Development in Object Detection

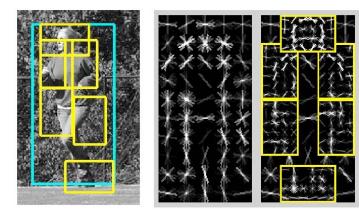
Junyuan Lin May 4th

Line of Research

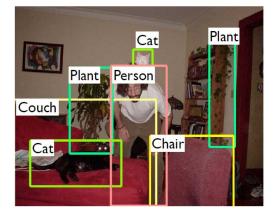
家で

- [1] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection, CVPR 2005.
- P. Felzenszwalb, D. McAllester, and D.
 Ramanan. A discriminatively trained, multiscale, deformable part model, CVPR 2008.
- [3] C. Desai, D. Ramanan, C. Fowlkes.Discriminative Models for Multi-ClassObject Layout, ICCV 2009.

HOG Feature template



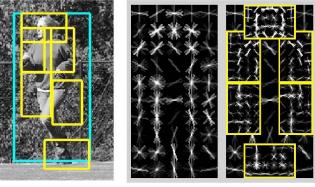
Deformable Part Model



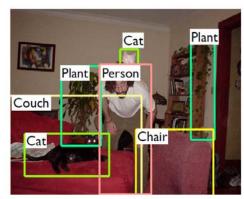
Multi-class Object Relationship

Max-margin Formulation

HOG Feature template



Deformable Part Model



Multi-class Object Relationship

Linear SVM

 $f(x) = w^T \Phi(x)$

Latent SVM $f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$

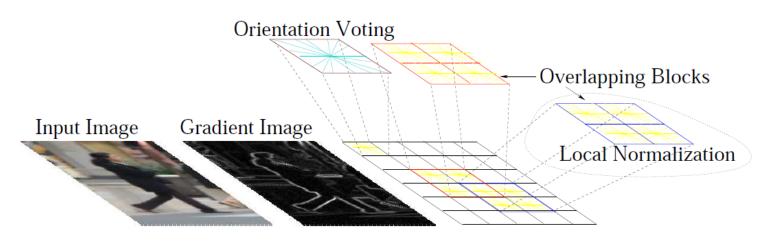
 β are model parameters z are latent values

 $\int_{f(x) = argmax_{y \in Y}} Structural SVM$

Y structured output

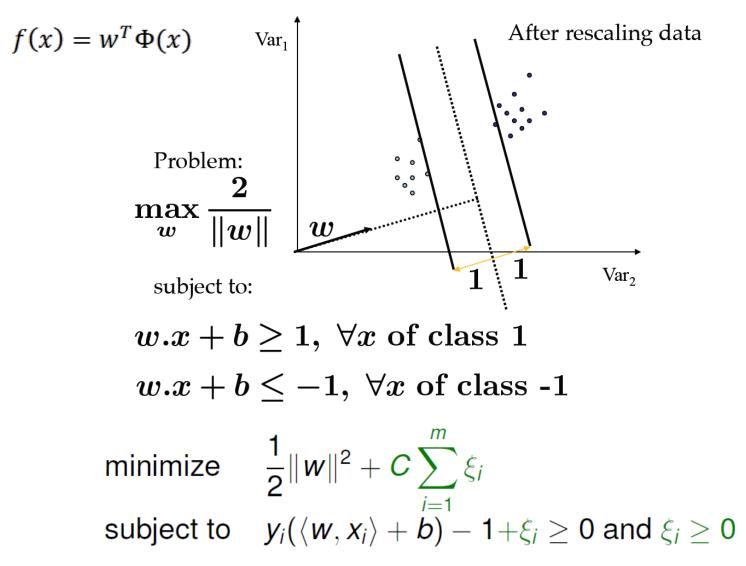
$$Y = \{y_i : i = 1 \dots M\}$$

Dalal & Triggs Detector



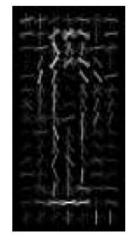
- •Concatenate HOG Features in a search window into feature vector $\Phi(x)$
- •Formulate the object detection as a binary linear classifier problem $f(x) = w^T \Phi(x)$
- •Sliding window scanning over the HOG feature pyramid
- •Output location with highest score f(x)
- •Possible post process (Non-maxima suppression)

