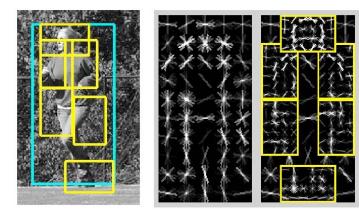
# **Development in Object Detection**


Junyuan Lin May 4th

# Line of Research

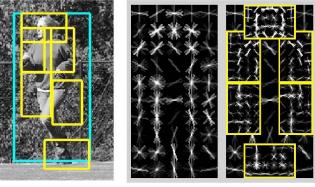
家で

- [1] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection, CVPR 2005.
- P. Felzenszwalb, D. McAllester, and D.
   Ramanan. A discriminatively trained, multiscale, deformable part model, CVPR 2008.
- [3] C. Desai, D. Ramanan, C. Fowlkes.Discriminative Models for Multi-ClassObject Layout, ICCV 2009.

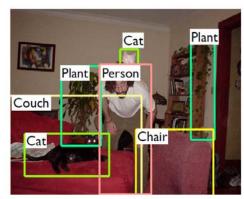
#### HOG Feature template



#### **Deformable Part Model**




Multi-class Object Relationship


# Max-margin Formulation



HOG Feature template



**Deformable Part Model** 



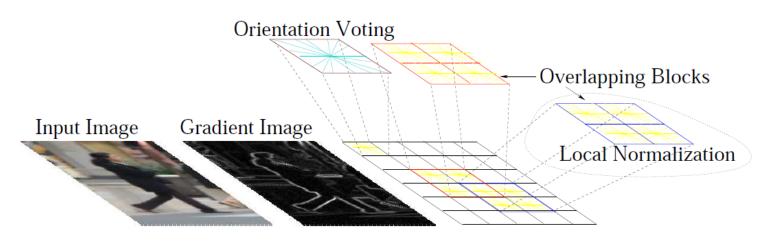
Multi-class Object Relationship



Linear SVM

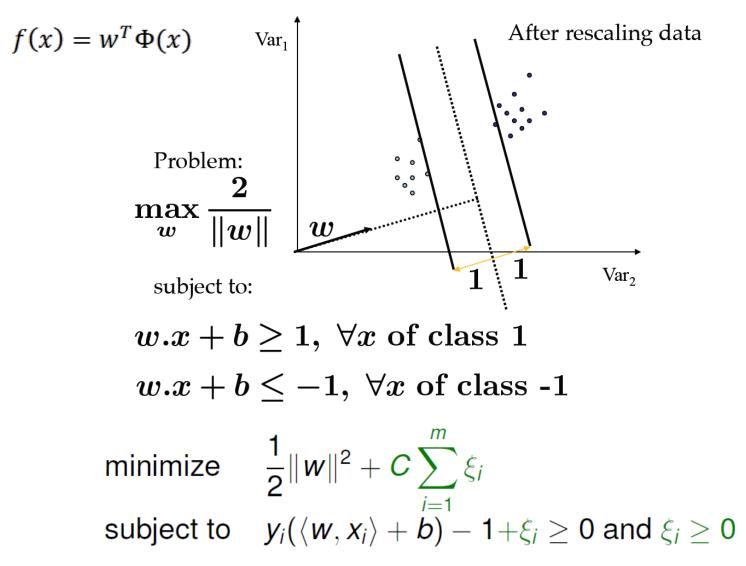
 $f(x) = w^T \Phi(x)$ 

Latent SVM  $f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$ 


 $\beta$  are model parameters z are latent values

 $\int_{f(x) = argmax_{y \in Y}} Structural SVM$ 

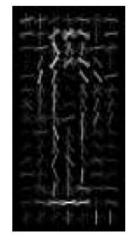
Y structured output


$$Y = \{y_i : i = 1 \dots M\}$$

# **Dalal & Triggs Detector**

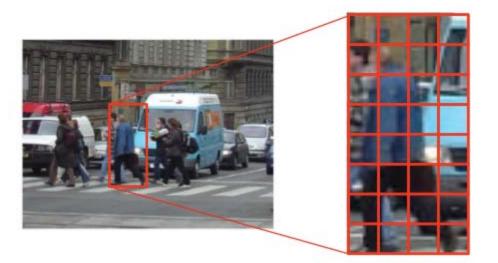


- •Concatenate HOG Features in a search window into feature vector  $\Phi(x)$
- •Formulate the object detection as a binary linear classifier problem  $f(x) = w^T \Phi(x)$
- •Sliding window scanning over the HOG feature pyramid
- •Output location with highest score f(x)
- •Possible post process (Non-maxima suppression)


