linear
operator, a fixed point is just an eigenvector whose corres-
ponding eigenvalue is 1. We shall now show that when the F
operator is iterated, the results converge; as shown above,
the limit must then be a fixed point.
Note first that for all eigenvalues p of F we have IpI 1

-in other words, the spectral radius of F is 1. This is
because the set of mn-vectors such that EA L jpi(2)j < 1 is
readily mapped into itself by F, so that there cannot be an
eigenvector with eigenvalue > 1.

Let us now suppose that the eigenvalue 1 is simple, i.e.,
is associated with a one-dimensional space of eigenvectors,
and let us further suppose that there are no other (complex)
eigenvalues that have absolute value 1. Let Y(f) be the
unique stochastic labeling that lies in this one-dimensional
eigenspace. Thus Y(f) is the unique fixed point of F. We
now show that when F is iterated, starting from any initial
stochastic labeling Y(O), the results converge to Y('). To
see this, we construct the Jordan normal form of the operator
F; this is a matrix J of F with respect to a basis composed
of eigenvectors. J has block diagonal form

10

0 Pi 1
1
Pi 0

P2 I

if A' = 2
if i' # A.

The pij's are our compatibility factors; they correspond to
the Aij's in Section III.
We can now formulate our definition of a consistent

stochastic labeling as one in which, for all i and 2, we have

=M= E ij [ Pii( ]

0
P. P

Pn/

where the simple eigenvalue 1 gives rise to the 1 at the upper
left, and the other eigenvalues P .-,pn (with repetitions,
if they are not simple) give rise to the other rows. Iteration
of the operator F corresponds to raising J to higher and
higher powers. Readily, these powers can be computed
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blockwise; the kth power of the block corresponding to
eigenvalue pi is

k (kkI
/i (k - 1) Pi

0 Pi

0 0

(k-2 P. *

(k- l) Pi * .
( k . . .

Pik

Since lpil < 1, the terms of this matrix all go to zero as
k -+ oo. Thus jk converges to a matrix Jr consisting en-
tirely of 0's, except for a single 1 in its upper left corner.
This Jc simply selects the eigenvector that has eigenvalue
1 out of the basis. Hence applying F to J'(Y(O)) leaves it
unchanged, i.e., J'(Y(O)) is the fixed point Y(') of F.

Next, suppose that the eigenvalue 1 is not simple. The
argument just given still shows that Jk converges, but the
limit matrix J' now has more than a single 1 on the main
diagonal. In this case we still obtain a fixed point of F (a
linear combination of eigenvectors that each have eigen-
value 1), but it is no longer the unique fixed point. Con-
ditions under which 1 is a simple eigenvalue of F will be
discussed in a moment.

If there are other complex eigenvalues that have absolute
value 1, we can eliminate them by the trick of working with
the operator '(F + I), where I is the identity, rather than
with F itself. Readily, '(F + I) has the same eigenvectors
with eigenvalue 1 that F has; but all other eigenvalues are
shifted to the midpoints between 1 and their original posi-
tions in the complex plane. Thus 1(F + I) cannot have
complex eigenvalues with absolute value 1, except for 1
itself.

In order to formulate conditions for the simplicity of
the eigenvalue 1, let us now suppose that the pq,'s and cij's
are all nonnegative (this assumption has not been necessary
up to this point). Then by the Perron-Frobenius theorem
[12] on nonnegative matrices, 1 is a simple eigenvalue
provided that the matrix of F is irreducible. A matrix M is
called reducible if there exists a permutation matrix P such
that PMPT has the block form

/A Bi

Let us further assume that cijpij(A i') # 0 if and only if
Cjipji(A' IL) = 0; this is far weaker than the symmetry
condition mentioned in Sections II and III. (Note that,
in fact, pij(A i')pj(A') = pji(A' -pA)pi(A) is the joint prob-
ability that objects ai and aj have labels A and i', re-
spectively.) Thus if F has a reducible matrix, it must be of
the form

tA O0

If the blocks A and C are themselves reducible, we can
repeat the process, to eventually obtain a matrix R for F
that is composed of irreducible blocks along the main

diagonal, e.g.,

0
M4]

Thus we see that if F is reducible, we can partition the mn-
dimensional space of (object, label) pairs into subsets on
each of which F operates independently of the others.
We can interpret the reducibility of F in terms of the

labeling network discussed in Sections II and III. Here the
nodes, as usual, are the (object, label) pairs, and we join
the two nodes (i,2), (j4') by an arc if and only if cijpij(A
A') 0 (which, we recall, is equivalent to cjipji(Q' A) # 0).
Thus two nodes are joined if and only if the corresponding
(object, label) pairs influence one another under the opera-
tion F. It is evident that if F has the block diagonal form
shown above, the subgraphs corresponding to the blocks are
connected components of the network.