Linear SVM classifier

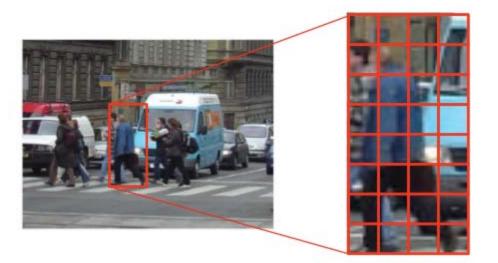


Learned weighted Filter

Training sample



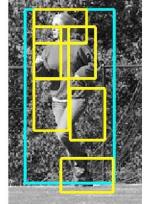
Positive weights Negative weights

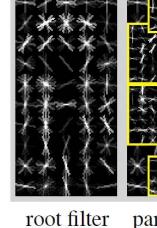


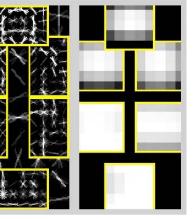
*

Deformable Part Model

Multiscale model captures features at two-resolution



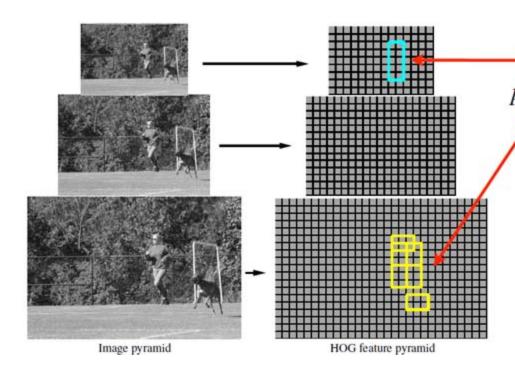




detection

 $z=(p_0,\ldots,p_n)$

part filters deformation models

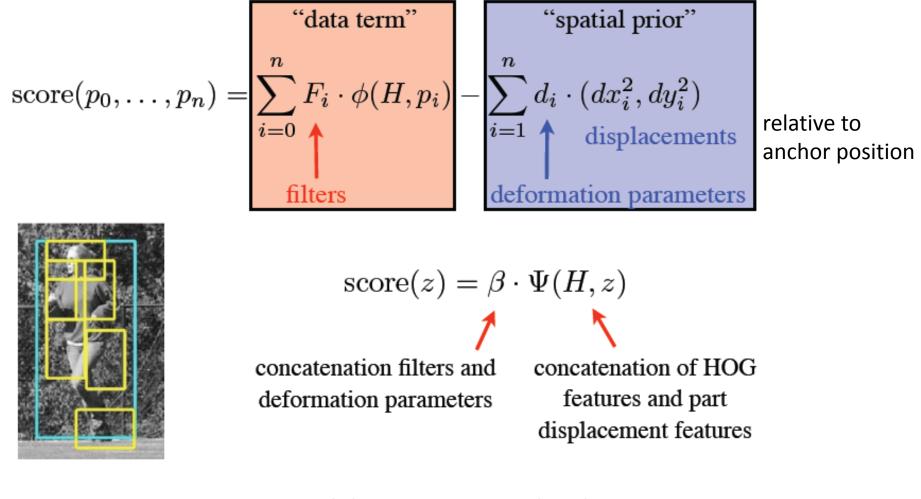


 p_0 : location of root $p_1,..., p_n$: location of parts relative to p_0

> Score is sum of filter scores minus deformation costs

> > Slide by P. Felzenszwalb

Score of a hypothesis



 $f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$ Latent variable $z = (p_0, ..., p_n)$

Slide by P. Felzenszwalb

Latent SVM Training

$$f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$$
 Learn β

$$L_D(\beta) = \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^n \max(0, 1 - y_i f_\beta(x_i))$$

Hinge loss

Not convex in general !