### Linear SVM classifier



### Learned weighted Filter

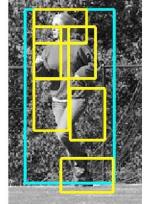


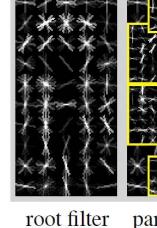

Training sample

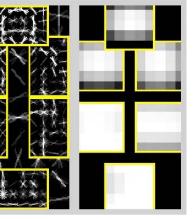




Positive weights Negative weights



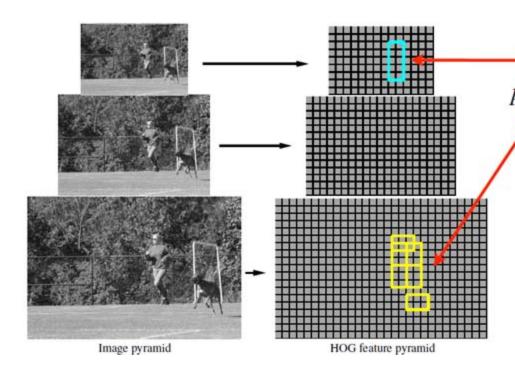





\*

# **Deformable Part Model**

# Multiscale model captures features at two-resolution



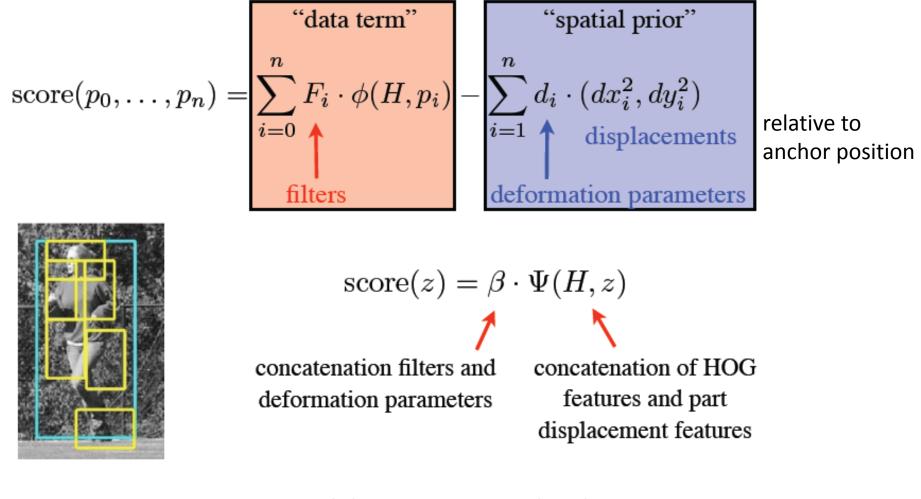





detection

 $z=(p_0,\ldots,p_n)$ 

part filters deformation models




 $p_0$ : location of root  $p_1,..., p_n$ : location of parts relative to  $p_0$ 

> Score is sum of filter scores minus deformation costs

> > Slide by P. Felzenszwalb

# Score of a hypothesis



 $f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$ Latent variable  $z = (p_0, ..., p_n)$ 

Slide by P. Felzenszwalb

# Latent SVM Training

$$f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$$
 Learn  $\beta$ 

$$L_D(\beta) = \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^n \max(0, 1 - y_i f_\beta(x_i))$$
  
Hinge loss

Not convex in general !

#### Semi-convexity:

- $f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$  is convex in  $\beta$
- $\max(0, 1 y_i f_\beta(x_i))$  is convex for negative examples  $(y_i = -1)$
- $\max(0, 1 y_i f_\beta(x_i))$  is concave for positive examples  $(y_i = +1)$

For positive examples make  $L_D(\beta)$  convex by fixing the latent variable  $\mathbb{Z}_p$  for each positive training example.