In summary, if F is irreducible, iteration of F always
yields a unique limiting stochastic labeling derived from the
eigenvector of F that has eigenvalue 1. If F is reducible, we
can decompose the labeling problem into subproblems,
corresponding to the connected components of the labeling
network, and we obtain convergence to a unique limit on
each of these subspaces. Any linear combination of these
limits is a fixed point of F.
To illustrate these remarks, let us assign conditional

probabilities to pairs of labels in the triangle example of
Fig. 1. We will restrict our attention to the connected
component of the network shown in Fig. 2(a), which involves
the labels v- and + only, in order to insure that the matrix
of F is irreducible. A similar analysis can be applied to the
other connected component.
The conditional probability of event A given event B is

obtained from the formula

p(A B) - p(A&B)
p(B)

i.e., it is the joint probability divided by the probability
of B. One possible source of conditionals for labelings of
line drawings is statistics based on a collection of possible
interpretations of many actual line drawings. In Fig. 3,
we have collected these statistics for labels on lines meeting
at L junctions by analyzing the eight possible interpretations
of the triangle. For ordinary applications, this sample set is
probably too small to give realistic conditionals. However,
since we will only apply the model to the triangle example,
within our limited labeling "world" the resulting condi-
tionals are realistic.

If we set the weighting constants to cij = I for all i,j,
then the resulting matrix corresponding to the operator
F for the *-, + component of the network is

(i

I0
2

2
3

i

0
1
1
0
1
0

0 1 2 1\
i0 + I
I 0 i I
O 1 1 O .
2 1 1 0

i ° O 1/
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a1 a2

a3

Events

A B

+4

+4

+

+4
+k

Figure 1 Labels
case a1 a2 a3

b + +

c 4- 4

d + - 4

e 4 4

f - 4 +

g <- + 4

h +- 4- +

i + - 4-

Based on this set of
cases, the probabilities
of the labels - and -

will be taken to be 3/8
each, and those of the
labels + and - to be 1/8
each.

Probabilities
p(A&B)* p(AIB)

1/4
0

1/8
I

1/4

1/8
1/8
I

I

I

0

1/8
0
I

2/3
I

1

0

0

2/3
I

1

1/3
I

I

I

I

1/3
0
I

Fig. 3. Conditional probalities for example in Fig. 1. *Probability
that A and B occur consecutively, in clockwise order.

It is easy to verify that this matrix has a single stochastic
eigenvector corresponding to the eigenvalue 1, given by

e = (,j T

Thus the linear model yields a probability assignment of
Q,-) for the labels *- and +, respectively, for each of the
three lines. These numbers reflect a bias toward inter-
pretation (c) of Fig. 1, the triangular hole, as opposed to
interpretations (g)-(i), the flaps.

Iteration of the relaxation process will converge to this
eigenvector regardless of the initial distribution. Even if
we begin with an initial stochastic labeling corresponding
to an unambiguous consistent labeling (for example, ((1,0),
(0,I),(1,0))), the process will diffuse the probabilities through
the connections in the network at rates corresponding to
the conditionals. The resulting eigenvector is an unbiased
distribution, dependent only on the compatibilities of the
label interpretations. A label will have a high probability
if one or more fairly probable interpretations include that
label at the given object.

V. NONLINEAR PROBABILISTIC MODELS

The linear model of Section IV always converges to the
same limit, irrespective of any initial bias on the label
probabilities, if the matrix of conditionals is irreducible.
In this section we briefly consider a nonlinear model which
exhibits a more useful type of behavior, i.e., it converges
to a limit that does depend on the initial probabilities.