Semi-convexity:

- $f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$ is convex in β
- $\max(0, 1 y_i f_\beta(x_i))$ is convex for negative examples $(y_i = -1)$
- $\max(0, 1 y_i f_\beta(x_i))$ is concave for positive examples $(y_i = +1)$

For positive examples make $L_D(\beta)$ convex by fixing the latent variable \mathbb{Z}_p for each positive training example.

Latent SVM Training cont'd

$$L_D(\beta) = \min_{Z_p} L_D(\beta, Z_p).$$

Coordinate descent optimization approach:

Initialize β and iterate:

•Fix β pick best z_p for each positive example.

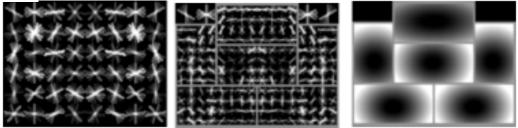
 $z_i = \operatorname{argmax}_{z \in Z(x_i)} \beta \cdot \Phi(x_i, z).$

•Fix \mathbf{Z}_{p} optimize $L_{D}(\beta, \mathbf{Z}_{p})$ over $\boldsymbol{\beta}$ by quadratic programming

or gradient descent

Model training procedure:

•Initialization:



-Root Filter : train an initial root filter F_0 using linear SVM without latent variable.

-Part Filter : Initialize six parts from root filter F₀ with the same shape,

place at anchor positions with most positive energy in F_0 .

The size of each part filter a is determined to take 80% of the area of $F_{0.}$

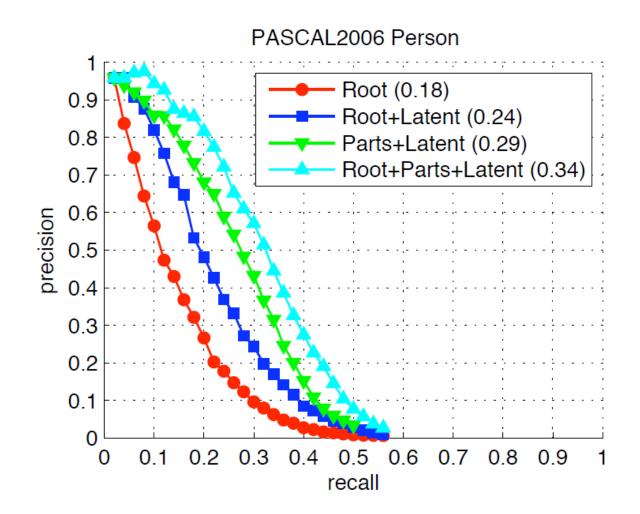
•Train the latent SVM model

Example Results



Slide by P. Felzenszwalb

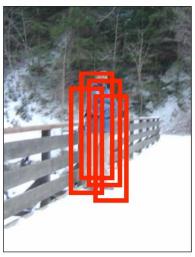
Quantitative Result

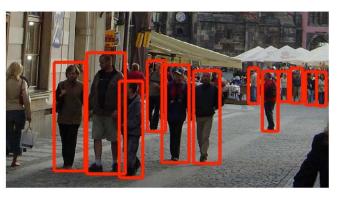


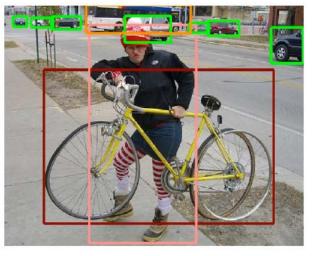
Multi-class Object Layout

Pascal Dataset: Multiple objects of multi-class in a single image. Problems with traditional binary classification + sliding window approach:

- Intra-class: Require ad-hoc non-maxima suppression as post processing.
- Inter-class: multiple class models are searched independently over images. Heuristically forcing mutual exclusion.





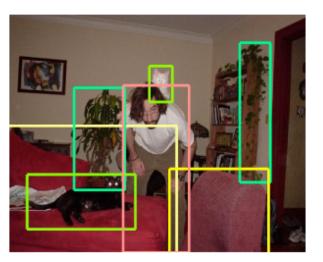


Need a principal way to model spatial statistics between objects

Formulation

Formulate as a structured prediction problem.