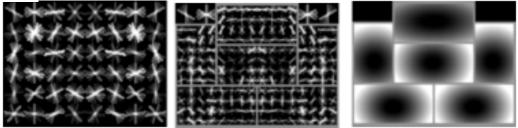
# Latent SVM Training cont'd

$$L_D(\beta) = \min_{Z_p} L_D(\beta, Z_p).$$

Coordinate descent optimization approach:

Initialize  $\beta$  and iterate:

•Fix  $\beta$  pick best  $z_p$  for each positive example.


 $z_i = \operatorname{argmax}_{z \in Z(x_i)} \beta \cdot \Phi(x_i, z).$ 

•Fix  $\mathbf{Z}_{p}$  optimize  $L_{D}(\beta, \mathbf{Z}_{p})$  over  $\boldsymbol{\beta}$  by quadratic programming

or gradient descent

Model training procedure:

•Initialization:

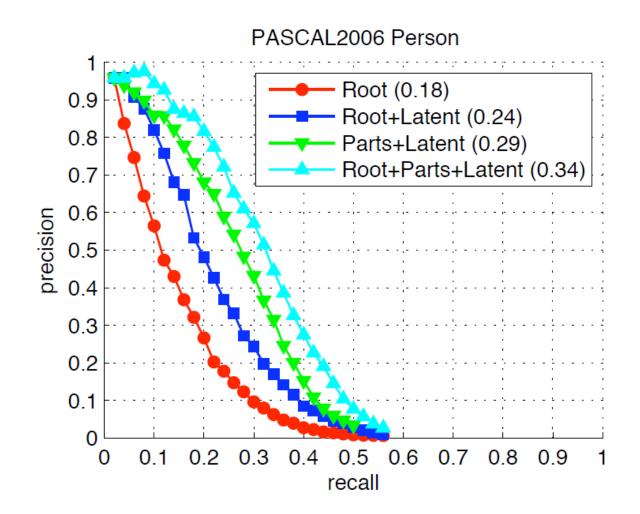


-Root Filter : train an initial root filter  $F_0$  using linear SVM without latent variable.

-Part Filter : Initialize six parts from root filter F<sub>0</sub> with the same shape,

place at anchor positions with most positive energy in  $F_0$ .

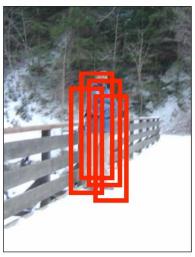
The size of each part filter a is determined to take 80% of the area of  $F_{0.}$ 

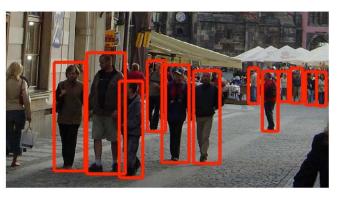

•Train the latent SVM model

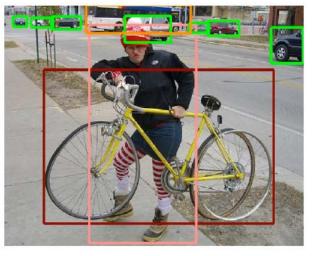
#### **Example Results**



Slide by P. Felzenszwalb


### **Quantitative Result**





# Multi-class Object Layout

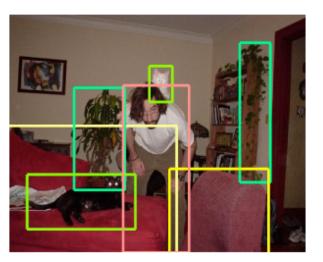
Pascal Dataset: Multiple objects of multi-class in a single image. Problems with traditional binary classification + sliding window approach:

- Intra-class: Require ad-hoc non-maxima suppression as post processing.
- Inter-class: multiple class models are searched independently over images. Heuristically forcing mutual exclusion.







