ECE468/CS519 Digital Image Processing

Feature Descriptors

Prof. Sinisa Todorovic

sinisa@eecs.oregonstate.edu

OSU Oregon State University

Outline

- Point descriptors -- SIFT, HOG

Affine Invariant Feature Detection

Affine Invariant Feature Detection

Given two images of the same scene and related by an affine transform

$$
I_{2}(x, y)=T\left[I_{1}(x, y)\right]
$$

Features detected in both images should be the same

$$
\begin{aligned}
F\left\{I_{1}(x, y)\right\} & =F\left\{I_{2}(x, y)\right\} \\
& =F\left\{T\left[I_{1}(x, y)\right]\right\} \\
& =T^{\prime}\left[F\left\{I_{2}(x, y)\right\}\right]
\end{aligned}
$$

Affine Invariant Feature Detection

$$
F\left\{I_{1}(x, y)\right\}=T^{\prime}\left[F\left\{I_{2}(x, y)\right\}\right]
$$

$$
T_{1}\left[F\left\{I_{1}(x, y)\right\}\right]=T_{2}\left[F\left\{I_{2}(x, y)\right\}\right]
$$

Each detected feature is normalized to a canonical view

Affine normalization ('deskewing')

Source: Tuytelaars

How to Normalize to a Canonical View?

If the points in two images are related by a transform their covariance matrices are also related by that transform

$$
\begin{gathered}
q=T p \\
\Sigma_{2}=T \Sigma_{1} T^{\mathrm{T}}
\end{gathered}
$$

Affine Normalization

Ellipse in image 1

$$
p^{T} M^{-1} p=1
$$

the amount of intensity changes at detected interest point

$$
\begin{aligned}
& I=T M T^{\mathrm{T}} \\
& I=T \Phi \Lambda \Phi^{\mathrm{T}} T^{\mathrm{T}} \\
& I=T \Phi \Lambda^{\frac{1}{2}}\left(T \Phi \Lambda^{-\frac{1}{2}}\right)^{\mathrm{T}} \\
& \quad T=\Phi^{T} \Lambda^{-\frac{1}{2}}
\end{aligned}
$$

Descriptors

Point Descriptors

- Describe image properties in the neighborhood of a keypoint
- Descriptors = Vectors that are ideally affine invariant
- Popular descriptors:
- Scale invariant feature transform (SIFT)
- Steerable filters
- Shape context and geometric blur
- Gradient location and orientation histogram (GLOH)
- Histogram of Oriented Gradients (HOGs)
- DAISY

SIFT and HOG

The key idea is that

local object appearance and shape
can be described by the distribution of
intensity gradients or edge directions.

SIFT Descriptor

128-D vector $=(4 \times 4$ blocks $) \times(8$ bins of histogram $)$

gradients of a 16×16 patch centered at the point

histogram of gradients at certain angles of a 4×4 subpatch

The figure illustrates only 8×8 pixel neighborhood that is transformed into 2×2 blocks, for visibility

PCA-SIFT

- Instead of using 8 fixed bins for the histogram of gradients
- Learn the principal axes of all gradients observed in training images
- For a given interest point
- Compute SIFT with
- Gradients in the vicinity of the point projected onto the principal axes

Histogram of Oriented Gradients

HOG is a histogram of orientations of the image gradients within a patch

Evaluation of Feature Detectors and Descriptors

Evaluation of Detectors

- Find corresponding points in two images showing the same scene.
- After projecting image 2 to image 1 :
- Corresponding features have an overlap defined by the ratio of intersection and union of their associated ellipses:
- Similarity $=$ intersection / union

Repeatability of Detectors

image I

Evaluation of Detectors

point detected in image I

point detected in image 2

projection of image 2 to image I

Evaluation of Descriptors -- Task Driven

- Match points in two images showing the same scene
- Matches are nearest neighbors in the descriptor space
- Precision: percentage of correctly matched feature points of the total number of matches

Matching Cost of Two Descriptors

- Euclidean distance: $\psi\left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)=\left\|\mathbf{d}_{1}-\mathbf{d}_{2}\right\|^{2}$
- Chi-squared distance: $\psi\left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)=\sum_{i} \frac{\left(\mathbf{d}_{1 i}-\mathbf{d}_{2 i}\right)^{2}}{\mathbf{d}_{1 i}+\mathbf{d}_{2 i}}$

