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Abstract

This paper proposes a new concept in hierarchical repre-
sentations that exploits features of different granularity and
specificity coming from all layers of the hierarchy. The con-
cept is realized within a cross-layered compositional repre-
sentation learned from the visual data. We show how simi-
larity connections among discrete labels within and across
hierarchical layers can be established in order to produce a
set of layer-independent shape-terminals, i.e. shapinals. We
thus break the traditional notion of hierarchies and show
how the category-specific layers can make use of all the
necessary features stemming from all hierarchical layers.
This, on the one hand, brings higher generalization into the
representation, yet on the other hand, it also encodes the
notion of scales directly into the hierarchy, thus enabling a
multi-scale representation of object categories. By focus-
ing on shape information only, the approach is tested on
the Caltech 101 dataset demonstrating good performance
in comparison with other state-of-the-art methods.

1. Introduction
Visual categorization and recognition of objects has been

a subject of extensive research over the last decades. Many
approaches have been developed that perform well on this
challenging task [15, 17, 13, 9, 4, 19, 1, 12, 6, 22, 16,
3, 20]. However, the most successful methods up-to-
date are mainly flat appearance-based systems that com-
bine masses of discriminative extracted features with stan-
dard classifiers. It has not been until recent years that the
computationally more plausible hierarchical systems have
been proven to also reach state-of-the-art classification re-
sults [13, 18, 10, 14, 16].

Hierarchical systems ensure an efficient way to repre-
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sent exponential variability present in the visual data. What
can otherwise be only complemented by extracting mil-
lions of image patches or other highly discriminative fea-
tures, hierarchies model within a relatively small and com-
pact representation, enabling more robust detection strate-
gies [2, 8, 11, 7]. Since hierarchical approaches offer com-
putational means to address visual tasks on a larger scale, it
is worth studying their design principles in greater depth.

The design of hierarchical representations to this end still
poses many open questions, i.e. what is the best internal rep-
resentation of the hierarchical nodes, to what extent unsu-
pervised learning should and can be used, and how should
the lower, statistics-driven layers be organized in order to
serve as a good basis for higher-level object representations.

A number of architectures that tackle the creation of
the lower, category-independent layers have been proposed.
However, in most hierarchical categorization approaches,
categorical representations and decisions are based only
upon the top-most layer [13, 10, 16, 7]. We argue that this
places a limit on the performance of hierarchies, giving rise
to the problem of “terminal” structures in images as well as
terminal structures coded in hierarchical nodes. For exam-
ple, high curvatures or circle-detecting features do not usu-
ally statistically combine into more complex, higher-layer
units, but rather terminate at a particular layer. In images,
this is also true for even simpler features such as lines: a
smaller object contains shorter lines that can be extracted
with lower layers, while only a longer line detector (emerg-
ing from higher layers that usually code larger receptive
fields) becomes sufficiently discriminative on a larger ob-
ject. Since objects can appear on any scale and contain fea-
tures of various granularities, it becomes crucial to combine
features from all hierarchical layers pertaining to the cor-
responding shape terminals, e.g. shapinals, to produce the
final description of objects.

In literature, relatively few strategies have been proposed
and relatively few experiments performed that tried to deter-
mine the proper granularity of features (layers) to be used
for the final classification [21]. Serre et al. [18] designed



a two-layer hierarchy consisting of a set of Gabor filters at
the bottom, C1 layer, and a learned set of features on the
second, C2 layer. Their findings suggest that while the C2
features usually outperform the simple C1 ones, in some
cases the base features turn out to be more useful for clas-
sification. On this basis, Wolf et al. [21] experimented with
various concatenations of features across the two layers and
demonstrated superior results compared to the categoriza-
tion based upon one layer only.