Before defining such a nonlinear model, let us consider
the desirable characteristics of a stochastic relaxation

operator F. The probability pi(A) of a given label for a
given object ai should be increased by F if other objects'
labels that have high probabilities are highly compatible
with A at ai. Conversely, pi(A) should be decreased if other
high-probability labels are incompatible with A at ai. On
the other hand, labels having low probabilities should have
little influence on pi(A), whether or not they are compatible
with it. These characteristics can be summarized in tabular
form as follows:

Compatibility of
A' with A

High Low

Probability of A' High + -

Low 0 0

where + means that pi(A) should increase, - means that it
should decrease, and 0 that it should remain relatively
unchanged.
The linear model presented in Section IV, however, be-

haves essentially as follows.

Compatibility of
A' with A

High Low

Probability of A' High + 0

Low 0 -

Here pi(A) decreases the most when the p (A')'s have both
low probability and low compatibility with p,(A).
We could come closer to the desired behavior by redefin-

ing the linear model to make use of compatibility coefficients
that can take on both positive and negative values, let us
say in the range [- 1,1]. Such coefficients could be regarded
as representing correlations (or covariances), rather than
conditional probabilities. Let us denote the compatibility of
label A on ai with label A' on aj by riJ(A,A'), rather than by
pij(A i'), to avoid confusion with the compatibilities of
Section III. We would like the r's to behave as follows.
If A' on aj frequently co-occurs with A on ai, then r,J(A,A')
is positive, if they rarely co-occur, rij(A,A') is negative,
and if their occurrences are independent, rij(A,A') _ 0.
The covariance of two events A and B is defined as

p(A&B) - p(A)p(B) _ cov (A,B)

and the correlation of A and B is defined as

cor (A,B) =
o AB

[(p(A) - p2(A))(p(B) - p2(B))]'1/2

cov (A,B)
u(A)a(B)

For example, with reference to Fig. 3, the standard devia-
tions of the events -* and +- are (3/8 - 9/64)1/2 = /15/64
each, while for the events + and - they are (1/8 -
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Events

A

429

cov cor

B

+ +

+

- +

+ +

+ 4-

+ -

+ +

7/64

-9/64

5/64

-3/64

-9/64

7/64

-3/64

5/64

5/64

-3/64

-1/64

-1/64

-3/64

5/64

-1/64

-1/64

7/15

-3/5

5/f105

-3//10-5

-3/5

7/15

- 3//lOS

5//105

5//105

Figure 1

case

b

d

e

f

-1/7

-1/7

-3//lOS

5//i§05

-1/7

-1/7

Fig. 4. Covariances and correlations for example in Fig. 1.

1/64)1/2 = 1/7/64 each. The covariances and correlations
of pairs of these events are tabulated in Fig. 4.

If we let rij(A,4') be the correlation between the events
that ai has label A and aj has label i', then readily we always
have -1 < rij(A,A') < 1. If these events (call them A and
B) always co-occur, we have p(A&B) = p(A) = p(B), so
that cov (A,B) = p(A) - p2(A), which implies rij = 1. If they
never co-occur, we have p(A&B) = 0, so that rij = -p(A) -

p(B)/cr(A)cr(B) < 0. (It is not hard to show that this expres-
sion is a minimum when p(A) = p(B) = -, which yields
rij = -1.) IfA and B are independent, p(A&B) = p(A)p(B),
so that cov (A,B) = 0, implying rij = 0. Thus taking rij
to be the correlation gives it the desirable properties
described above.

In order to define our new F operator, let us first set

qi(k)i) = S dij rij(2,A) pj(k)W)

where the d's are coefficients, analogous to the c's in
Section IV. By the remarks in the preceding paragraph, this
qi(k)(A) behaves just the way we would want the change in
pi(k)(A) to behave, as indicated at the beginning of this sec-
tion. Indeed, if pj(k)(A) is high, and rij(A,A') is very positive
or very negative, then the label i' at aj makes a substantial
positive or negative contribution to qi(k)(A); while if pj(k)(A,)
is low, A' at aj makes relatively little contribution to qik)(,)
irrespective of the value of rij(A,4').'

'Note that for i = i we have rii(A,Y') = 1 for A = 1', and =
-p,G1)pi(R')/a,(2)u,(Y) for A : i', so that rij takes on only extreme
values. Thus if pi(.) is large, r,, makes a large positive contribution
to q,(A) and a negative contribution to the q,'s of other labels. In
other words, as might be expected, ri; is biased in favor of the currently
preferred label of a,. If desired, this bias can be counteracted by
making the weights di, small.