Matching Formulation

Given two sets of descriptors to be matched

$$
V=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \ldots, \mathbf{d}_{N}\right\}, \text { and } V^{\prime}=\left\{\mathbf{d}_{1}^{\prime}, \mathbf{d}_{2}^{\prime}, \ldots, \mathbf{d}_{M}^{\prime}\right\}
$$

Find the legal mapping $f \in \mathcal{F}$

$$
f:=\left\{\left(\mathbf{d}, \mathbf{d}^{\prime}\right): \mathbf{d} \in V, \quad \mathbf{d}^{\prime} \in V^{\prime}\right\}
$$

Which minimizes the total cost of matching

$$
\hat{f}=\min _{f \in \mathcal{F}} \sum_{\left(\mathbf{d}, \mathbf{d}^{\prime}\right) \in f} \psi\left(\mathbf{d}, \mathbf{d}^{\prime}\right), \psi\left(\mathbf{d}, \mathbf{d}^{\prime}\right) \geq \mathbf{0}
$$

Total Cost of Matching

$$
A=\left[\begin{array}{lllll}
\psi_{11^{\prime}} & \psi_{12^{\prime}} & \psi_{13^{\prime}} & \ldots & \psi_{1 M} \\
\psi_{21^{\prime}} & \psi_{22^{\prime}} & \psi_{23^{\prime}} & \ldots & \psi_{2 M} \\
& & \ldots & &
\end{array}\right]_{N \times M}
$$

cost matrix

$$
\sum_{\left(\mathbf{d}, \mathbf{d}^{\prime}\right)} \psi\left(\mathbf{d}, \mathbf{d}^{\prime}\right)=\operatorname{tr}\left(A^{T} I\right)
$$

Total Cost of Matching

$$
A=\left[\begin{array}{lllll}
\psi_{11^{\prime}} & \psi_{12^{\prime}} & \psi_{13^{\prime}} & \ldots & \psi_{1 M} \\
\psi_{21^{\prime}} & \psi_{22^{\prime}} & \psi_{23^{\prime}} & \ldots & \psi_{2 M} \\
& & \ldots & &
\end{array}\right]_{N \times M}
$$

cost matrix

$$
\begin{gathered}
\sum_{\left(\mathbf{d}, \mathbf{d}^{\prime}\right)} \psi\left(\mathbf{d}, \mathbf{d}^{\prime}\right)=\operatorname{tr}\left(A^{T} I\right) \\
\sum_{\left(\mathbf{d}, \mathbf{d}^{\prime}\right) \in f} \psi\left(\mathbf{d}, \mathbf{d}^{\prime}\right)=?
\end{gathered}
$$

identity matrix

Linearization

Linearization by introducing an indicator matrix

$$
X=\left[\begin{array}{cccccc}
0 & 0 & 1 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
& & \ldots & & &
\end{array}\right]_{N \times M}
$$

$x\left(\mathbf{d}, \mathbf{d}^{\prime}\right)=1$, if $\left(\mathbf{d}, \mathbf{d}^{\prime}\right) \in f$ matched pair
$x\left(\mathbf{d}, \mathbf{d}^{\prime}\right)=0$, if $\left(\mathbf{d}, \mathbf{d}^{\prime}\right) \notin f$ unmatched pair

Linearization

$$
\begin{gathered}
A=\left[\begin{array}{ccccc}
\psi_{11^{\prime}} & \psi_{12^{\prime}} & \psi_{13^{\prime}} & \ldots & \psi_{1 M} \\
\psi_{21^{\prime}} & \psi_{22^{\prime}} & \psi_{23^{\prime}} & \ldots & \psi_{2 M} \\
\ldots & &]_{N \times M} \\
X=\left[\begin{array}{llllll}
0 & 0 & 1 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
& \ldots & &
\end{array}\right]_{N \times M} \\
\sum_{\left(\mathbf{d}, \mathbf{d}^{\prime}\right) \in f} \psi\left(\mathbf{d}, \mathbf{d}^{\prime}\right)=\sum_{\left(\mathbf{d}, \mathbf{d}^{\prime}\right)} \psi_{\mathbf{d}, \mathbf{d}^{\prime}} x_{\mathbf{d}, \mathbf{d}^{\prime}}=\operatorname{tr}\left(A^{T} X\right)
\end{array}\right.
\end{gathered}
$$