This paper proposes a new concept in hierarchical repre-
sentations that exploits features of different granularity and
specificity coming from all layers of the hierarchy. The ap-
proach addresses the problem of statistically terminal shape
nodes that emerge within hierarchical layers during learn-
ing, as well as shows how the pooling of layer-specific fea-
tures extracted on objects can be performed in order to pass
the appropriate granularities of shape to the higher-level,
category-specific representation. The concept is realized
within a cross-layered compositional representation learned
from the visual data. We show how similarity connections
among discrete states/labels within and across hierarchi-
cal layers can be established in order to produce a set of
layer-independent shape-terminals, i.e. shapinals. We thus
break the traditional notion of hierarchies and show how
the category-specific layers can make use of all the neces-
sary features stemming from all hierarchical layers. This,
on the one hand, brings higher generalization into the rep-
resentation, yet on the other hand, it also encodes the notion
of scales directly into the hierarchy, thus enabling a multi-
scale representation of object categories. By focusing on
shape information only, the approach has been tested on the
standard datasets demonstrating good performance in com-
parison with the other state-of-the-art methods.

The paper is organized as follows: in Section 3 we first
give a brief overview of the proposed method, summarize
the hierarchical compositional representation of [7], which
serves as the basis to our model in Subsec. 3.1, propose
means to make similarity connection between hierarchical
nodes within (Subsec. 3.2) and across (Subsec. 3.3) layers,
and finally show how the layer-independent representation
with shapinals can be obtained (Subsec. 3.5). Experimental
results are presented in Section 4, with the summary and
conclusions given in Section 5.

2. Contributions
This paper addresses three major problems that arise in

hierarchical systems:

• The problem of which hierarchical features ex-
tracted on objects should be forwarded to higher-
level, category-specific representations. We propose
to extract the so-called shapinals defined as shape-
termination features detected across hierarchical lay-

ers. The shapinals inhibit all the smaller, densely ap-
pearing features already coded within them, thus pro-
viding a compact description of objects.

• The problem of scale normalization of objects and
their respective features. We show how scales can
be encoded directly into the hierarchical layers by es-
tablishing similarity connections between features ap-
pearing across various levels of the hierarchy and show
how the conjoint ratio of scales of object-specific fea-
tures maps into the layer-relative firings of hierarchical
nodes.

• The problem of generalization. Since hierarchies
usually code information in discrete nodes, two nodes
that respond to perceptually similar visual features are
likely to be realized in different hierarchical labels. In
order to provide robustness, generalizations and thus
repeatability for intra-class variations of features, we
propose means to enable geometrical comparisons of
hierarchical nodes within layers.

Within the proposed framework we additionally show
how the issue of statistically terminal nodes (nodes that do
not combine into higher-layer features) is solved naturally,
and how the concept of cross-layered representations is able
to avoid the combinatorial explosion of feature combina-
tion and enables unsupervised learning of higher hierarchi-
cal layers.

3. Cross-layered similarity connections for a
layer-independent representation

In images, objects may appear in various sizes and con-
tain features of different specificity and granularity. By
building hierarchical representations based on image statis-
tics [7], it is thus to expect that such features will emerge
across different layers of the hierarchy. Since the recep-
tive field sizes increase with the level of hierarchy, small
and simple feature detectors usually define the lower lay-
ers, while finer and more complex edge structures are coded
with the higher hierarchical layers. Consequently, larger ob-
jects in images will produce higher-level dynamic bindings,
while the detection of features on smaller objects will ter-
minate in the lower layers. Not to lose any descriptive in-
formation pertaining to various objects, it is thus crucial to
carefully pool features detected across multiple layers of the
hierarchy (the schematic overview of the proposed concept
is presented in Fig. 1).

Additionally, the hierarchical nodes are usually realized
as discrete states/labels thus having generalization prob-
lems. As, for example, no two horses have the same shape
of backs or mouths, it is hard to expect that the same hier-
archical node would fire in both cases (depicted in Fig. 2).



We thus need the means of finding the similarities among
different hierarchical nodes in a geometrical sense.

We propose to create similarity connections between hi-
erarchical nodes within layers to achieve invariance for high
variability in object shape and draw similarities across lay-
ers to achieve a proper scale normalization of features. We
show how a layer-independent description of objects de-
fined by the so-called shape-terminals, i.e. shapinals, can
be passed to the higher-level, the category-specific repre-
sentation. If performed in this manner, the problem of ter-
minal nodes within the hierarchical “library” is solved in a
natural way. There is no need to by-pass or float features to
the top-most layer and thus unnecessarily load the complex-
ity of representation, which may prevent the unsupervised
creation of higher layers (the problem arising in [7]). In-
stead, at each hierarchical stage of learning, only a subset
of the layer’s statistically most repeatable features can be
combined further, yet the final, cross-layered description of
objects will retain its descriptive power.