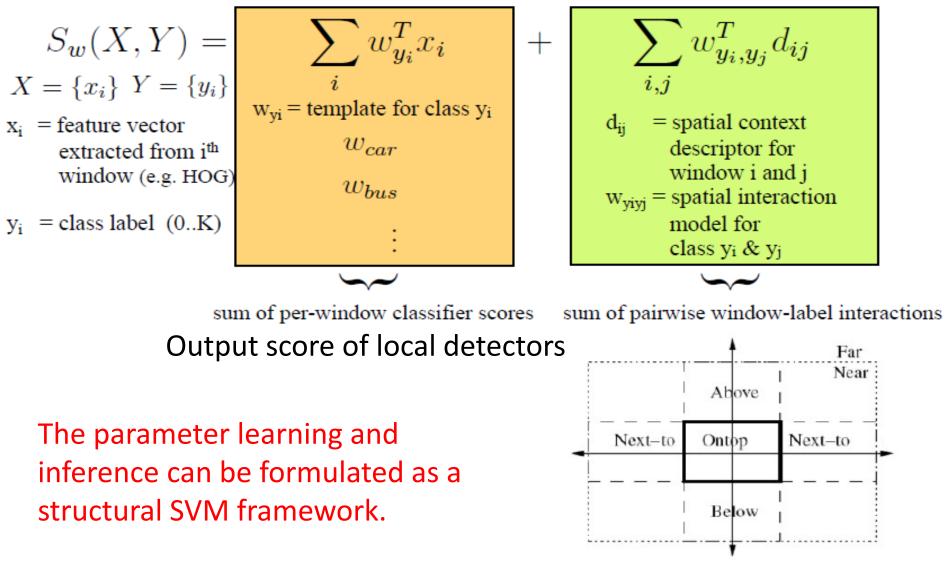

Need a principal way to model spatial statistics between objects

# Formulation

Formulate as a structured prediction problem.

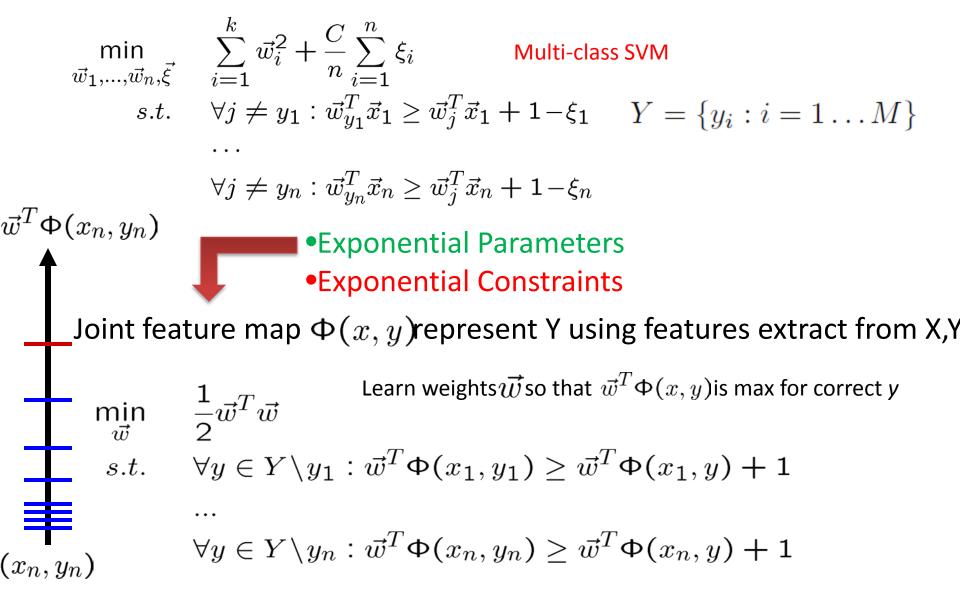
Classification






Structured, sparse label

X = entire image Y = [...4...3...2.7..1..]