Matching Formulation

$$
\hat{X}=\min _{X} \operatorname{tr}\left(A^{T} X\right)
$$

$$
\hat{X}=\mathbf{0} \quad \text { trivial solution }
$$

we need to constrain the formulation

Matching Formulation

$$
\min _{X} \operatorname{tr}\left(A^{T} X\right)
$$

subject to:

$$
\begin{gathered}
\forall \mathbf{d} \in V, \forall \mathbf{d}^{\prime} \in V^{\prime}, x_{\mathbf{d d}^{\prime}} \in\{0,1\} \\
\forall \mathbf{d}, \quad \sum_{\mathbf{d}^{\prime}} x_{\mathbf{d d}^{\prime}}=1 \\
\forall \mathbf{d}^{\prime}, \quad \sum_{\mathbf{d}} x_{\mathbf{d d}^{\prime}}=1
\end{gathered}
$$

what is the meaning of this constraint?

Matching Formulation

$$
\min _{X} \operatorname{tr}\left(A^{T} X\right)
$$

subject to:

$$
\forall \mathbf{d} \in V, \forall \mathbf{d}^{\prime} \in V^{\prime}, x_{\mathbf{d d}^{\prime}} \in\{0,1\}
$$

$$
\begin{aligned}
& \forall \mathbf{d}, \quad \sum_{\mathbf{d}^{\prime}} x_{\mathbf{d d}^{\prime}}=1 \\
& \forall \mathbf{d}^{\prime}, \quad \sum_{\mathbf{d}} x_{\mathbf{d d}^{\prime}}=1
\end{aligned}
$$

Relaxation

$$
\min _{X} \operatorname{tr}\left(A^{T} X\right)
$$

subject to:

$$
\forall \mathbf{d} \in V, \forall \mathbf{d}^{\prime} \in V^{\prime}, x_{\mathbf{d d}^{\prime}} \in[0,1]
$$

$$
\begin{aligned}
& \forall \mathbf{d}, \quad \sum_{\mathbf{d}^{\prime}} x_{\mathbf{d d}^{\prime}}=1 \\
& \forall \mathbf{d}^{\prime}, \quad \sum_{\mathbf{d}} x_{\mathbf{d d}^{\prime}}=1
\end{aligned}
$$

one-to-one matching

Linear Assignment Problem

$$
\min _{X} \operatorname{tr}\left(A^{T} X\right)
$$

subject to:

$$
\begin{aligned}
& \forall \mathbf{d} \in V, \forall \mathbf{d}^{\prime} \in V^{\prime}, x_{\mathbf{d d}^{\prime}} \in[0,1] \\
& \forall \mathbf{d}, \quad \sum_{\mathbf{d}^{\prime}} x_{\mathbf{d d}^{\prime}}=1 \quad \begin{array}{r}
\text { one-to-one } \\
\text { matching }
\end{array} \\
& \forall \mathbf{d}^{\prime}, \quad \sum_{\mathbf{d}} x_{\mathbf{d d}^{\prime}}=1 \quad
\end{aligned}
$$

Hungarian algorithm for the balanced problem IVI = IV'|

Hungarian Algorithm

The Hungarian Algorithm

1. Find the min element along each row (column) of A, and subtract it from all elements in the respective rows (columns). Replace A with the resulting matrix.
2. Cross out the minimum number of rows and columns in A to cover all zero elements of A
3. If $\min (N, M)$ rows and columns of A are crossed out, then go to step 5.
4. Otherwise, find the minimal entry of A that is not crossed out. Add this entry to all elements that are doubly crossed out (by both a horizontal and vertical line), and subtract it from all entries of A that are not crossed out. Return to step 2 with the new matrix.
5. Solutions are zero elements of A. Go first for the zero element which is unique in its row and column. Then, delete that row and column from A. Repeat until you delete all rows or columns from A.