Figure 1. Cross-layered, scale independent representation.

3.1. The base model: hierarchical compositional
framework [7]

We build on our previously proposed approach [7],
where we proposed an unsupervised learning framework
to obtain a hierarchical compositional representation of ob-
ject categories. Starting with simple oriented filters the ap-
proach learns the first three layers of optimally sharable
features, defined as loose spatial compositions, i.e. parts.
Upon the third layer, a higher-layer categorical representa-
tion is derived with minimal supervision. The model is in
essence composed of two recursively iterated steps, 1.) a

Figure 2. For greater generalization we establish similarities be-
tween hierarchical nodes within layers.

layer-learning process that statistically extracts parts by se-
quentially increasing the number of subparts contained in
local image neighborhoods, and 2.) a part detection step
that finds the learned compositions in images with an effi-
cient and robust indexing and matching scheme. The ad-
vantage of the proposed representation lies in the capability
to model exponential variability present in images, yet still
retaining the computational efficiency by keeping the num-
ber of indexing links per each part approximately constant
across layers.

We adopt the terminology and the notation from [7].
The rotation invariance is dropped from our implementa-
tion, however, since we believe it can be incorporated into
the model along with other invariances at a later stage of
learning.

Let Ln denote the n-th Layer. Each element of Ln, i.e.
part, is envisioned to model spatial relations between its
subparts, which furthermore model the spatial relations be-
tween their constituent subcomponents, etc. Parts are thus
defined recursively in the following way. Each part Pn

i

in Ln is characterized by the center of mass, and a list of
subparts (parts of the previous layer) with their respective
positions relative to the center of Pn

i . One subpart is the
so-called central part that indexes into Pn

i from the lower,
(n− 1)th layer. Specifically, a Pn

i that is centered to (0, 0)
encompasses a list {

(
Pn−1

j , (xj , yj), (σ1j ,σ2j)
)
}j , where

(xj , yj) denotes the relative position of subpartPn−1
j , while

σ1j and σ2j denote the principal axes of an elliptical Gaus-
sian encoding the variance of its position around (xj , yj).
The hierarchy starts with a fixed L1 composed of a set of
oriented Gabor filters, {filter i}.

Along the lines of how the parts are formed [7], the rel-
ative positions with variances {(xj , yj), (σ1j ,σ2j)} may
be preferably replaced with the segmented spatial maps,
{mapj}j , which capture the variability of subparts more
accurately than the fitted Gaussians. Spatial map is a two-
dimensional map that contains the learned disposition of
locations of each subpart relative to the central part, upon
which the parameters of the approximately Gaussian dis-



tribution are estimated [7]. We will use both terms, inter-
changeably.

3.2. Similarity between parts within layers

The parts defined as hierarchical compositions can be
learned without supervision from a set of images. The
drawback, however, is the fact that they are realized as
discrete labels (part types) without a proper geometrical
parametrization that would enable a comparison between
them. Consequently, two visually similar curvatures are
likely to be encoded in two different hierarchical nodes.
Grouping by co-occurrence [7] only partially solves this
problem: since perceptibly equal structures can be com-
posed in different ways, parts formed as different compo-
sitions will highly co-occur. However, two visual shapes
that are only similar to a certain extent are likely to have
a small, random co-occurrence. It is thus crucial to have
the means of comparing two different parts in a geometrical
sense.

In a strictly mathematical sense, the optimal similarity
between two hierarchically formed shapes encoding statis-
tically learned spatial variations, would be to draw samples
from the distribution of spatial variance for each subpart,
with the process repeated down to the original Layer 1,
which contains a fixed set of shape points. Each sampled
part would thus take the form of a number of shape-forming
points. Here-on, two parts could be compared using stan-
dard shape similarity techniques. The final similarity value
would be the average similarity calculated over a number of
sampled versions of two compared parts. However, due to
a larger number of parts (in the order of a thousand) in the
higher hierarchical layers, this method would be computa-
tionally very demanding.

