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Maximum-Likelihood Estimation for Mixture Models: the EM algorithm

 

1. Introduction

 

Thus far, we have looked at maximum-likelihood parameter estimation for simple exponential distributions,
especially Gaussian models (i.e. Normal densities). We have seen that the classification capabilities of classifiers
built on Gaussian modeling are limited to conic decision boundaries in -dimensional space. As such, they may
not have the requisite flexibility for modeling data distributions that are not well clustered. Therefore, we will
now look at a more sophisticated modeling paradigm, namely, mixture-of-Gaussians modeling, or mixture mod-
eling for short. In mixture models, a single statistical model is composed of the weighted sum of multiple Gauss-
ians. As such, classifiers that use a mixture modeling representation are able to form more complex decision
boundaries between classes. Unlike simple Gaussian models, where we were able to compute closed-form solu-
tions for the maximum-likelihood parameter estimates, however, we will see that no such similar closed-form
solution exists for mixture models. This will motivate our development of an iterative algorithm for estimating
the maximum-likelihood parameters of mixture models called the Expectation-Maximization algorithm. The for-
mal definition of this algorithm is nontrivial; however, before delving into the full theoretical details of Expecta-
tion-Maximization, we will gain some insight into the algorithm through a more intuitive, less rigorous
formulation.

 

A. Mixture modeling problem formulation

 

Assume you are given a set of identically and independently distributed -dimensional data ,
, drawn from the probability density function,

(1)

where  denotes a parameter vector fully specifying the th component density ,  denotes the
probability (i.e. weight) of the th component density , and,

, , where, (2)

. (3)

Compute the maximum-likelihood parameter estimates for the parameters . For the mixture-of-Gaussians
model, each of the individual component densities is given by,

(4)

such that,

(5)

where  and  denote the mean vector and covariance matrix for the th component density, respectively.

 

B. Maximum-likelihood estimation: a first look

 

For the maximum-likelihood solution, we want to maximize  with respect to . That is, we want to
find the set of parameters  such that,

, . (6)

For simple Gaussian modeling, we solved for  as the solution of the equation,

(7)
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(8)

which resulted in a closed-form solution for the Gaussian parameters . For the mixture density in
equation (1), however, equation (8) no longer results in a solvable set of equations. We illustrate this problem
with a simple example in the following section.

 

C. Simple mixture modeling example

 

Problem statement: Let us consider a very simple mixture modeling problem. Assume you are given a set of
identically and independently distributed one-dimensional data , , drawn from
the probability density function,

(9)

where,

(10)

such that,

, (11)

, and, (12)

, . (13)

Furthermore, assume that you know the following parameter values:

(14)

, . (15)

Compute the maximum-likelihood estimate of the remaining unknown parameters in , namely .

Attempted solution:

 (notational change to emphasize  and ) (16)

(17)

(18)

(19)

Equation (19) is very nonlinear in  and ; consequently, the previous solution equation for finding the
maximum-likelihood parameters will not yield a useful set of equations. To show this, let’s start from equa-
tions (7) and (18):

(20)
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(21)

(22)

(23)

Now, note that for the definitions in the problem statement,

(24)

(25)

so that,

, (26)

, (27)

The two equations defined by (27) cannot be solved readily for  and . In fact, it is not entirely clear that
there is only one maxima on the log-likelihood function, as was the case for the simple Gaussian modeling
problem.

 

D. Numeric example

 

Let us explore the previous example with some experimental data. We first generate 25 points from the mix-
ture density in (9) for means . The generating mixture density function and the resulting
data are plotted in Figure 1 below; red data points indicate points that were generated from the first compo-
nent density (with probability ), while blue data points indicate data points generated from the
second component density (with probability ).

For the data in Figure 1, we now compute  as a function of the “unknown” parameters  and 
[see equation (19)], and plot the result as a contour plot in Figure 2. Note that the log-likelihood function

 over the whole data set has two local maxima, as indicated in Table 1 below. From Table 1, we
note that the global maximum corresponds very closely to the generating mixture density means, even with
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very limited data (25 points). Also note that the secondary peak essentially switches the two peaks, but evalu-
ates to a lower log-likelihood over the data.

Finally, Figure 3 plots the estimated mixture densities for the global maximum-likelihood solution and the
secondary local maximum-likelihood solution, superimposed over the original generating mixture density.