X: a collection of overlapping windows at various scales covering the entire image Y: the entire label vector for the set of all windows in an image. spatial relationship between prediction  $y_i$ 

#### Global scoring function



Spatial context descriptor  $d_{ij}$ 

### Structural SVM



#### Structural SVM cont'd

n-Slack Formulation: (margin rescaling)

$$\begin{array}{ll} \min_{\vec{w},\vec{\xi}} & \frac{1}{2}\vec{w}^T\vec{w} + \frac{C}{n}\sum_{i=1}^n \xi_i \\ s.t. & \forall y' \in Y : \vec{w}^T \Phi(x_1, y_1) - \vec{w}^T \Phi(x_1, y') \ge \Delta(y_1, y) - \xi_1 \\ & \dots \\ & \forall y' \in Y : \vec{w}^T \Phi(x_n, y_n) - \vec{w}^T \Phi(x_n, y') \ge \Delta(y_n, y) - \xi_n \\ \end{array}$$
1-Slack Formulation:

$$\min_{\vec{w},\xi} \ \frac{1}{2} \vec{w}^T \vec{w} + C\xi \\ s.t. \ \forall y'_1 \dots y'_n \in Y : \frac{1}{n} \sum_{i=1}^n \left[ \vec{w}^T \Phi(x_i, y_i) - \vec{w}^T \Phi(x_i, y'_i) \right] \ge \frac{1}{n} \sum_{i=1}^n \left[ \Delta(y_i, y'_i) \right] - \xi$$

Slide by T. Joachims

#### **Cutting-Plane Algorithm**

- Input:  $(x_1, y_1), \ldots, (x_n, y_n), C, \epsilon$
- $S \leftarrow \emptyset, \vec{w} \leftarrow 0, \xi \leftarrow 0$ Find most Violated REPEAT by more violated constraint than  $\varepsilon$  ? - FOR i = 1, ..., n- Compute  $y'_i = argmax_{y \in Y} \{ \Delta(y_i, y) + \vec{w}^T \Phi(x_i, y) \}$ ENDFOR  $- \mathsf{IF} \sum_{i=1}^{n} \left[ \Delta(y_i, y'_i) - \vec{w}^T [\Phi(x_i, y_i) - \Phi(x_i, y'_i)] \right] > \xi + \epsilon$   $S \leftarrow S \cup \{ \vec{w}^T \frac{1}{n} \sum_{i=1}^{n} [\Phi(x_i, y_i) - \Phi(x_i, y'_i)] \ge \frac{1}{n} \sum_{i=1}^{n} \Delta(y_i, y'_i) - \xi \}$  $-[\vec{w},\xi] \leftarrow \text{optimize StructSVM over } S$ Add constraint – ENDIF to working set
- UNTILS has not changed during iteration

[Jo06] [JoFinYu08]

### **Theoretical Bound**

**Theorem:** Given any  $\varepsilon > 0$ , the number of constraints added to working set

S is bounded by 
$$\left[\log_2\left(\frac{\Delta}{4R^2C}\right)\right] + \left[\frac{16R^2C}{\varepsilon}\right]$$

where  $0 \leq \Delta(y_i, y) \leq \Delta$  $2||\Phi(x, y)|| \leq R$ so that  $(\vec{w}, \xi + \varepsilon)$  is a feasible solution.

- Number of constraints is independent of training examples.
- Linear time training algorithm.

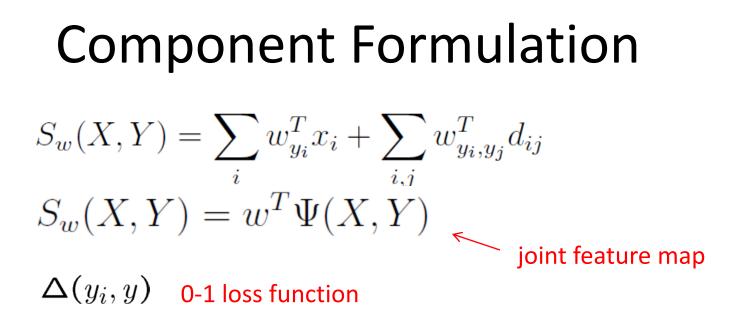
# Summary of Structural SVM

• Training: (cutting plane algorithm)

$$\min_{\vec{w},\xi} \ \frac{1}{2} \vec{w}^T \vec{w} + C\xi$$

$$s.t. \ \forall y_1' \dots y_n' \in Y : \frac{1}{n} \sum_{i=1}^n \left[ \vec{w}^T \Phi(x_i, y_i) - \vec{w}^T \Phi(x_i, y_i') \right] \ge \frac{1}{n} \sum_{i=1}^n \left[ \Delta(y_i, y_i') \right] - \xi$$