Since each part is formed as a recursive spatially loose
composition, a comparison should be performed in a simi-
lar manner. We consider two parts to be perceptually sim-
ilar if both have a similar spatial configuration of subparts.
However, the compatibility of spatial variations of subparts
within two parts that come directly from the adjacent lower
layer should contribute more to the similarity function than
the spatial variations encoded in their subparts which code
much smaller receptive fields.

We thus define a similarity measure simn,k(Pk
i ,Pk

j ) be-
tween parts Pk

i and Pk
j , both from Layer k, with respect to

Layer n recursively as follows.

simn,k(Pk
i ,Pk

j ) =

min
{

sim′n,k(Pk
i ,Pk

j ), sim′n,k(Pk
j ,Pk

i )
}

for 1 < k ≤ n and

simn,1(P1
i ,P1

j ) =

ρ
(
Rfn,1(filter i),Rfn,1(filter j)

)

otherwise, where

sim′n,k(Pk
i ,Pk

j ) =

M
(
psimn,k(Pk−1

i1
,Pk

j ), . . . ,psimn,k(Pk−1
im

,Pk
j )
)
,

and

psimn,k(Pk−1
it

,Pk
j ) = max

jl

{
simn,k−1(Pk−1

it
,Pk−1

jl
)·

ρ
(
Rfn,k

(mapit
),Rfn,k

(mapjl
)
)}
.

Here ρ(A,B) = A·B
‖A‖·‖B‖ is a measure for the similarity

between maps A and B (A · B denotes a component-wise
inner product of two matrices and ‖A‖ is a norm induced
by this product). Note that ρ(A,A) = 1 and ρ(A,B) = 0
when the supports of A and B are disjoint.

Further, Rfn,k
(·) denotes resampling by a factor fn,k,

where fn,k refers to the quotient of the receptive field sizes
of layers k and n, respectively. Since the receptive field
sizes of subparts relative to part from Layer n reduce by
factor 2, we take fn,k = 0.5n−k. By resampling the spatial
maps of lower layers, we are weighting down the influences
that the lower layer subparts have on the final similarity cal-
culation. Thus, from the perspective of Layer 4 for example,
the different orientations of the filters that compose a certain
part down at the base, Layer 1 level, become more alike and
virtually an unimportant factor in the similarity calculation.

Next, we observe that psimn,k(Pk−1
it

,Pk
j ) gives a simi-

larity betweenPk−1
it

, a subpart ofPk
i , and the best matching

subpart of Pk
j . For sim′n,k(Pk

i ,Pk
j ) we would like to give

an average similarity between the subparts of Pk
i and their

best matched subparts of Pk
j . To do this, we take:

Mavg(x1, x2, . . . , xm) =
1
m

m∑
i=1

xi,

M(x1, x2, . . . , xm) =

{
0, if there exists j s.t. xj < T,

Mavg(x1, x2, . . . , xm), otherwise

In the similarity function M as defined above, the sim-
ilarity between two parts, where some subpart cannot be
matched to any subpart of the second part within a specified
tolerance T , is set to zero. Finally, the similarity between
two parts Pn

i and Pn
j , both from Layer Ln, is obtained as

simn,n(Pn
i , P

n
j ).

The advantage of calculating the similarity in this way
lies in its recursive formulation. When calculating similari-
ties within Layer n, we can efficiently re-use the similarities
calculated from the layers below. Since the majority of sim-
ilarities are small on Layer n − 1, the number of Layer n
parts that need to be compared also becomes very low.

We must emphasize, however, that all the similarity cal-
culations are performed during an offline-stage and there-
after become a part of the hierarchical library (Subsection



3.4). This information can then be used efficiently in online
processing of images.