While these results are encouraging in one respect — namely, that we were able to recover the unknown
parameters of the generating mixture density with very limited data — they are discouraging in another
respect — namely, that no closed-form solution exists over a highly nonlinear log-likelihood function. What
happens when we have more than two parameters over which we want to optimize, and we can’t generate a
nice contour plot like the one in Figure 2? While standard numerical optimization techniques are applicable,
a better approach in this statistical framework is the 

 

Expectation-Maximization algorithm

 

, introduced in the
next section.

 

Table 1: Local maxima solutions

 

solution type

 

global maximum -45.5

secondary local maximum -50.2

generating function N/A

 

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

 

Figure 2

 

µ

 

2

 

µ

 

1

 

µ

 

1

 

µ

 

2

 

,( )

 

p

 

ln

 

X

 

Θ( )

 

2.18

 

–

 

1.94

 

,( )

 

2.01 2.05

 

–

 

,( )

 

2.00

 

–

 

2.00

 

,( )

 

-4 -2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

 

Figure 3

 

generating pdf

global maximum density

secondary maximum density



 

EEL6825: Pattern Recognition Maximum-Likelihood Estimation for Mixture Models: the EM algorithm

- 5 -

 

2. Gentle Formulation of Expectation-Maximization (EM) algorithm

 

A. Introduction

 

The principal difficulty in estimating the maximum-likelihood parameters of a mixture model is that we do
not know which of the component densities  generated datum ; that is, we do not know the labeling
of each point; For example, in Figure 1 we color coded each of the data points based on which component
density generated that data point; such labeling is, unfortunately, not available in a realistic mixture modeling
problem.

For the moment, however, let us assume that we do know the labeling for each datum in . Now, the param-
eter estimation problem for mixture models reduces to the simple Gaussian parameter estimation problem,
since the parameters  for th component density can be computed based solely on the
aggregate statistics of those data in  that were generated from the th mixture density. Let us annotate the
data ,  to indicate to which class each vector belongs:

, , , (28)

where  = number of data points belonging to class . Note that,

. (29)

Using the notation in (28), we can now write the maximum-likelihood estimates for each component density:

(30)

(31)

(32)

Note that the estimates for  and  are identical to the single Gaussian case, and that  simply com-
putes the fraction of the data  belonging to the th component density.

 

B. Hidden variables

 

We will now formalize the discussion in the previous section somewhat. We begin by introducing the notion
of 

 

hidden variables

 

. The basic idea behind this concept is that each observed datum  is, in fact, 

 

incomplete

 

,
and that the corresponding complete datum is given by,

(33)

where  represents an unobserved, or 

 

hidden 

 

component of the th datum, and  denotes the 

 

complete

 

 th
data vector. For the whole data set, ,  and , , so that,

. (34)

In the mixture modeling problem, it should be clear what the hidden variable vector  ought to encode —
namely, the labeling of each datum . One way to do this is through vectors of length  composed of simple
binary random variables :

(35)

so that,
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(36)

, . (37)

Note that the vector  can only take on  distinct values:

, , , . (38)

We can now rewrite equations (30) through (32) in terms of the complete data (observed and hidden) defined
above:

(39)

(40)

(41)

Note that in the above equations, 

. (42)

The big question now is how we can actually use the formulation of the maximum-likelihood estimates in
terms of the hidden variables in equations (39) through (41), especially since we do not know the actual value
of the hidden variables. It is here where the Expectation-Maximization (EM) algorithm helps us.

 

C. Informal formulation of the EM algorithm

 

In the EM algorithm, rather than use the actual values for the hidden variables, we instead use the 

 

expected
values

 

 of the hidden variables ( ) to compute our current maximum-likelihood estimate of the parameters
( ). Thus the iterative EM algorithm can be divided into two steps:

 

Expectation step

 

: Calculate the expected value  for the hidden variables , given the current esti-
mate for the parameters .

 

Maximization step

 

: Calculate a new maximum-likelihood estimate  for the parameters, assuming that the
value taken on by each hidden variable  is its expected value  (calculated in the Expectation
step). Then replace the old estimate  with the new estimate  and iterate.

Since this is an iterative algorithm, the parameters  have to be initialized to some values prior to the first
Expectation step.

