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 Sport videos: tracking players

 Video surveillance

 Digital camera: face tracking

 …



 Grouping of entities across time

 Local grouping Vs Global grouping

Window of few frames is
considered for grouping
 Fast
 Online approach

Ex: particle filtering

Entire video is considered

 Robust to occlusion 
and object ambiguities

Ex: Data Association 
based Tracking
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 Gestalt features for tracking:

 Proximity

 Similarity

 Smooth motion



 Occlusion

 Ambiguity between similar objects

 Crowded Scene with cluttered background

 Motion blur

 Fast motion
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 “Learning to associate: HybridBoosted Multi-Target Tracker
for Crowded Scene”, Y. Li, C. Huang and R. Nevatia

 “Global Data Association for MultiObject Tracking Using
Network Flows”, L. Zhang, Y. Li and R. Nevatia



 Input:
 Tracklets Ti

 Pairwise tracklet properties

 Goal: group tracklets in longer tracks



 N stages algorithm





 Markov Chain formulation

link

terminit



LI = inner cost LT = affinity measurement between 2 tracklets



 Goal: estimate

 Based on ranking and classification
 HybridBoost algorithm



 x = <Ti,Tj> = tracklet pair

 H(x) = ranking function

 H is also a binary classifier



 HybridBoost minimize the hybrid loss Z:

ht = best weak classifier for round t in the boosting process



f(x) = feature of tracklet pair



 Dataset generated for each stage k

 Hk learned for each stage k



 Measure based on # track ID switches

 Hybrid approach (0<β<1) outperform
state of the art



 Input: object detections

 Goal: track objects with long-term inter-
object occlusion



 Cost flow network with non-overlapping
trajectories constraints



xi = detected object Tk = track = sequence of 
detected object through time

Τ = set of tracks

χ = set of objects



 Non-overlap constraint:



 Markov Chain formulation

link

exitentr



 Need to map the MAP formulation into a
flow graph



 Indicator function to incorporate non-
overlap constraints

binary

unary



Incorporate constraints and take the log of the MAP





 For each xi, create 2 nodes ui, vi.



 Object parameters:

 Introduce occlusion nodes if

 Occlusion node parameters:
Where

Less than a threshold

position scale
appearance

time





 Solve the min-cost flow problem using
the augmented graph



 Achieve stat-of-the-art

 Complexity of min-cost flow solver is
polynomial in the number of node and
edges



 Global analysis helps recovering long
tracks under crowded scene and severe
occlusion
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