ECE 468: Digital Image Processing

Lecture 18

Prof. Sinisa Todorovic

sinisa@eecs.oregonstate.edu

Oregon State University

Outline

- Multiresolution image processing (Textbook 7.1)
- Image Pyramids (Textbook 7.1.1)

Multiresolution Image Processing

- Informal motivation:
- Images may show both very large and very small objects.
- It may be useful to process the images at different resolutions.

Multiresolution Image Processing

- A more formal motivation:
- An image is a 2D random process with locally varying statistics of pixel intensities
- Analysis of statistical properties of pixel neighborhoods of varying sizes may be useful

Histogram of Small Pixel Neighborhoods

Image Pyramids

A representation of the image that allows its multiresolution analysis

Example: Image Pyramids

a b

FIGURE 7.3

Two image pyramids and their histograms:
(a) an approximation pyramid;
(b) a prediction residual pyramid.

Steps to Construct the Image Pyramid

- 1. Given an image at level j
- 2. Filter the input and and downsample the filtered result by a factor of 2; This gives the image at level j-1
- 3. Goto 1
- 4. Upsample and filter the image at level j-1; this gives an approximation of the image at level j
- 5. Subtract this result from the image at level j; this give the prediction residual at level j

6. Goto 1

Typical Filters

- For the multiresolution pyramid, we use spatial filters:
 - Neighborhood averaging
 - Lowpass Gaussian filter

- For the residual pyramid, we use interpolation filters:
 - bilinear
 - bicubic

Upsampling/Downsampling

Upsampling = Inserting zeros

$$f_{2\uparrow}(x,y) = \begin{cases} f(x/2,y/2) &, x,y \text{ are even} \\ 0 &, \text{ o.w.} \end{cases}$$

Downsampling = Discarding pixels

$$f_{2\downarrow}(x,y) = f(2x,2y)$$

Next Class

• Haar Transform (Textbook 7.1.3)