 

D. Application to mixture modeling

 

Before we write the actual update equations for the parameters of the mixture-of-Gaussians model, let us
derive an expression for . Applying the definition of the expectation operator, we can write,

(43)
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(44)

Let us rewrite the right-hand-side of equation (44):

(45)

so that:

(46)

Now, let us write  in a form that we can compute. Applying Bayes Theorem,

(47)

(48)

Note that equation (48) completely defines  in terms of computable functions [see equations (1) and
(4)]. Thus, we can now write the iterative EM equations by combining equation (46) with equations (39)
through (41):

, (49)

, (50)

, (51)

It is important to remember that  is computed in terms of the current parameter estimates ,
while the left-hand sides of equations (49) through (51) give a new set of parameter estimates. These equa-
tions should be intuitively appealing, since the contribution of each  to the th component density is
weighted by the probability that  belongs to the th component density.

 

1

 

E. Another look at simple mixture modeling example

 

Let us take another look at the example from Section 1(C)-(D). There we attempted to solve for the maxi-
mum-likelihood estimates of the means  starting from,

 [equation (21)]. (52)

This formulation resulted in the following two equations:

 

1. Note that in computing new estimates for , we use the new estimates of the means ; while it may not 
be immediately obvious why we do this, in Section 5, we derive this update rule directly from the formal 
statement of the EM algorithm.
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,  [equation (26)]. (53)

Equation (53) can be simplified using (47) above (Bayes Theorem),

(54)

, . (55)

Solving equation (55) for ,

(56)

Note that if we use equation (56) in an iterative manner, it is identical to the EM update rule in equation (49),
which should be a little surprising, since the two results were arrived at from completely different formula-
tions. 

Below, we plot EM trajectories for the same data as in Section 1(D), and some different initial values for 
and  (Figure 4, left plot, red lines). For these trajectories, the EM algorithm converges on average in about
13 steps, which compares quite favorably to the gradient descent-algorithm, which converges on average in
about 50 steps for the same initial parameter values and a hand-optimized learning rate of  (Figure
4, right plot, blue lines).

The gradient-descent algorithm for statistical modeling suffers from two main deficiencies: (1) it converges
slowly, despite careful hand selection of the learning rate; and (2) it requires explicit computation of the gra-
dient of the log-likelihood function , which the EM algorithm does not. Note that both the
EM and gradient-descent algorithms are 

 

not 

 

guaranteed to converge to a 

 

global

 

 maximum of the log-likeli-
hood function, only a 

 

local

 

 maximum, depending on initial parameter values. In fact, the gradient-descent
algorithm can fail to converge altogether, as shown in Figure 5. In Figure 5 we plot two EM and gradient
descent trajectories in parameter space with initial parameter values of  and
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, respectively. Note that in the first instance, gradient descent requires 11,890 steps to
converge (compared to 9 for EM), while in the second instance, gradient descent fails to converge entirely,
getting stuck in a part of the log-likelihood function where .

 

3. Generalized Formulation of Expectation-Maximization (EM) algorithm

 

The previous section gives an intuitive, informal formulation of the EM algorithm, and shows how the EM algo-
rithm can be used to solve the maximum-likelihood parameter estimation problem in mixture-of-Gaussians mod-
eling. In this section, we formalize and generalize our previous discussion on the maximum-likelihood
estimation problem for data with hidden components. We start with a formal definition of the problem and the
corresponding EM algorithm, as stated in Figure 6 (next page).

This generalized formulation of the EM algorithm is not easy to understand. It does, however, describe a power-
ful algorithm for maximum-likelihood estimation that is applicable not only for mixture-of-Gaussians modeling,
but for vector quantization, general mixture modeling and hidden Markov models as well. The EM algorithm is
particularly applicable when the -function is easy to compute and is easier to maximize than maximizing the
log-likelihood  directly. In the following two sections, we will first prove that maximizing
the -function also maximizes the log-likelihood function; that is, we will show that,

 implies . (57)

Second, we will derive the EM solution for mixture-of-Gaussians modeling, starting with the general formulation
in Figure 6; not surprisingly, we will see that this exercise will lead us to the same parameter update equations as
the informal statement of the EM algorithm did [see equations (49) through (51)].