Matrix

1 0 0 0
1 0 0 0
1 0 0 0

1 0 0 0
O 0 1 0
1 0 0 0

1 0 0 0
1 0 0 0
O 0 1 0

O 0 1 0
1 0 0 0
1 0 0 0

Figure 1

case

c

g

Matrix

0 1 0 0
0 1 0 0
0 1 0 0

0 1 0 0
O O 0 1
0 1 0 0

h 0 1 0 0
0 1 0 0
O O 0 1

i O O 0 1
0 1 0 0
0 1 0 0

Key to Matrices

+ 4- - +

a1

a2

a3

Fig. 5. Weight matrices for eight unambiguous interpretations in
Fig. 1.

These observations suggest that we might define a new
linear F operator by letting

pkk+ I)(A) p.(k)QL) + qi(k)QJ)

However, this definition would not guarantee that the p's
remain nonnegative. Instead, we shall define a nonlinear
operator by setting

pfk+l)(Aj = pi(k)()[l + qi(k)(A)]/ pi(k)(A)[1 + qi(i)].

Here the denominator serves to guarantee that the p's con-
tinue to sum to 1. Moreover, they remain nonnegative, since
readily qi is in the range [- 1,1] (provided >jd2 j = 1), so
that I + qi is nonnegative. The discussion in the preceding
paragraph still applies; a very positive or very negative
contribution to qi contributes an increase or decrease to
pi (sincep(k+ 1) is obtained by multiplyingpi(k) by (1 + qi(k))),
whereas a small contribution to qi contributes little change
to Pi. Clearly, many other F operators with these properties
could be defined, but the one given here is especially simple.
We have not yet been able to establish the convergence

properties of this nonlinear operator, but we have found that
in specific examples, it does exhibit the desired type of
behavior. To illustrate this, we once again consider the
triangle example. The weights assigned to the four labels
-+, +-, -, + on the three sides aj,a2,a3 (see Fig. 3) con-
stitute a 3-by-4 matrix; these matrices, for the eight un-
ambiguous interpretations of Fig. 1(b)-(i), are shown in
Fig. 5. We shall assume that the node weights di1 are
dii = 0.2, dij = 0.4 for i # j, and that the rij's are the
correlation values given in Fig. 4. The behavior of the

+-

4-
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Case Initial weights

A .25 .25 .25 .25
.25 .25 .25 .25
.25 .25 .25 .25

After 2 to 3
iterations

.3 .3 .2 .2

.3 .3 .2 .2

.3 .3 .2 .2

After 20 to 30
iterations

.33 .33 .17 .17

.33 .33 .17 .17

.33 .33 .3]7 .17

Limit

.37 .37 13 .i3

.37 .37 .13 .13

.37 .37 .13 .13

B . 5
.5
.5

.98 0 .02 0

.98 0 .02 0

.98 0 .02 0

C . 5
. 4
.5

D . 5
. 3
.5

E . 3
.3
.5

F . 2
.3
. 5

0 .5 0
0 .6 0
0 .5 0

0 .5 0
0 .7 0
0 .5 0

0 .7 0
0 .7 0
0 .5 0

0 .8
0 .7
0 .5

0
0
0

G . 3 . 2 . 3 . 2
.3 .2 .3 .2
.3 .2 .3 .2

H . 3 . 2 . 3 . 2
.25 .25 .25 .25
.2 .2 .4 .2

.62 0 .37 0

.49 0 .51 0

.62 0 .37 0

.64 0 .36 0

.36 0 .64 0

.64 0 .36 0

.5 0 .5 0

.5 0 .5 0

.84 0 .16 0

.3 0 .7 0

.51 0 .49 0

.83 0 .17 0

.41 .13 .32 .14

.41 .13 .32 .14

.41 .13 .32 .14

.38 .17 .29 .16

.35 .20 .25 .20

.23 .16 .45 .16

Fig. 6. Examples of nonlinear relaxation process in triangle case.

label weights as the nonlinear relaxation process is iterated
is illustrated in Fig. 6 for various initial weight assignments.
The following comments can be made on the cases shown in
this figure.
A) Initially all weights are equal; converges essentially

to the a priori label probabilities 8X8
B) Initially equal weights are in one component (,-),

zero weights in the other; converges to the most probable
interpretation in that component (case (b) of Fig. 1).