3.3. Similarity between parts across layers

Comparing parts from different layers is somewhat
harder, since their receptive fields are at least by a factor
2 apart. We propose to calculate the similarities in the fol-
lowing way. Let a similarity measure between the parts Pk

i

and Pk′

j , on Layers k and k′ with respect to Layer n, be

simn,k,k′(Pk
i ,Pk′

j ) =

M
(
psimn,k,k′(Pk−1

i1
,Pk′

j ), . . . ,psimn,k,k′(Pk−1
im

,Pk′

j )
)
(1)

for 1 < k′ < k ≤ n, and

simn,k,1(Pk
i ,P1

j ) = ρ
(
CR(Pk

i ),Rf1,k
(filter j)

)
, (2)

for 1 < k ≤ n, where CR(Pk
i ) denotes the reconstruction

of the part Pk
i with filters on Layer 1 and

psimn,k,k′(Pk−1
it

,Pk′

j ) =

max
jl

{
simn,k−1,k′−1(Pk−1

it
,Pk′−1

jl
)·

ρ
(
Rfn,k

(mapit
),Rfn,k′ (mapjl

)
)}
.

In (1) we recursively compare each subpart of Pk
i with

subparts of Pk′

j and taking the average given by a suitable
functionM (see previous section). The second case (2) cov-
ers the calculation of similarities when we compare a part
Pk

i on Layer k to a part P1
j on Layer 1. Here we choose to

reconstruct the part Pk
i from the filters on Layer 1 (by re-

cursively using relative centers of subparts, (xi, yi)), resize
the filter corresponding to P1

j , and calculate the correlation
between the two maps.

Note that this measure, in contrast to the measure within
layers defined in the previous section, is not symmetric. To
make it symmetric does not take much effort, but would
further complicate the definition.

3.4. Creating layer-independent labels

For each partPn we can now make connections to all the
parts in the hierarchy that have a similarity above a chosen
threshold (we take it to be 0.5). This can be seen as or-
ganizing the parts topologically; the connections and their
strength define a similarity neighborhood of each part. Such
organization of parts offers numerous advantages and brings
higher robustness into the representation: whenever a cer-
tain part is sought in the detection stage, any part from its
defined similarity neighborhood may contribute to the final
hypothesis.

Next, the layer-independent set of labels is created with a
simple greedy algorithm. Firstly, each part in the hierarchy
is assigned into a separate group. At each step, two groups
are joined (are assigned the same label), if their similari-
ties are higher than a chosen threshold. The similarity be-
tween the joined group and the rest of the groups is set as the
minima of similarities of parts forming the group with the
parts forming the remaining groups. When no two groups
of parts are above the threshold the process ends. Groups
are labelled and a mapping from the parts in the hierarchi-
cal library into the obtained layer-independent set of labels
is formed: Cross layer(Pk

i ) = l, where l denotes the label
of the group to which a part Pk

i belongs.
The layer-independent labels thus equalize parts coding

lines, circles, etc. across layers of the hierarchical library.

3.5. Shapinals: Obtaining a cross-layered object de-
scription

We first summarize the part detection process adopted
from [7] and then show how the final set of shapinals is
obtained from the set of features detected across layers.

For any given image, the part detection process starts by
describing the image in terms of small oriented edges (i.e.
Gabor filters). This is done on only a small set of scales
– each rescaled version of the original image is processed
separately. By extracting local maxima of the Gabor energy
function that are above a low threshold, an image is trans-
formed into a list of L1 parts; {π1

i }i, where πn
i stands for a

realization of the Ln part Pn with a corresponding location
at which it was recovered in an image; πn

i = {Pn, xi, yi},
where i denotes the successive number of the found part.
At each hierarchical step a set of links Λn is additionally
defined, where Λn(πn

i ) represents a list of all image loca-
tion points that contributed to part πn

i . Λn is calculated from
Λn−1 at each step up in the hierarchy, while Λ1 is simply
a list of all image pixels on which a particular Gabor filter
fired. Due to compositional nature of parts, each πn

i binds
together several parts from the adjacent, lower layer, i.e.
{πn−1

j }j , thus the set of links for πn
i is computed as

Λn(πn) =
⋃
j

Λn−1(πn−1
j )

Through the set of links, all the found parts from all the
hierarchical layers “meet” at the pixel, image-level. Each
higher level interpretation is then found by iterating the in-
dexing and matching step [7].