 

4. Convergence proof for the EM algorithm

 

In this section, we will prove that maximizing the -function also maximizes the log-likelihood function; that is,
we will show that,

 implies . (58)

Below, we will break the proof into two steps. First, we will show that property (58) holds for a 

 

single

 

 datum .
Then will generalize this result to multiple observations , .

 

A. Relating log-likelihood and -function for one observation

 

Let us denote,

. (59)
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We will now show that:

 implies . (60)

for a single datum . Let us first find an expression for  in terms of both the observed data  and the
corresponding hidden data . Throughout our derivation, we will assume discrete hidden variables ; results
for continuous hidden variables follow trivially. From the basic laws of conditional probabilities, we can
write,

(61)

so that,

(62)

Thus,  can be expressed as,

. (63)

 

Expectation-Maximization (EM) algorithm

 

Problem statement: Let , , denote  independently and identically 
distributed 

 

observed

 

 (incomplete) data vectors; let , , denote the 
corresponding 

 

unobserved

 

 (hidden) data vectors for the  observed vectors ; and let , 
, denote the 

 

complete

 

 data, where,

, , and, (EM-1)

. (EM-2)

Furthermore, let  and  be members of a parametric family of probability density 
functions (pdfs) defined for sufficient parameters . Find the parameters  that maximize the log-
likelihood ,

(EM-3)

such that,

, . (EM-4)

Solution:

1. Choose an initial estimate for .

2.

 

(E)xpectation step

 

: Compute ,

, where, (EM-5)

. (EM-6)

3.

 

(M)aximization step

 

: Replace the current estimate  with the new estimate  where,

(EM-7)

4. Iterate steps 2 and 3 until convergence.
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Now, consider two parameter vectors  and . The expectation of the incomplete log-likelihood 
over the complete data  conditioned on  and  is given by,

(64)

(65)

Let us pause and think about what is meant by the conditional expectation operator  used in
equations (65). First, consider some function  for which  is a known constant and  is a vector of
discrete random variables. For such a function,

(66)

Note that we do not sum up over all possible values of  because  is known and constant. The conditional
expected value  is similarly given by,

 (discrete variables ) (67)

Let us now derive expressions for each of the terms in equation (65). First consider term :

(68)

Note that in equation (68),

(69)

since the probability that  assumes any of its possible values is equal to one. Therefore, equation (68)
reduces to:

(70)

Next, consider term :

(71)

Finally, consider term :

(72)

Since we cannot simplify equation (72), let us denote it as :

. (73)

Let us now substitute equations (70), (71) and (73) into (65): 

(74)

Equation (74) gives us a relationship between the log-likelihood of  with respect to the new parameter vec-
tor  and the -function  for a single observation. In the next section, we will exploit that relation-
ship to show that  implies .

 

Θ

 

Θ

 

l

 

x

 

Θ,( )

 

z x y

 

,{ }

 

=

 

x

 

Θ

 

E l

 

x

 

Θ,( )

 

x

 

Θ,[ ]

 

E p

 

x y

 

, Θ( )

 

ln

 

p

 

y x

 

Θ,( )

 

ln

 

–

 

{ }

 

x

 

Θ,[ ]

 

=

 

E l

 

x

 

Θ,( )

 

x

 

Θ,[ ]

 

E p

 

x y

 

, Θ( )

 

ln

 

x

 

Θ,[ ]

 

E p

 

y x

 

Θ,( )

 

ln

 

x

 

Θ,[ ]

 

–=

 

a

 

( )

 

b

 

( )

 

c

 

( )

 

E

 

  

 

•

 

x

 

Θ,[ ]

 

f

 

x y

 

,( )

 

x

 

y

 

E f

 

x y

 

,( )[ ]

 

f

 

x y

 

,( )

 

p

 

y

 

( )

 

y

 

∑

 

≡

 

x

 

x

 

E f

 

x y

 

,( )

 

x

 

Θ,[ ]

 

E f

 

x y

 

,( )

 

x

 

Θ,[ ]

 

f

 

x y

 

,( )

 

p

 

y x

 

Θ,( )

 

y

 

∑

 

≡

 

y

 

a

 

( )

 

E l

 

x

 

Θ,( )

 

x

 

Θ,[ ]

 

E p

 

x

 

Θ( )

 

ln

 

x

 