C) Initial weights are in the same component, slightly
biased toward one of the less probable interpretations (case
(c) of Fig. 1); still converges to the most probable inter-
pretation.
D) Same as C), but now sufficiently biased; converges

to the desired interpretation. The transition point defining
"sufficient bias" depends on the dij's.
E) Still in same component, but two contradictory biases,

toward two of the improbable interpretations, cases (d) and
(f) of Fig. 1; converges to the probable interpretation.

F) Similar to E), but two contradictory biases of unequal
weight; converges as dictated by the stronger one.

G) Biased toward one of the two components; converges
to the most probable interpretation in that component.
H) Similar to G), but biased toward a less probable

interpretation in one component; converges to that inter-

pretation.

VI. CONCLUDING REMARKS

As the examples given at the end of Section V indicate,
the nonlinear probabilistic model exhibits very reasonable
behavior in terms of converging to one of the possible
interpretations of the scene, in accordance with the initial

biases of the probabilities. In practice, one would not be
concerned with actual convergence, but only with the be-
havior of the weights after a few (or a few dozen) iterations.
In our examples, the trend ofconvergence is usually apparent
fairly early. One can think of the relaxation process as

"enhancing" the initial probabilities, as influenced by the
correlations rij.

It would seem from these examples that the model of
Section V could serve as a useful preprocessor for imposing
constraints on label probabilities. After allowing such a

process to operate for a while, one could input the result-
ing enhanced probabilities to a semantics-based analyzer
which would check the results and disambiguate them further
if necessary. This analyzer would, of course, be more power-

ful than the relaxation model, since it would not be re-

stricted to applying constraints that can be formulated in
a homogeneous fashion, and it would probably operate
sequentially. The relaxation process serves to (hopefully)
reduce the number of possibilities that this sequential
process has to consider. Of course, it is possible that the
relaxation scheme could lead to unsatisfactory or unaccept-
able results. In such a case, the sequential process could go
back to the original input data, or it could reinitiate the
relaxation process with a different set of initial probabilities.
An approach of this type has many potential applications

in scene analysis, as well as other areas. The following are

just a few examples.
1) As an extension of our toy triangle example, one could

attempt to implement a more complete probabilistic version

of Waltz's labeling model. In this connection, the Appendix
to this paper presents discrete, fuzzy, and probabilistic
models for line drawings in which the objects are L-junc-
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tions (rather than lines), and these can have six possible
labelings, as shown in Section II.

2) More realistic situations might involve models for
specific classes of real scenes. For example, suppose that
we are analyzing pictures of human faces and have detected
objects a,,---,a,, each of which can have labels Al,1 -,
representing "eye," "nose," "scar. "wrinkle," etc. Our
facial-feature recognizer can assign a probability pi(A)) to
each label A. at each object ai, < i< n, 1 j < m.
Evidently, the relative positions of the ai's impose con-
straints on these probabilities; for example, if a, is a mouth,
and a, is below ar, then as cannot be a nose. It should be
possible to greatly reduce the initial ambiguity of the pi(A)'s
by applying these constraints in the form of a relaxation
process. Similar, though probably weaker, constraints
could in principle be formulated for various classes of
indoor and outdoor scenes; see [10].

3) The relaxation approach can also be used as an aid to
low-level picture or scene segmentation. Suppose that we
have detected and ambiguously identified a set of local
features in a picture. We can then allow them to interact
in such a way that "clusters" of features having a common
label reinforce one another, while other labels become
weaker. Similar processes have been studied in conjunction
with neural network modeling (e.g., [2]). To give a specific
example, suppose that at points al,... ,a,, a line or curve
detection operator has an above-threshold value, corre-
sponding to one of the possible slopes sl... 5sm. Let so
represent the possibility that there is no line or curve
through a given point. Based on the values of the various
directional line detection operators at the ai's, we can assign
probabilities pi(sj) to the labels sj at the points ai, 1 <
i < n, 0 < j < m. We can then allow the relative positions
of the ai's to impose constraints on these probabilities;
e.g., if a. and au are close together in relative direction Sk,
we might want to strengthen pU(sk) and pV(sk). A relaxation
process based on such constraints should tend to reinforce
ai's that lie on smooth curves, while weakening "noisy" ai's.

