Development in Object Detection
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Multi-class Object Relationship



Max-margin Formulation

> Linear SVM
f(x) =w'd(x)

Latent SVM
> falx) = 72123(}% B-®(x, z)

f are model parameters
z are latent values

Structural SVM

f(x) = argmax,cy w' ®(x,y)
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Dalal & Triggs Detector

Orientation Voting

~=— Overlapping Blocks

Input Image Gradient Image

——_-Local Normalization

*Concatenate HOG Features in a search window into feature vector ®(x)

*Formulate the object detection as a binary linear classifier problem
fx) =w'd(x)

Sliding window scanning over the HOG feature pyramid

*Output location with highest score f(x)

*Possible post process (Non-maxima suppression)



Linear SVM classifier

flx) =wld(x) Var, ! After rescaling data

subject to: Vary

w.x+b>1, Vx of class 1
w.x + b < —1, Vz of class -1

minimize —HWH2 + CZ{;

subjectto  yi((w, Xx;) + b) — 1+ >0and & >0



Learned weighted Filter

Training sample  Positive weights Negative weights




Multiscale model captures
features at two-resolution
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detection root filter part filters deformation
models

Z=(po,---s Pn)

B po: location of root

H P1,..., Pn - location of parts
relative to p,

Score 1s sum of filter
scores minus
deformation costs

FH -
+H+,
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Image pyramid HOG feature pyramid Slide by P. Felzenszwalb



score(po, - - -

Score of a hypothesis

:pn) —

“data term” “spatial prior”
mn
Z F; - o(H,p;)|— Z d; - dy:
=1 T doplacemens |00
filters deformation parameters

score(z) = 0 -V (H,z)

/7 N\

concatenation filters and  concatenation of HOG
deformation parameters features and part
displacement features

g(r) = max §-®(x. =
f'j( ) z€Z(x) ( ' )

Latent variable Z = (po..... pn)
Slide by P. Felzenszwalb



Latent SVM Training

falx) = max (- P(x,2) Learn [
' zE€Z(x)

.. 1 n |
Lp(B) = 5 18|1* + C Z max(0, 1 — y; f5(x;))
=1 Hinge loss

Not convex in general |
Semi-convexity:
® f 3 (fif) = max 3 - P (fL‘: _.Z) 1S convex in /j’
zeZ(x)
o max(0,1 —y;f3(x;)) isconvex for negative examples (Vi = —1)
e max(0,1 — v, fz(x;)) Isconcave for positive examples (vi = +1)

For positive examples make Lp(/?) convex by
fixing the latent variable Zp for each positive training example.



Latent SVM Training cont’d

Lp(B) =minLp(5,2Z,).
Zp '
Coordinate descent optimization approach:
Initialize f and iterate:
*Fix 3 pick best z,for each positive example.

Zi = argmax, c z(,. G- P(x;. :)

Fa
-

*Fix Zp optimize Lp(5,Zp) over f by quadratic programming
or gradient descent
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Model training procedure: EETEEEEEE

- . . B e v e S
e|nitialization: Mo\

-Part Filter : Initialize six parts from root filter F, with the same shape,
place at anchor positions with most positive energy in F, .
The size of each part filter Qis determined to take 80% of the area of F,

*Train the latent SVM model



Example Results
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Slide by P. Felzenszwalb
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Quantitative Result

PASCAL2006 Person

| —e— Root (0.18)
| —=— Root+Latent (0.24)
| —%— Parts+Latent (0.29)

Root+Parts+Latent (0.34)
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Multi-class Object Layout

Pascal Dataset: Multiple objects of multi-class in a single image.

Problems with traditional binary classification + sliding window approach:

* Intra-class: Require ad-hoc non-maxima suppression as post processing.

* Inter-class: multiple class models are searched independently over images.
Heuristically forcing mutual exclusion.
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Need a principal way to model spatial statistics between objects



Formulation

Formulate as a structured prediction problem.

Classification Structured, sparse label

= 1mage window
y E 10,1}

X = entire image
Y=[.4.3.27.1.]