 $\Delta(y_i, y)$ 


 $\Phi(x,y)$ 

• Prediction:

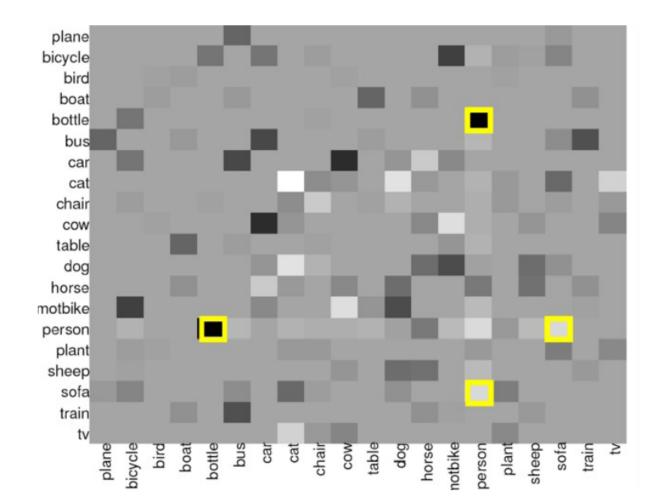
$$\hat{y} = argmax_{y \in Y} \{ \vec{w}^T \Phi(x, y) \}$$

- Application Specific Design of Model
  - Loss function:
  - Representation: joint feature map
  - Algorithm to compute:  $\widehat{y} = argmax_{y \in Y} \{ ec{w}^T \Phi(x, y) \}$

$$\hat{y} = argmax_{y \in Y} \{ \Delta(y_i, y) + \vec{w}^T \Phi(x_i, y) \}$$

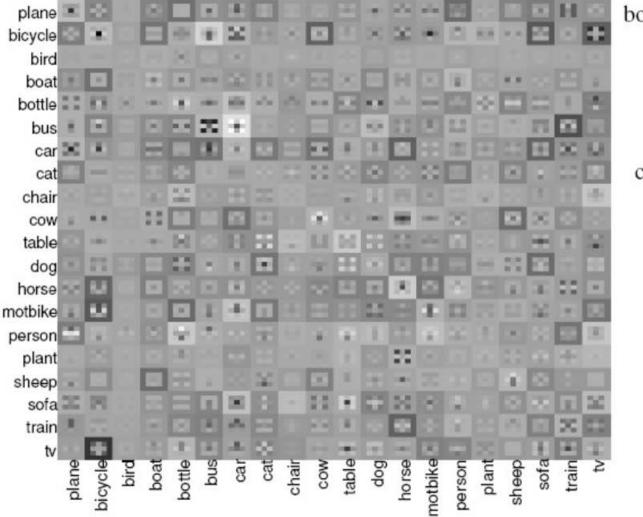


 $\hat{y} = argmax_{v \in Y}S(X, Y)$ 


Greedy forward search algorithm

(1) Initialize all labels to bg

Initialize per-window scores with local template


- (2) Select highest scoring un-instanced window
   (3) Instance it and add pairwise contribution to remaining windows (4) Stop when remaining windows score < 0

### Overlap feature in pairwise potential



Mutual exclusion can be subtle Parameters are trained with knowledge of local detectors

# Remaining pairwise potentials



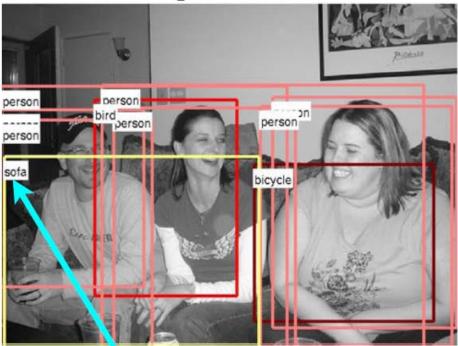
bottles wrt tables



cars wrt trains



m.bikes wrt m.bikes




#### Results

# person person person bicy sle

Top 10 detections for baseline

#### Our top 10 detections



Inhibit overlapping people & bottles because local detectors confuse them Favor overlapping people & sofas because people sit on sofas

#### Results

#### Baseline

#### Our model