4) Examples can also be found in areas other than picture
and scene analysis. Suppose that a character-recognition
device has scanned a string of characters a,, -,an and
identified them probabilistically as being various letters of
the alphabet Al -̂m; let pi(A) be the probability that
character ai is letter A.i We could then impose constraints
on these probabilities based on the observed frequencies
with which characters co-occur (e.g., labels T and H on a
pair of consecutive characters ai, ai+1 might reinforce one
another, while the labels T and G would have a weakening
effect on each other). Of course, character recognition post-
processors more powerful than this have been developed,
but it would be of interest to see how much ambiguity
reduction can be obtained from a simple relaxation process,
based on co-occurrence constraints, as compared with more
sophisticated methods.

5) As a final example, we mention a possible application
in the area of medical diagnosis (or, more generally, any
=type of diagnostic testing). Let a,, . ,a. be measurable
phenomena (temperature, pulse rate, blood count, etc.) and

let Al,--,A.. be ranges of values for these measurements.
A priori, we can specify a discrete probability density for
the value of each measurement (i.e., pi().) is the prob-
ability that phenomenon ai has value in range Rj). At the
same time, we can, in principle, specify correlations (or
joint probabilities) for pairs of the measurements. If we
actually carry out one of the measurements, its value
becomes known, and we can use the correlations, imple-
mented in the form of a relaxation process, to update the
probability densities of the remaining measurements. This
process can be repeated. The choice of which measure-
ments to perform at a given stage can be guided by their
degrees of ambiguity (or, more realistically, by the increases
in some utility function that will result if these measurements
are performed). An approach to medical diagnosis based
on probabilistic networks is currently being investigated by
Lemmer [6].
One can also speculate on the possible relevance of

models such as those discussed in this paper to the percep-
tion of scenes by humans. There are many types of ambi-
guous scenes which most observers see as unambiguous,
unless the ambiguity is pointed out to them. This may be
due to an innate bias against certain interpretations, e.g.,
a preference for occluding edges over concave dihedrals or
for solid objects over holes, in our triangle example. As we
have seen, relaxation starting from a biased initial prob-
ability vector often results in convergence to an unambi-
guous interpretation. Of course, a sequential model could
also account for this phenomenon, since a bias against
certain interpretations would make it unlikely that these
would be selected for testing as possible members of un-
ambiguous labelings.

Similar remarks apply to situations in which two or more
labelings are equally perceivable. Here the observer "sees"
only one of these at a time, but he can usually switch from
one to another at will (often by forcing himself to re-
interpret one part of the scene), sometimes switching
spontaneously. Voluntary switching could correspond to re-
initiation of the relaxation process with a new bias on part
of the scene (or to sequential testing of a new combination).
Spontaneous switching could be a reinitiation as a result of
"fatiguing" of the current bias.
At the other extreme, "impossible" scenes have no con-

sistent labeling but are often locally well formed. Presum-
ably, a relaxation process applied to such a scene would
converge to an interpretation that always remained partially
ambiguous.
Whatever the value of such speculations may be, the re-

laxation processes described in this paper do seem to have
useful ambiguity-reduction properties. The authors plan to
explore nontrivial applications of these processes, and they
hope that other investigators will do likewise.

APPENDIX
MODELS FOR L-JUNCTIONS

In the line drawing description schemes used by Waltz
[13] and others, the junctions, rather than the individual
lines, are the "objects." Thus the number of possible labels
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JUNCTION

a2 a3 a1

A B 1(A&B) Pi 1P (A&B) /p (B)

1 1 l/8 1/2

Xl1 2 1/8

1 A3

x2 x1x2 12

x2 x3
2 2

2 3

r.. = cor(A,B)

1/3

1

00

0 0

0 0

1/8

-1/7

1 1

x3 Xl 1/8

x3 x2A3 A2

A3 A3

1/2

0

0 0

We assume p(X1) = 1/4; p(A2) = p(X3) = 1/8

Fig. 8. Statistics for triangle case.

Fig. 7. Labeling network for triangle using junctions as "objects."

can be quite large, particularly if complex junctions can

occur. The compatibility relations, on the other hand, tend
to become simpler; for example, we can simply call two
junction labels compatible if they give the same inter-
pretation to the line (if any) that joins them.2

In this Appendix, we rework the triangle examples using
the three L-junctions, rather than the three lines, as objects.
There are six allowable L-junction types, as shown in Section
II. These six types are the same as those listed by Waltz (if
cracks and shadows are not allowed). If we define com-

patibility as in the preceding paragraph, the labeling network
for the triangle is as shown in Fig. 7. (Object a1 has been
repeated to make the network easier to draw.) As before,
there are eight unambiguous consistent labelings of the
triangle; they correspond to the eight cases shown in Fig. 1.
We can assign weights to the junction compatibilities

and formulate a fuzzy model. A plausible set of weights for
the compatibilities in the first connected component of the
network in Fig. 7 might be

