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* Point descriptors -- SIFT, HOG




Affine Invariant Feature Detection




Affine Invariant Feature Detection

Given two images of the same scene
and related by an affine transform

I(x,y) = T (2, y)]

Features detected in both images should be the same

F{L(z,y)} = F{l2(z,y)}
= F{TILi(z,y)]}

— T,[F{[Q(xv y)}]




Affine Invariant Feature Detection

F{L(z,y)} = T'[F{lx(z,y)}]

N

T F{L(z,y)}] = Ta[F{l2(z,y)}]

Each detected feature is normalized to a canonical view




Affine n_ormalization (‘deskewing’)




How to Normalize to a Canonical View?

image 1 image 2

If the points in two images are related by a transform
their covariance matrices are also related by that transform

q="1p

Yo =TT




Affine Normalization

Ellipse inimage1 ©=—>  Unitcircle in image 2

/

the amount of intensity changes at

detected interest point where
I=TMTT <— q=Tp
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Descriptors




Point Descriptors

* Describe image properties in the neighborhood of a keypoint
* Descriptors = Vectors that are ideally affine invariant
 Popular descriptors:

e Scale invariant feature transform (SIFT)

» Steerable filters

e Shape context and geometric blur

e Gradient location and orientation histogram (GLOH)

e Histogram of Oriented Gradients (HOGs)

* DAISY




SIFT and HOG

The key idea is that
local object appearance and shape
can be described by the distribution of

intensity gradients or edge directions.




SIFT Descriptor
128-D vector = (4x4 blocks) x (8 bins of histogram)

—>

gradients of a 16x16 histogram of gradients
patch centered at at certain angles
the point of a 4x4 subpatch

The figure illustrates only 8x8 pixel neighborhood
that is transformed into 2x2 blocks, for visibility
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PCA-SIFT

* Instead of using 8 fixed bins for the histogram of gradients
* Learn the principal axes of all gradients observed in training images
* For a given interest point

 Compute SIFT with

* Gradients in the vicinity of the point projected onto the principal axes
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Histogram of Oriented Gradients

HOG is a histogram of
orientations of the image
gradients within a patch

Input image
-4— Detection window

Normalise gamma & colour

Compute gradients

Cell —»

Accumulate weighted votes
for gradient orientation over
spatial cells

Normalise contrast within

Overlap overlapping blocks of cells

of Blocks

Feature vector, /= Collect HOGs for all blocks
[ cany seny sany ] over detection window
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Evaluation of Feature
Detectors and Descriptors
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Evaluation of Detectors

* Find corresponding points in two images showing
the same scene.

» After projecting image 2 to image 1:

e Corresponding features have an overlap defined by
the ratio of intersection and union of their
associated ellipses:

* Similarity = intersection / union
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Repeatability of Detectors
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Evaluation of Detectors

point detected  point detected projection of
in image | in image 2 image 2 to image |
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Evaluation of Descriptors -- Task Driven

* Match points in two images showing the same scene

 Matches are nearest neighbors in the descriptor
space

* Precision: percentage of correctly matched feature
points of the total number of matches
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Matching Cost of Two Descriptors

 Euclidean distance: w(db dz) — ||d1 — d2H2

» Chi-squared distance: ¥ (d;,ds) = Z

1
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Matching Formulation

Given two sets of descriptors to be matched

V:{d17d27°°'7dN}7 andv’:{dlh /27'"7

Find the legal mapping / € F

fi={d,d):deV, d eV}

Which minimizes the total cost of matching

A

f=min » ¢(dd), ¢¥(dd)>0

f
TE7 @anes

a )
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A =

/

cost matrix

Total Cost of Matching

BRVIRT

¢21’

Y127
(BD%Y

(PIRY
(BPRY

Y y(d,d) =

(d,d’)

v
am

4 NxM

tr(A* 1)

identity matrix
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A =

/

cost matrix

Total Cost of Matching

BRVIRT

¢21’

P12 P13/
Yoo a3

v
am

4 NxM

tr(A* 1)

identity matrix
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Linearization