Classification

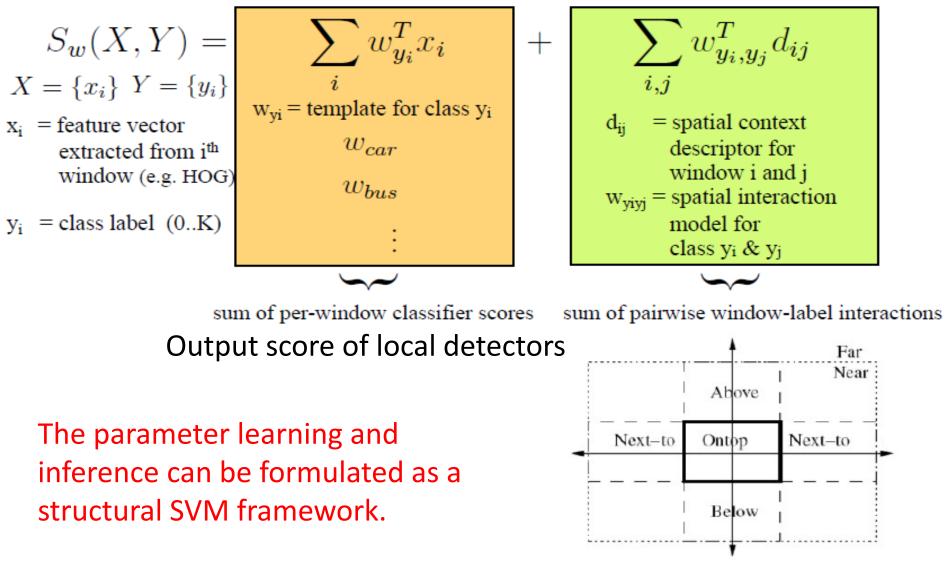


Structured, sparse label

X = entire image Y = [...4...3...2.7..1..]

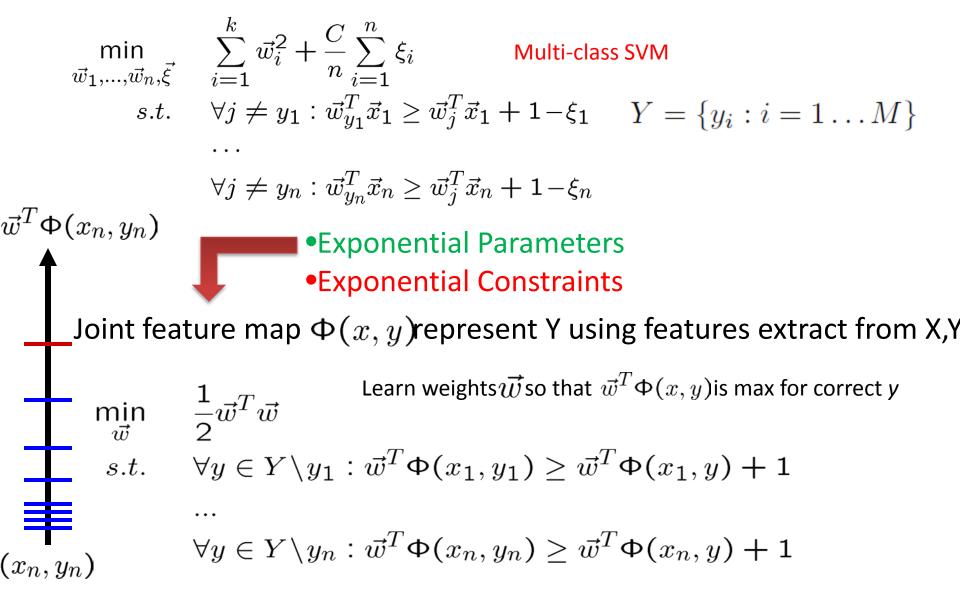
X: a collection of overlapping windows at various scales covering the entire image Y: the entire label vector for the set of all windows in an image. spatial relationship between prediction y_i