Θ,[ ]

 

=

 

  

 

p

 

x

 

Θ( )

 

ln

 

[ ]

 

p

 

y x

 

Θ,( )

 

y

 

∑

 

=

 

 

 

p

 

x

 

Θ( )

 

ln

 

 

 

p

 

y x

 

Θ,( )

 

y

 

∑

 

=

 

 

 

p

 

y x

 

Θ,( )

 

y

 

∑

 

1

 

=

 

y

 

E l

 

x

 

Θ,( )

 

x

 

Θ,[ ]

 

p

 

x

 

Θ( )

 

ln

 

l

 

x

 

Θ,( )

 

= =

 

b

 

( )

 

E p

 

x y

 

, Θ( )

 

ln

 

x

 

Θ,[ ]

 

E l

 

z

 

Θ( )

 

x

 

Θ,[ ]

 

q

 

Θ Θ,( )≡

 

=

 

c

 

( )

 

E p

 

y x

 

Θ,( )

 

ln

 

x

 

Θ,[ ]

 

p

 

y x

 

Θ,( )

 

ln

 

p

 

y x

 

Θ,( )

 

y

 

∑

 

=

 

h

 

Θ Θ,( )

 

h

 

Θ Θ,( )

 

p

 

y x

 

Θ,( )

 

ln

 

p

 

y x

 

Θ,( )

 

y

 

∑

 

=

 

l

 

x

 

Θ,( )

 

q

 

Θ Θ,( )

 

h

 

Θ Θ,( )

 

–=

 

x

 

Θ

 

Q

 

q

 

Θ Θ,( )

 

q

 

Θ Θ,( )

 

q

 

Θ Θ,( )≥

 

l

 

x

 

Θ( )

 

l

 

x

 

Θ( )≥



 

EEL6825: Pattern Recognition Maximum-Likelihood Estimation for Mixture Models: the EM algorithm

- 12 -

 

B. Jensen’s inequality

 

We will now show that,

. (75)

Equation (75) is known as 

 

Jensen’s inequality

 

. Let us begin with the definition of :

 [same as (73)] (76)

For :

(77)

Let us now subtract (77) from (76):

(78)

(79)

(80)

Now, we observe the following inequality (as depicted in Figure 7):

, . (81)

Since  we can combine (80) and (81):
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(84)
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Note that in equation (85),
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so that (85) reduces to:

(87)

(88)

 

C. Corollary to Jensen’s inequality

 

Recalling equation (74),

(89)

note that Jensen’s inequality directly leads to the following corollary:

 implies . (90)

In other words, maximizing the -function for a single data point implies an increase in the log-likelihood
function .

 

D. Multiple observations

 

We now want to generalize the result of the previous section for a single data  to multiple data ,
. From equations (EM-3) and (63),

(91)

(92)

Changing  to , and applying the conditional expectation operator  to equation (92), we get,

(93)

Let us now expand each of the terms in equation (93). First, we compute :

(94)

The second term is, by definition (EM-5):
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(97)

Finally, we compute . Similar to equation (97),

(98)

. (99)

Combining the above results, we get,

(100)

(101)

Since equation (101) simply represents a summation over individual data , we observe that the same
result holds as before, namely:

 implies . (102)
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E. Concluding thoughts

 

We have now shown that improving the -function at each step of the EM algorithm will also improve the
log-likelihood of the data given the new parameters. This is an important result, since it tells us that every step
of an EM update for a specific problem will always improve the current log-likelihood  until we
reach a local maximum on the log-likelihood function. In the next section, we will derive the EM update
equations for mixture-of-Gaussians modeling.

 

5. Maximum-likelihood solution for mixture-of-Gaussians modeling

 

A. Problem statement

 

Assume you are given a set of identically and independently distributed -dimensional data ,
, drawn from the probability density function,

(103)

where  denotes a parameter vector fully specifying the th component density ,  denotes the
probability (i.e. weight) of the th component density ,

(104)

, (105)

, and, (106)

, . (107)

Compute the maximum-likelihood parameter estimates for the parameters . 

 

B. Definition of hidden variables

 

Solution: Let us begin with the definition of the EM algorithm. First, we need to define our hidden variables.
Second, we need to perform the 

 

expectation

 

 step of the EM algorithm for this problem; that is, we need to
compute  as defined in equation (EM-5). Third, we need to perform the 

 

maximization

 

 step of the
EM algorithm, as indicated in equation (EM-7).