Linearization by introducing an indicator matrix

—_— O
o =
o O
o O

i 1 Nx s

r(d,d") =1, if (d,d") € f/ matched pair

r(d,d") =0, if (d,d’") ¢ f unmatched pair
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BRVIRT

o O

Linearization

V12 Y13/
A= | Ya1r a2 Y3

—_— O

o =

Vim
Yo
Jd NXxXM
0 -
0
d NXxXM
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Matching Formulation

X = min tr(AT X)

A

X =0 trivial solution

we need to constrain the formulation
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Matching Formulation

min tr(A* X)
X

subject to:

Vvd e V, vd' € V', zqa € {0,1}
\V/d, Zxdd/ =1
d/

\V/d/, Zxdd/ =1
d

what is the meaning of this constraint?
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Matching Formulation

min tr(A% X)
X

subject to:

vd eV, vd' € V', zqq' € {0, 1}

one-to-one
matching

\V/d, Zxdd/ — 1
d’

\V/d/, Zxdd/ =1
d
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Relaxation

min tr(A% X)
X

subject to:

vd € V., vd' & V/, rdd < [O, 1]

one-to-one
matching

\V/d, Zxdd/ =1
d’

\V/d/, Zxdd/ =1
d
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Linear Assignment Problem

min tr(A% X)
X

subject to:

vd € V., vd' & V/, rdd < [O, 1]

one-to-one
matching

\V/d, Zxdd/ — 1
d’

\V/d/, Za‘,‘dd/ =1
d

Hungarian algorithm for the balanced problem VI = |V’]
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Hungarian Algorithm




The Hungarian Algorithm

1. Find the min element along each row (column) of A, and subtract it
from all elements in the respective rows (columns). Replace A with

the resulting matrix.

2. Cross out the minimum number of rows and columns in A to cover all
zero elements of A

3. If min(N,M) rows and columns of A are crossed out, then go to step 5.

4. Otherwise, find the minimal entry of A that is not crossed out. Add this
entry to all elements that are doubly crossed out (by both a horizontal
and vertical line), and subtract it from all entries of A that are not
crossed out. Return to step 2 with the new matrix.

5. Solutions are zero elements of A. Go first for the zero element which
IS unique in its row and column. Then, delete that row and column
from A. Repeat until you delete all rows or columns from A.
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Example -- The Hungarian Algorithm

14 5 8 T
given a |2 12 6 5
cost matrix 7 8 3 9
2 4 6 10
<L step 1: find minimums

In each row and subtract

O = O O
O

=~ O = W

0 O W N
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Example -- The Hungarian Algorithm -- Solution

go for the unigue solution first

10 0 3 0
0O 9 3 0
step 5: A=| —- 5 5 (0| 4
0O 1 3 3
i I i
f=1{(ds,d3)}




Example -- The Hungarian Algorithm -- Solution

go for the unigue solution first

" 10 0 3 0°
0 9 3 0
step 5: A= 5 5 |0 4
— 0] 1 3 D

i 1 _

f=1{(ds,d3), (dg,d})}




Example -- The Hungarian Algorithm -- Solution

go for the unigue solution first

- 10 |ol 3 o0
0 9 3 0
step 5: A= 5 5 0| 4
o] 1 3 5

f = {(d37dé)7 (d47d/1)7 (d17d/2)}




Example -- The Hungarian Algorithm -- Solution

go for the unigue solution first

10 (0] 3 O

step5: A= 5 5 0| 4
0| 1 3 3
I

f={(ds,d}), (ds,d}), (di,d}), (da,d})}




How to Fit an Ellipse to a Region

region

1 inside the region
0 otherwise

f(z,y) :{




T~—1_ p
p2 o p= -
Z:_mzo m11_

- mir Mo2

CM = center of mass

CM, = xf(x,y)dx CM, = yf(x,y)dx
R2 R2

Mpq = /IR@ (x = OM,)"(y — CMy)? f(z,y)dxdy




Next Class

* Shape Descriptors

* Image segmentation
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