Outline

- 2D Wavelet Transform (Textbook 7.5)
2D Scaling and Wavelet Functions

\[\varphi(x, y) = \varphi(x) \varphi(y) \]
2D Scaling and Wavelet Functions

\[\psi^H(x, y) = \psi(x) \varphi(y) \]

\[\psi^V(x, y) = \varphi(x) \psi(y) \]

\[\psi^D(x, y) = \psi(x) \psi(y) \]
2D DWT
2D Scaling and Wavelet Functions

$$\varphi_{j,m,n}(x, y) = 2^{j/2} \varphi(2^j x - m, 2^j y - n)$$

$$\psi^i_{j,m,n}(x, y) = 2^{j/2} \psi^i(2^j x - m, 2^j y - n), \quad i = H, V, D$$

$$\varphi(x, y) = \varphi(x)\varphi(y)$$

$$\psi^H(x, y) = \psi(x)\varphi(y)$$

$$\psi^V(x, y) = \varphi(x)\psi(y)$$

$$\psi^D(x, y) = \psi(x)\psi(y)$$
2D Discrete Wavelet Transform

\[W_\varphi(j, m, n) = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \varphi_{j,m,n}(x, y) \]

\[W_\psi(j, m, n) = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \psi_{j,m,n}(x, y) \]

\[f(x, y) = \frac{1}{\sqrt{MN}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} W_\varphi(j_0, m, n) \varphi_{j_0,m,n}(x, y) \]

\[+ \frac{1}{\sqrt{MN}} \sum_{i=H,V,D} \sum_{j=0}^{\infty} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} W_\psi^i(j, m, n) \psi^i_{j,m,n}(x, y) \]
2D Discrete Wavelet Transform

\[\varphi(x, y) = \varphi(x) \varphi(y) \]

\[\psi^H(x, y) = \psi(x) \varphi(y) \]

\[\psi^V(x, y) = \varphi(x) \psi(y) \]

\[\psi^D(x, y) = \psi(x) \psi(y) \]

\[\varphi_{j,m,n}(x, y) = 2^j \varphi(2^j x - m, 2^j y - n) \]

\[\psi_{j,m,n}^i(x, y) = 2^j \psi^i(2^j x - m, 2^j y - n), \quad i = H, V, D \]

\[W_\varphi(j, m, n) = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \varphi_{j,m,n}(x, y) \]

\[W_\psi(j, m, n) = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \psi_{j,m,n}(x, y) \]

\[f(x, y) = \frac{1}{\sqrt{MN}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} W_\varphi(j_0, m, n) \varphi_{j_0,m,n}(x, y) \]

\[+ \frac{1}{\sqrt{MN}} \sum_{i=H,V,D} \sum_{j=j_0}^{\infty} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} W_\psi^i(j, m, n) \psi_{j,m,n}^i(x, y) \]
Recall:

\[
W_\varphi(j, n) = \sum_k h_\varphi(k - 2n) W_\varphi(j + 1, k)
\]
Fast 2D Wavelet Transform

1D case:
\[W_\varphi(j, m) = \sum_k h_\varphi(k - 2m)W_\varphi(j + 1, k) \]

2D case:
\[W_\varphi(j, m, n) = \sum_l h_\varphi(l - 2n) \left[\sum_k h_\varphi(k - 2m)W_\varphi(j + 1, k, l) \right] \]
Inverse 2D DWT
Uncertainty Principle

Energy spread of a function and its Fourier transform CANNOT BE simultaneously arbitrarily small.
Example: Uncertainty Principle

FIGURE 4.13 (a) A 2-D function, and (b) a section of its spectrum (not to scale). The block is longer along the \(t \)-axis, so the spectrum is more “contracted” along the \(\mu \)-axis. Compare with Fig. 4.4.
Example: Uncertainty Principle

FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain highpass filters, and corresponding intensity profiles through their centers.
1D Case: Gabor -- Ville -- Wigner

- Decompose a signal
- over elementary waveforms
- that have a minimal spread in the time-frequency plane
1D Case: Time-Frequency Plane

A Wavelet Tour of Signal Processing
Stéphane Mallat, Academic Press 1999 (2nd edition)

Figure 1.1: Time-frequency boxes ("Heisenberg rectangles") representing the energy spread of two Gabor atoms
Gabor Wavelets

\[g_{j,k,u}(x) = 2^{j/2} g(2^j x - k)e^{jux} \]

- Gabor generator
- Shift
- Rotation
- Support
- Frequency