ECE468/CS519: Digital Image Processing

Image Features

Prof. Sinisa Todorovic

sinisa@eecs.oregonstate.edu

OSU Oregon State University

Outline

- Matlab
- Image features -- Interest points
- Point descriptors
- Homework 1

Harris Corner Detector

homogeneous region \Downarrow
no change in all directions

edge
\Downarrow
no change along the edge

corner
\Downarrow
change in all directions

Harris Corner Detector

$$
E(x, y)=w(x, y) *[I(x+u, y+v)-I(x, y)]^{2}
$$

2D convolution

Harris Corner Detector

Taylor series expansion

For small shifts

$$
\begin{aligned}
& u \rightarrow 0 \\
& v \rightarrow 0
\end{aligned}
$$

$$
\leadsto I(x+u, y+v) \approx I(x, y)+\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v
$$

$$
I(x+u, y+v) \approx I(x, y)+\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

image derivatives along x and y axes

Harris Corner Detector

$$
\begin{aligned}
E(x, y) & =w(x, y) *\left(I(x, y)+\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]-I(x, y)\right)^{2} \\
& =w(x, y) *\left(\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]\right)^{2} \\
& =w(x, y) *\left(\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]\right)^{\mathrm{T}}\left(\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]\right)
\end{aligned}
$$

Harris Corner Detector

$$
E(x, y)=w(x, y) *\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{c}
I_{x} \\
I_{y}
\end{array}\right]\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left(w(x, y) *\left[\begin{array}{cc}
I_{x}^{2}(x, y) & I_{x}(x, y) I_{y}(x, y) \\
I_{x}(x, y) I_{y}(x, y) & I_{y}^{2}(x, y)
\end{array}\right]\right)}_{M(x, y)}\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

Harris Corner Detector

$$
E(x, y)=\left[\begin{array}{ll}
u & v
\end{array}\right] M(x, y)\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

$$
M(x, y ; \sigma)=w(x, y ; \sigma) *\left[\begin{array}{cc}
I_{x}^{2}(x, y) & I_{x}(x, y) I_{y}(x, y) \\
I_{x}(x, y) I_{y}(x, y) & I_{y}^{2}(x, y)
\end{array}\right]
$$

$$
M(x, y ; \sigma)=\left[\begin{array}{cc}
w(x, y ; \sigma) * I_{x}^{2}(x, y) & w(x, y ; \sigma) * I_{x}(x, y) I_{y}(x, y) \\
w(x, y ; \sigma) * I_{x}(x, y) I_{y}(x, y) & w(x, y ; \sigma) * I_{y}^{2}(x, y)
\end{array}\right]
$$

Image Gradient

$$
I_{x}(x, y)=I(x+1, y)-I(x, y)
$$

$$
=\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]}_{D_{x}(x, y)} * I(x, y)
$$

Image Gradient

$$
I_{y}(x, y)=I(x, y+1)-I(x, y)
$$

$$
=\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 1 & 0
\end{array}\right]}_{D_{y}(x, y)} * I(x, y)
$$

Weighted Image Gradient

$$
\begin{aligned}
w(x, y ; \sigma) * I_{x}(x, y) & =w(x, y ; \sigma) * D_{x}(x, y) * I(x, y) \\
& =\left[w(x, y ; \sigma) * D_{x}(x, y)\right] * I(x, y)
\end{aligned}
$$

convolution is associative

Weighted Image Gradient

$$
w(x, y ; \sigma) * I_{x}(x, y)=w(x, y ; \sigma) * D_{x}(x, y) * I(x, y)
$$

$$
=\left[w(x, y ; \sigma) * D_{x}(x, y)\right] * I(x, y)
$$

$$
=\left[D_{x}(x, y) * w(x, y ; \sigma)\right] * I(x, y)
$$

convolution is commutative

Weighted Image Gradient

$$
w(x, y ; \sigma) * I_{x}(x, y)=w(x, y ; \sigma) * D_{x}(x, y) * I(x, y)
$$

$$
=\left[w(x, y ; \sigma) * D_{x}(x, y)\right] * I(x, y)
$$

$$
=\left[D_{x}(x, y) * w(x, y ; \sigma)\right] * I(x, y)
$$

$$
=w_{x}(x, y ; \sigma) * I(x, y)
$$

derivative of the filter

Weighted Image Gradient

$$
\begin{aligned}
& w(x, y ; \sigma) * I_{x}(x, y)=w_{x}(x, y ; \sigma) * I(x, y) \\
& w(x, y ; \sigma) * I_{y}(x, y)=w_{y}(x, y ; \sigma) * I(x, y)
\end{aligned}
$$

Image is discrete \Rightarrow Gradient is approximate

We always find the gradient of the kernel!

Harris Corner Detector

$$
E(x, y)=\left[\begin{array}{ll}
u & v
\end{array}\right] M(x, y)\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

$$
M(x, y)=\left[\begin{array}{ll}
\left(w_{x} * I\right)^{2} & \left(w_{x} * I\right)\left(w_{y} * I\right) \\
\left(w_{x} * I\right)\left(w_{y} * I\right) & \left(w_{y} * I\right)^{2}
\end{array}\right]_{(x, y)}
$$

Harris Detector

$$
f(\sigma)=\frac{\lambda_{1}(\sigma) \lambda_{2}(\sigma)}{\lambda_{1}(\sigma)+\lambda_{2}(\sigma)}=\frac{\operatorname{det}(M(\sigma))}{\operatorname{trace}(M(\sigma))}
$$

objective function

Example of Detecting Harris Corners

Hessian detector (Beaudet, 1978)