From the complete list of parts detected across all lay-
ers and a small number of scales, we extract a set of shap-
inals as follows. At each step, we select a part πi with the
highest cardinality of Λ(πi), corresponding to the number
of image points it describes. By performing local inhibi-
tion (described in Alg.1), all the smaller parts that are ei-
ther already bound within the selected part or do not code



any additional pixel-level information, are discarded from
the pending list of parts. When adding the selected part
πi = {P, x, y} to the list of shapinals, we assign it a layer-
independent label, Cross layer(P) and a value of lod, i.e.
level-of-detail. This value codes the approximate size of
the part taking into account the scale and level of hierar-
chy at which it was detected. Since the receptive fields of
hierarchical layers increase by a certain factor (usually 2),
the notion of size is thus also encoded within the hierarchy
and can naturally be combined with image scales. By sam-
pling 2 scales per octave, level-of-detail can be calculated
as lod = round(ilayer + 0.5 · scale). To give an example,
a line detected at layer 2 and scale 3 will be given the same
value of lod as a line detected at layer 3 and scale 1. The
algorithm is summarized in Alg. 1.

The use of shapinals for higher, category-specific rep-
resentation, offers numerous advantages. Firstly, smaller
as well as larger structures are encoded within shapinals,
thus virtually no information is lost through hierarchical
processing. Secondly, the representation is scale-invariant:
the labels with corresponding relative positions will stay ap-
proximately the same for two objects on different scales,
only the lod value will differ. However, the difference of
lod-s between the two objects will stay roughly constant,
thus enabling a robust voting scheme for the scale of the
object.

Since a higher-level, category-specific representation is
outside the scope of this paper, we only briefly describe
how the extracted shapinals can be used with standard clas-
sifiers. As an input, we form a histogram of different types
of shapinals at various lod values. The histogram is ob-
tained by summing the responses for each part type appear-
ing in each quadrant of an image, thus each part type pro-
duces four entries in the histogram. The first dimensions
of the feature vector are reserved for the shapinals with the
highest lod, followed by shapinals at lod − 1, etc. In our
experiments we used three stacked histograms of shapinals
corresponding to three lods. This way, the relative scales of
features are encoded into the final feature vector. The his-
tograms were additionally normalized as proposed in [13].

4. Experimental results
To test the proposed framework, the hierarchical library

was first created by employing our unsupervised learning
approach [7] on a set of 1500 natural images. The learned
compositional hierarchy consisted of 160 parts on Layer 2
and 553 Layer 3 parts (a few examples from both layers
are depicted in Fig. 3). The complete learning process took
approximately 5 hours on one core of an Intel Core-2 CPU
2.4 Ghz computer. It is evident from Fig. 3 that a number of
perceptually similar parts emerge across and within layers,
giving rise to our proposed similarity-based cross-layered
representation.

Algorithm 1 : Pooling of shapinals in images
1: INPUT: A list of parts found at each layer and scale:

Πall = {πilayer

i,scale,Λilayer (πi)}i,scale,ilayer

2: Πshapinals = ∅
3: sort Πall by decreasing value of |Λilayer | (corresponding to

the number of described image points)
4: while Πall 6= ∅ do
5: add the part that describes most image points to the shap-

inal list with its corresponding layer-independent label,
πi,ilayer,scale ∈ Πall(1) and the value of level-of-detail
(see text for explanation):
Πshapinals := Πshapinals

⋃
{Cross layer(πi), lodi},

where lodi = round(ilayer + 0.5 · scale)

Perform local inhibition with the selected part:
6: find all parts πj ∈ Πall that have

1− |Λj(πj)
⋂

Λj(πi)|
max{|Λj(πi)|,|Λj(πj)|} < thresh

(we take thresh = 0.3)
7: remove {πj} from Πall: Πall = Πall \ {πj}
8: end while
9: return A list of shapinals, Πshapinals

The calculated non-zero similarities for one third-layer
part between other parts in the hierarchical library are de-
picted in Fig.4 (2). Upon these similarities, the parts were
grouped to produce 102 layer-independent labels. An ex-
ample of the extracted shapinals based on these labels is
shown in Fig.4 (4).