Pair Compatibility
0.9

15iF }

Illustration

0.3

23,22 0.1

2 Waltz's scheme is much more sophisticated than this; he takes
into account the regions, as well as the lines, that are shared by the
junction.

with all other pairs having compatibility zero. It is not hard
to show that the greatest consistent fuzzy labeling for this
assignment is given by

Junction
Label a, a2

Al 0.9 0.9
22 0.3 0.3
23 0.3 0.3

a3

0.9
0.3
0.3

and similarly for the other three labels. Eight unambiguous
consistent fuzzy labelings exist, corresponding to the eight
cases shown in Fig. 1, with all label weights equal to 0.9
(in cases (b) and (c)) or 0.3 (in the other six cases).

In order to apply the probabilistic models, we need con-

ditional probabilities (pij's) and correlations (rij)'s. We
can derive these from the eight interpretations of the
triangle; they are tabulated in Fig. 8, for the labels in
the first connected component of the network.

For the linear model, using cij = I for all i and j, the
9 x 9 operator matrix (for the labels {1,22,23) iS

1 0 0
0 1 0
O 0 1
i 0 1

3

0 1 0
a 1 0
° O 1
1 ° °

1

0

1

I
0

0

1
2

1

0

0

0

0
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0

0

0
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0

1
0

0

0

1
1
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0
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2

0

12
0

1

1

0

0

This is an irreducible matrix, and its
eigenvector with eigenvalue 1 is

(II' 4 4 4
)
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Case Initial weights

A .33 .33 .33
.33 .33 .33
.33 .33 .33

B .4 .3 .3
.33 .33 .33
.33 .33 .33

C .5
.4
.4

.25 .25

.3 .3

.3 .3

D .6 .2 .2
.5 .25 .25
.5 .25 .25

E .33 .33 .33
.3 .3 .4
.33 .33 .33

F .3 .3 .4
.3 .4 .3
.33 .33 .33

After 2 to 3
iterations

.4 .3 .3

.4 .3 .3

.4 .3 .3

.5 .25 .25

.4 .33 .27

.4 .27 .33

.6 .2 .2

.46 .3 .24

.46 .3 .24

.7 .15 .15

.6 .22 .18

.6 .18 .22

.37 .36 .27

.35 .25 .4

.46 .27 .27

.4 .22 .38

.4 .38 .22

.34 .33 .33

After 20 to 30
iterations

1 0 0
1 0 0
1 0 0

1
0
0

0
1
0

0
0
1

1 0 0
.01 .99 0
.01 0 .99

1 0 0
.99 .01 0
.99 0 .01

0
0
1

1
0
0

0
1
0

.73 0 .27

.73 .27 0

.12 .44 .44

G .3

25

33

.3 .4

.5 .25

.33 .33

Fig. 9.

.4 .24 .36

.28 .52 .20

.31 .31 .38

1
0

0

0

1
0

0

0

1
same

Examples of behavior of nonlinear model.

corresponding to an assignment of probabilities ,1, to
labels 21422,3, respectively, at each junction. The linear
model will converge to this assignment, whatever the
initial probabilities.
The nonlinear model is once again much better behaved.

Using di, = 0.2 for all i, and dij = 0.4 for all i j, its be-
havior for the labels AD1,243 is illustrated in Fig. 9. Com-
ments on the seven examples shown here are as follows.
A) No initial bias; converges to the most probable inter-

pretation (case (b) of Fig. 1), as in example (B) of Section V.
B) One junction favored as "floating," no bias on the

other two; converges to an appropriate case of Fig. 1, where
just the favored junction floats.

C) All junctions favored as floating, with one preferred;
same result as in example B): only the preferred junction
floats.
D) Same as example C), but stronger biases toward

floating; result has all junctions floating (even though one
was preferred).

E) One junction favored as involving a concave edge, no

bias on the other two; converges to an appropriate case of
Fig. 1, with the favored edge concave.

F) Two junctions equally favored as involving concave
edges (which is impossible); converges to an ambiguous
result.
G) Same as example F), but with unequal favoring;

converges to the case in which only the more favored edge
is concave.
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