Hessian determinant

$\operatorname{det}(\operatorname{Hessian}(I))=I_{x x} I_{y y}-I_{x y}^{2}$

Hessian Detector

$$
E(x, y)=\left[\begin{array}{ll}
u & v
\end{array}\right] H(x, y)\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

$$
H(x, y ; \sigma)=w(x, y ; \sigma) *\left[\begin{array}{cc}
I_{x x}(x, y) & I_{x y}(x, y) \\
I_{x y}(x, y) & I_{y y}(x, y)
\end{array}\right]
$$

$$
H(x, y ; \sigma)=\left[\begin{array}{ll}
w_{x x}(x, y ; \sigma) * I(x, y) & w_{x y}(x, y ; \sigma) * I(x, y) \\
w_{x y}(x, y ; \sigma) * I(x, y) & w_{y y}(x, y ; \sigma) * I(x, y)
\end{array}\right]
$$

Hessian Detector

$$
f(\sigma)=\frac{\lambda_{1}(\sigma) \lambda_{2}(\sigma)}{\lambda_{1}(\sigma)+\lambda_{2}(\sigma)}=\frac{\operatorname{det}(H(\sigma))}{\operatorname{trace}(H(\sigma))}
$$

objective function

Properties of Harris Corners

- Invariance to variations of imaging parameters:
- Illumination?
- Camera distance, i.e., scale ?
- Camera viewpoint, i.e., affine transformation?

Harris/Hessian Detector is NOT Scale Invariant

"corner"

Automatic scale selection

Source: Tuytelaars

Automatic scale selection

$f\left(I_{i_{1} \ldots i_{m}}(x, \sigma)\right)$
Source: Tuytelaars

Automatic scale selection

Source: Tuytelaars

Automatic scale selection

$f\left(I_{i_{1} \ldots i_{m}}(x, \sigma)\right)$

Automatic scale selection

$f\left(I_{i_{i, \ldots}, i_{n}}(x, \sigma)\right)$

Automatic scale selection

$f\left(I_{i_{1} \ldots i_{m}}(x, \sigma)\right)$

Automatic scale selection

$f\left(I_{i_{1} \ldots i_{m}}(x, \sigma)\right)$

Automatic scale selection

Automatic scale selection

Automatic scale selection

$f\left(I_{i_{1} \ldots i_{m}}(x, \sigma)\right)$

Popular Kernels: Laplacian of Gaussians

$w(\sigma) * I$

Gaussian

$$
G(x, y ; \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right)
$$

Laplacian of Gaussians

$$
L(\sigma)=\sigma^{2}\left(G_{x x}(x, y ; \sigma)+G_{y y}(x, y ; \sigma)\right)
$$

Hessian/Harris-Laplacian Detector

- Find a local maximum of Hessian/Harris function

$$
E(x, y ; \sigma)=\sigma^{2}\left(G_{x x}(x, y ; \sigma)+G_{y y}(x, y ; \sigma)\right) * I(x, y)
$$

- simultaneously in :
- 2D space of the image
- Scale

Popular Kernels: Difference of Gaussians

$w(\sigma) * I$

Gaussian

$$
G(x, y ; \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right)
$$

Difference of Gaussians

$$
\operatorname{DoG}(\sigma)=G(x, y ; k \sigma)-G(x, y ; \sigma)
$$

Selected Scales = Extrema of DoG/Laplacian

- Convolve the image with Gaussians whose sigma increases
- Then, subsample, and repeat the convolutions
- Finally, find extrema in the 3D DoG or Laplacian space

SIFT Detector

- Find a local maximum of

$$
E(x, y ; \sigma)=\operatorname{DOG}(x, y ; \sigma) * I(x, y)
$$

- simultaneously in:
- 2D space of the image
- Scale

Maximally Stable Extremal Regions

Source: Tuytelaars

Maximally Stable Extremal Region Detector

1. Sort pixels by intensities and place them in a stack S
2. Pop up the first pixel p from S
3. Start growing region R around p from adjacent pixels
3.1. Increment the contrast threshold T from black to white
3.2.For each T include in R all adjacent pixels to p
3.3.Monitor a plot of $\operatorname{area}(R)$ vs. T
3.4.If "large jump" in area (R), stop
4. Put R in the solution
5. Delete all pixels of R from S
6. If S is not empty, go to step 2

Kadir-Brady Saliency Detector

Saliency of a region $=$ Function of entropy of pixels in that region

$$
H_{R}(\sigma, \boldsymbol{x})=-\int_{r \in R} p(r, \sigma, \boldsymbol{x}) \log p(r, \sigma, \boldsymbol{x}) d r
$$

histogram \approx pdf of pixels

Kadir-Brady Saliency Detector

detection using:
detection using:

$$
H_{R}(\sigma, \boldsymbol{x}) \quad Y_{R}(\sigma, \boldsymbol{x})=H_{R}(\sigma, \boldsymbol{x}) \cdot W_{R}(\sigma, \boldsymbol{x})
$$

Kadir-Brady Saliency Detector

- Salient region has a large
- Entropy
- Change of pdf across scales

Region saliency:

$$
Y_{R}(\sigma, \boldsymbol{x})=H_{R}(\sigma, \boldsymbol{x}) \cdot W_{R}(\sigma, \boldsymbol{x})
$$

$\begin{aligned} & \text { Change of pdf } \\ & \text { across scales: }\end{aligned} W_{R}(\sigma, \boldsymbol{x})=\sigma\left|\int_{r \in R} \frac{\partial p(r, \sigma, \boldsymbol{x})}{\partial \sigma} d r\right|$

Next Class

- Other interest points
- Point descriptors