Example -- The Hungarian Algorithm

$\begin{gathered}\text { given a } \\ \text { cost matrix }\end{gathered} \quad A=\left[\begin{array}{llll}14 & 5 & 8 & 7 \\ 2 & 12 & 6 & 5 \\ 7 & 8 & 3 & 9 \\ 2 & 4 & 6 & 10\end{array}\right]$
step 1: find minimums in each row and subtract

$$
A=\left[\begin{array}{llll}
9 & 0 & 3 & 2 \\
0 & 10 & 4 & 3 \\
4 & 5 & 0 & 6 \\
0 & 2 & 4 & 8
\end{array}\right]
$$

Example -- The Hungarian Algorithm -- Solution

go for the unique solution first
step 5: $\quad A=\left[\begin{array}{lllll} & 10 & 0 & 3 & 0 \\ 0 & 9 & 3 & 0 \\ \rightarrow & 5 & 5 & 0 & 4 \\ 0 & 1 & 3 & 5\end{array}\right]$

$$
f=\left\{\left(\mathbf{d}_{3}, \mathbf{d}_{3}^{\prime}\right)\right\}
$$

Example -- The Hungarian Algorithm -- Solution

go for the unique solution first
step 5: $\quad A=\left[\begin{array}{ccccc} & 10 & 0 & 3 & 0 \\ 0 & 9 & 3 & 0 \\ & \begin{array}{c}5 \\ \hline\end{array} 5 & \boxed{0} & 4 \\ & \boxed{0} & 1 & 3 & 5\end{array}\right]$

$$
f=\left\{\left(\mathbf{d}_{3}, \mathbf{d}_{3}^{\prime}\right),\left(\mathbf{d}_{4}, \mathbf{d}_{1}^{\prime}\right)\right\}
$$

Example -- The Hungarian Algorithm -- Solution

go for the unique solution first
step 5: $\quad A=\left[\begin{array}{ccccc}\rightarrow & 10 & \boxed{0} & 3 & 0 \\ 0 & 9 & 3 & 0 \\ 5 & 5 & 0 & 4 \\ & \boxed{0} & 1 & 3 & 5 \\ & & \uparrow & & \end{array}\right]$

$$
f=\left\{\left(\mathbf{d}_{3}, \mathbf{d}_{3}^{\prime}\right),\left(\mathbf{d}_{4}, \mathbf{d}_{1}^{\prime}\right),\left(\mathbf{d}_{1}, \mathbf{d}_{2}^{\prime}\right)\right\}
$$

Example -- The Hungarian Algorithm -- Solution

go for the unique solution first
step 5: $\quad A=\left[\begin{array}{ccccc} & 10 & \boxed{0} & 3 & 0 \\ \rightarrow & 0 & 9 & 3 & \boxed{0} \\ & 5 & 5 & \boxed{0} & 4 \\ & \boxed{0} & 1 & 3 & 5 \\ & & & & \uparrow\end{array}\right]$

$$
f=\left\{\left(\mathbf{d}_{3}, \mathbf{d}_{3}^{\prime}\right),\left(\mathbf{d}_{4}, \mathbf{d}_{1}^{\prime}\right),\left(\mathbf{d}_{1}, \mathbf{d}_{2}^{\prime}\right),\left(\mathbf{d}_{2}, \mathbf{d}_{4}^{\prime}\right)\right\}
$$

How to Fit an Ellipse to a Region

Ellipse

$$
p^{T} \Sigma^{-1} p=1
$$

$$
\Sigma=\left[\begin{array}{ll}
m_{20} & m_{11} \\
m_{11} & m_{02}
\end{array}\right]
$$

$\mathrm{CM}=$ center of mass

$$
\begin{gathered}
C M_{x}=\int_{\mathbb{R}^{2}} x f(x, y) d x \quad C M_{y}=\int_{\mathbb{R}^{2}} y f(x, y) d x \\
m_{p q}=\int_{\mathbb{R}^{2}}\left(x-C M_{x}\right)^{p}\left(y-C M_{y}\right)^{q} f(x, y) d x d y
\end{gathered}
$$

Next Class

- Shape Descriptors
- Image segmentation