Let us define the 

 

hidden

 

 data vector  corresponding to the 

 

observed

 

 datum  as,

(108)

where the  are discrete random variables with the following possible values,

(109)

Note that the vector  can only take on  distinct values:

, , , . (110)

Finally, let  denote the vector  where  and all other , , and let 
denote the th complete data vector.

 

C. Expectation step

 

Previously, we shown that the -function defined in (EM-5),
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(111)

can be written as,

. (112)

From basic probability theory,

(113)

so that,

(114)

. (115)

Let us derive some of the sub-expressions in the above -function.

(116)

(117)

(118)

From equations (115) through (118) and switching the order of summation,

(119)

where,

(120)

This completes the 

 

Expectation

 

 step of the EM algorithm. What remains is to maximize  with
respect to . This will be the 

 

Maximization

 

 step of the EM algorithm. We will perform this maximization by
maximizing each of the two terms in equation (120) separately.

 

D. Maximization step

 

First, we want to maximize,

(121)

with respect to the . Note that the  are constrained by,
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(122)

Remember from your basic calculus, that this type of 

 

constrained optimization

 

 can be performed through the
method of 

 

Lagrange multipliers

 

.

[Note: In general, a function,

(123)

with constraint,

(124)

is maximized by maximizing the augmented objective function ,

, (125)

where  is called the Lagrange multiplier.]

In our case,

(126)

and, switching the index of summation from  to ,

(127)

Taking the derivative of (127) with respect to ,

(128)

(129)

Let us now sum equation (129) over all ,and solve for :

(130)

(131)

Note, however that,

(132)

Therefore, equation (131) simplifies to,

(133)

Combining equations (129) and (133),
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(134)

(135)

Inserting equation (120) into (135), and switching the order of summation in the denominator,

(136)

(137)

Note that,

(138)

Therefore, equation (137) simplifies to,

, (139)

Thus, equation (139) gives us the EM iterative update rule for estimating the priors . The maximization
of the second term in equation (119) proceeds by setting the gradient with respect to  of,

(140)

equal to zero,

(141)

and solving for . In order to compute the gradients,

(142)

for the Gaussian distribution,

(143)
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we will need to compute,

 and (144)

separately. In order to undertake this, we will make use of the following results from linear algebra:

(145)

(146)

(147)

(148)

where  is a -dimensional vector, and  is a  matrix. Note that if  is symmetric, then equation
(145) reduces to,

(149)

and equation (147) reduces to,

. (150)

Given these identities from linear algebra, we can now compute the gradients in (144). First, for the mean
vector ,

(151)

From equation (149),

(152)

(Here we drop the indices ,  and the over bar for notational simplicity.)

(153)

Reinserting the problem-specific notation,

(154)

We can now solve for . Combining equation (141), (143) and (154),

(155)

(156)

, . (157)

For the covariance matrices , rather than derive,
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(158)

we will compute,

(159)

instead, because it will be a little easier. (During the derivation, we will again drop the problem specific nota-
tion.) Using the product and chain rules for differentiation,

(160)

Note that we can write,

(161)

so that equation (160) reduces to,

(162)

where,

 [see equation (146)] (163)

and [see equations (148) and (150)],

(164)

Combining equations (162), (163) and (164),

(165)

(166)

Reinserting the problem-specific notation,

(167)

we can now solve for . Combining equation (141), (143) and (167),
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(168)

(169)

(170)

Therefore, the EM iterative update equations for the mixture-of-Gaussians problem are given by equations
(139), (154) and (170):

, (171)

, (172)

, (173)

Note that these equations are identical to the ones previously derived using the intuitive formulation of the
EM algorithm [equations (49) through (51)]. Second, note that what ultimately made the derivation of equa-
tions (171) through (173) possible was the exponential nature of the component densities , which led
to the cancellation of numerator and denominator in both equations (155) and (168).

 

6. Examples of mixture modeling

 

To see mixture-modeling examples for both synthetic and real data, check out the 

 

Mathematica

 

 notebooks, and
quicktime animations on the course web page: http://mil.ufl.edu/~nechyba/eel6825.
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