To put the proposed hierarchical concept in relation to
other hierarchical approaches as well as other categoriza-
tion methods, which focus primarily on shape information,
the approach was tested on the Caltech 101 database [5].
The Caltech 101 dataset contains images of 101 different
object categories with the additional background category.
The number of images varies from 31 to 800 per category,
with the average image size of roughly 300× 300 pixels.

Each image was processed on 3 different scales, spaced
apart by

√
2. The average processing times per image per

layer obtained with our C++ implementation are reported
in Table 1. Most of the processing time is spent filtering an
image with 6 Gabor filters (L1), which has not been opti-
mized for performance. To demonstrate the utility of our
approach, we ran several classification trials with different
levels of the hierarchy as well as the final, shapinal repre-
sentation. The features were combined with a linear SVM
for multiclass classification. For this experiment we used 15
images for training and 15 images for testing, disjunct from
the training set (this experimental methodology was taken
after [22]). The results, averaged over 8 random splits, are
reported in Table 2 with classification rates of other hierar-
chical approaches shown for comparison.

Classification with shapinals was also tested by varying
the number of training examples. For testing, 50 examples



were used for categories where this was possible and less
otherwise. The classification rate was normalized accord-
ingly. In all cases, the result was averaged over 8 random
splits. The results are presented and compared with other
categorization methods in Fig. 6. We must emphasize that
the proposed model focuses on shape information only. To
make an even clearer case, the texture information was dis-
carded from classification altogether. This was done by in-
hibiting all the parts found in an image at each layer that
had “too many” subparts in their local neighborhoods. An
example of detected texture is depicted in Fig. 4 (3). We
thus compare our method to only those categorization ap-
proaches that do not combine several other modalities. It is
worth noting, however, that most of the shown methods also
rely on processing texture as well.

The proposed hierarchical concept offers another advan-
tage over previous hierarchical frameworks. By pooling in-
formation from multiple layers of the hierarchy, the descrip-
tive power remains virtually intact with an increasing num-
ber of layers. We can thus afford to learn additional layers
by using just a set of the most repeatable parts from the last
layer (Fig 4(1) shows the learned four-level hierarchy). The
benefit is two-fold: firstly, information coded in higher lay-
ers can be extracted from images more robustly than simply
using lower layers with higher image scales; secondly, the
reliability of extracting shape-terminations on larger objects
increases with level of hierarchy, which we believe will be
beneficial when forming more elaborate category-specific
representations than the standard SVM. This is part of our
on-going research.

Fig. 5 (left) shows a few examples of part detections
using the similarity connections described in Subsec. 3.2,
while Fig. 5 (right) depicts an example of part detections
using the across-layer similarity connections as described
in Subsec 3.3. It can be seen how finer and larger structures
can reliably be detected with higher hierarchical layers.

Table 1. Average processing time for different steps per image
Processing time per image

Layer 1 1.6 s
Layer 2 0.54 s
Layer 3 0.66 s
Shapinals 0.22 s

5. Summary and conclusions
This paper proposed a new concept in hierarchical repre-

sentations that exploits features of different granularity and
specificity coming from all layers of the hierarchy. The
concept was realized within a cross-layered compositional
representation learned from the visual data. We showed
how similarity connections among discrete labels within
and across hierarchical layers can be established in order

Table 2. Average classification rate on Caltech 101

Ntrain = 15 Ntrain = 30
Layer 2 only 55 /
Layer 3 only 52.9 /
shapinals 60.5 66.5
Serre et al. [18] 44 /
Mutch et al. [13] 51 56
Ranzato et al. [16] / 54
Ommer et al. [14] / 61.3
Wolf et al. [21] 51.18 /

Figure 6. Caltech 101 classification results for methods focusing
primarily on shape.

to produce a set of layer-independent shape-terminals, i.e.
shapinals.

The results confirm the utility of the proposed approach
in the classification task. However, we believe the main
advantage of the presented hierarchical concept will show
when devising more sophisticated higher-level, category-
specific representations. This is part of our on-going work.
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