X: a collection of overlapping windows at various scales covering the entire image
Y: the entire label vector for the set of all windows in an image.
spatial relationship between prediction y;



Global scoring function

v oV T T
Sw(X.Y) = Wy, Tj + Wy, 4. d;;

X ={xz:} Y = {u) i i.]

wy; = template for class y;

x; = feature vector d; = spatial context
extracted from i® Wear descriptor for
window (e.g. HOG) " wmcllmﬁ,_-' 1 and i
‘bus Wyiyi = spatial interaction
vi = class label (0..K) : model for
: class yi & yj
N’ N
sum of per-window classifier scores  sum of pairwise window-label interactions
Output score of local detectors | Far
! ; Near
| A Howve

The parameter learning and Next—to | Onthp
inference can be formulated as a L
structural SVM framework. " BeJow
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Spatial context descriptor d;;



Structural SVM

k n
C
min ) 'u_;’?? +—=> & Multi-class SVM
W1, Wn,s& =1 i=1
st. ViFEy W, >w s +1-& Y ={y;:i=1...M)

T
b :

WP (2n, yn) *Exponential Parameters

I *Exponential Constraints

Joint feature map ®(z, y yepresent Y using features extract from X.Y

Learn weights1j so that ! ®(z, v)is max for correct y

1
min by
&2
st. VYyeY\yp:w! d(a,y1) > d d(a,y) + 1

Yy € Y\yn : W ®(zn, yn) > @' S(zn,y) + 1
(xn,y’n,)



Structural SVM cont’d

n-Slack Formulation: (margin rescaling)

, 1 cC X2
min  —@ld+ =Y &
st. VyeY:wld(zy,y1) —d d(z1,y) > Alyry)—&1

Yy €Y : B (2, yn) — T D(2n, v) > Alyn,y) —én

1-Slack Formulation: @

1
min Ew‘T @+ C¢

w,E
it W€+ 2 e~ e )] > L3 A D] ¢
=1 =1

Slide by T. Joachims



Cutting-Plane Algorithm
e Pane Agorh S
In . A
° pUt' (xlayl)a“')(xnayn)acae

¢« S—0,w—0,§{<0 Find most Violated

 REPEAT violated by more
FOR i=1.....n constraint thang?

— Compute yj =argmazycy { AW;,y) + @ S @;,y)}
— END!;OR

—IF Y [ A@ ) — 0T [P@p)-P @ y)])| > &+ e
=1 n
S — SULIT- Y [0Guud-dEi)] > > Ayl — &)

=1 =1

— [@, £] + optimize StructSVM over § Add constraint
— ENDIF to working set

 UNTILS has not changed during iteration

o

[Jo06] [JoFinYuO08]



Theoretical Bound

Theorem: Given anye > 0, the number of constraints added to working set

S is bounded by A 16R2C
log, > ) +
4R°C E

where 0 < A®;,y) <A
2/|P@,y)|| <R

so that(w, & + ¢) is a feasible solution.

 Number of constraints is independent of training examples.
e Linear time training algorithm.



Summary of Structural SVM

* Training: (cutting plane algorithm)

1
min 5163"@ + C¢

w,E
13 1&

s.t. \:/yl yREY nZ{ ch(mzayf) chb(‘T?f:yD} > Z[A@hyb] _5
=1 =1

* Prediction:
- =T
y=argmazycy{w" Py}

* Application Specific Design of Model
— Loss function: A(Y;,y)
— Representation: joint feature map CD(.CE', y)

— Algorithm to compute: Y= a,rgma,:cygy{’tﬁTq:’ (xay)}

Y= CL?"ngLZUyey{A(’gi 7y) _I_u_;TCD (x?ny)}



Component Formulation

‘ST'LU (X‘ }I) — ll T + Z w Yi, yj

S,(X.Y) =wU(X, Y)

joint feature map
A(y;,y) 0-1loss function

y = argmax,eyS(X,Y)
Greedy forward search algorithm

(1) Initialize all labels to bg
[nitialize per-window scores with local template
< (2) Select highest scoring un-mnstanced window
(3) Instance 1t and add pairwise contribution to remaining windows
(4) Stop when remaining windows score < ()



Overlap feature in pairwise potential

Mutual exclusion can be subtle
Parameters are trained with knowledge of local detectors
Slide by D. Ramanan



Remaining pairwise potentials

bottles wrt tables

cars wrt trains

m.bikes wrt

Slide by D. Ramanan



Results

Top 10 detections for baseline

'_"'E

person e
g B DETSON g "
" "|. *;-

__%%
Inhibit e Favor
overlapping people & bottles overlapping people & sofas
because local detectors confuse them because people sit on sofas

Slide by D. Ramanan



Baseline

-

Lotrarlaz :
www prefoafataarchiv de

Results

Our model

O Lottasbagz 1 U
~Wwww pferdefotoarchiv.de

diningtable
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