Global scoring function



Spatial context descriptor d_{ij}

Structural SVM



Structural SVM cont'd

n-Slack Formulation: (margin rescaling)

$$\begin{array}{ll} \min_{\vec{w},\vec{\xi}} & \frac{1}{2}\vec{w}^T\vec{w} + \frac{C}{n}\sum_{i=1}^n \xi_i \\ s.t. & \forall y' \in Y : \vec{w}^T \Phi(x_1, y_1) - \vec{w}^T \Phi(x_1, y') \ge \Delta(y_1, y) - \xi_1 \\ & \dots \\ & \forall y' \in Y : \vec{w}^T \Phi(x_n, y_n) - \vec{w}^T \Phi(x_n, y') \ge \Delta(y_n, y) - \xi_n \\ \end{array}$$
1-Slack Formulation:

$$\min_{\vec{w},\xi} \ \frac{1}{2} \vec{w}^T \vec{w} + C\xi \\ s.t. \ \forall y'_1 \dots y'_n \in Y : \frac{1}{n} \sum_{i=1}^n \left[\vec{w}^T \Phi(x_i, y_i) - \vec{w}^T \Phi(x_i, y'_i) \right] \ge \frac{1}{n} \sum_{i=1}^n \left[\Delta(y_i, y'_i) \right] - \xi$$

Slide by T. Joachims

Cutting-Plane Algorithm

- Input: $(x_1, y_1), \ldots, (x_n, y_n), C, \epsilon$
- $S \leftarrow \emptyset, \vec{w} \leftarrow 0, \xi \leftarrow 0$ Find most Violated REPEAT by more violated constraint than ε ? - FOR i = 1, ..., n- Compute $y'_i = argmax_{y \in Y} \{ \Delta(y_i, y) + \vec{w}^T \Phi(x_i, y) \}$ ENDFOR $- \mathsf{IF} \sum_{i=1}^{n} \left[\Delta(y_i, y'_i) - \vec{w}^T [\Phi(x_i, y_i) - \Phi(x_i, y'_i)] \right] > \xi + \epsilon$ $S \leftarrow S \cup \{ \vec{w}^T \frac{1}{n} \sum_{i=1}^{n} [\Phi(x_i, y_i) - \Phi(x_i, y'_i)] \ge \frac{1}{n} \sum_{i=1}^{n} \Delta(y_i, y'_i) - \xi \}$ $-[\vec{w},\xi] \leftarrow \text{optimize StructSVM over } S$ Add constraint – ENDIF to working set
- UNTILS has not changed during iteration

[Jo06] [JoFinYu08]

Theoretical Bound

Theorem: Given any $\varepsilon > 0$, the number of constraints added to working set

S is bounded by
$$\left[\log_2\left(\frac{\Delta}{4R^2C}\right)\right] + \left[\frac{16R^2C}{\varepsilon}\right]$$

where $0 \leq \Delta(y_i, y) \leq \Delta$ $2||\Phi(x, y)|| \leq R$ so that $(\vec{w}, \xi + \varepsilon)$ is a feasible solution.

- Number of constraints is independent of training examples.
- Linear time training algorithm.

Summary of Structural SVM

• Training: (cutting plane algorithm)

$$\min_{\vec{w},\xi} \ \frac{1}{2} \vec{w}^T \vec{w} + C\xi$$

$$s.t. \ \forall y_1' \dots y_n' \in Y : \frac{1}{n} \sum_{i=1}^n \left[\vec{w}^T \Phi(x_i, y_i) - \vec{w}^T \Phi(x_i, y_i') \right] \ge \frac{1}{n} \sum_{i=1}^n \left[\Delta(y_i, y_i') \right] - \xi$$

 $\Delta(y_i, y)$

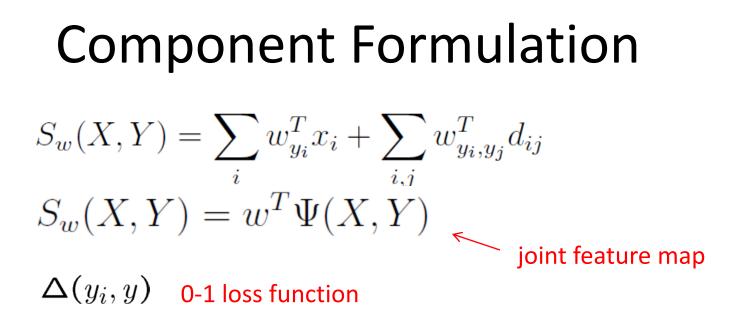
 $\Phi(x,y)$

• Prediction:

$$\hat{y} = argmax_{y \in Y} \{ \vec{w}^T \Phi(x, y) \}$$

- Application Specific Design of Model
 - Loss function:
 - Representation: joint feature map
 - Algorithm to compute: $\widehat{y} = argmax_{y \in Y} \{ ec{w}^T \Phi(x, y) \}$

$$\hat{y} = argmax_{y \in Y} \{ \Delta(y_i, y) + \vec{w}^T \Phi(x_i, y) \}$$



 $\hat{y} = argmax_{v \in Y}S(X, Y)$

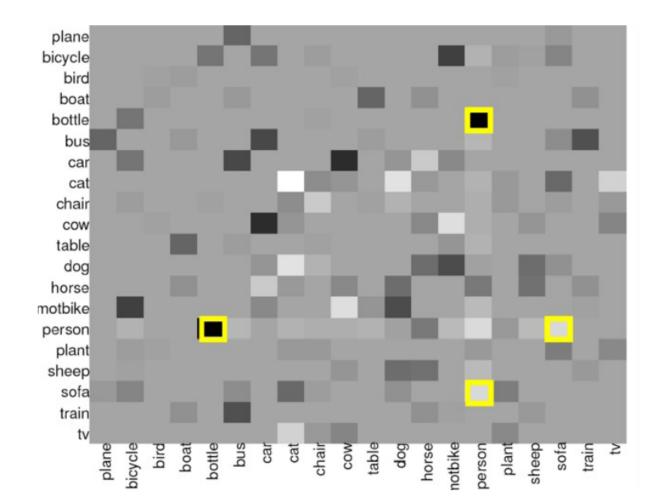
Greedy forward search algorithm

(1) Initialize all labels to bg

Initialize per-window scores with local template

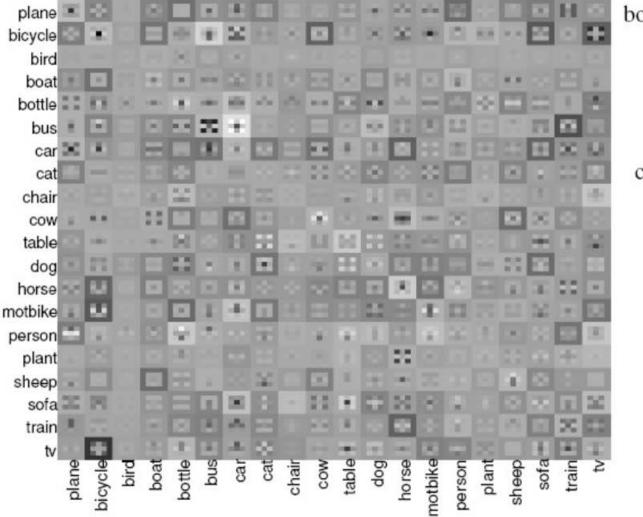
- (2) Select highest scoring un-instanced window
 (3) Instance it and add pairwise contribution to remaining windows (4) Stop when remaining windows score < 0

Overlap feature in pairwise potential



Mutual exclusion can be subtle Parameters are trained with knowledge of local detectors

Remaining pairwise potentials



bottles wrt tables

cars wrt trains

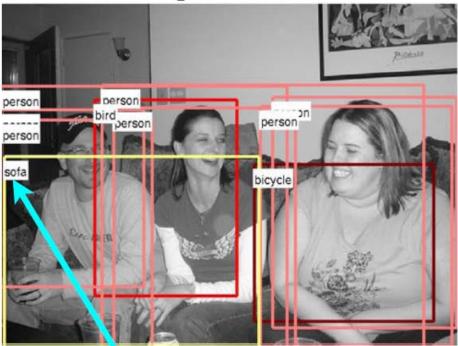
m.bikes wrt m.bikes

Results

person person person bicy sle

Top 10 detections for baseline

Our top 10 detections



Inhibit overlapping people & bottles because local detectors confuse them Favor overlapping people & sofas because people sit on sofas

Results

Baseline

Our model

