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Objective 

To provide background material in support of topics in Digital 
Image Processing that are based on probability and random 
variables. 

Review 
Probability & Random Variables 
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Sets and Set Operations 

Probability events are modeled as sets, so it is customary to 
begin a study of probability by defining sets and some simple 
operations among sets. 

A set is a collection of objects, with each object in a set often 
referred to as an element or member of the set.  Familiar 
examples include the set of all image processing books in the 
world, the set of prime numbers, and the set of planets 
circling the sun.  Typically, sets are represented by uppercase 
letters, such as A, B, and C, and members of sets by 
lowercase letters, such as a, b, and c. 
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Sets and Set Operations (Con’t) 

We denote the fact that an element a belongs to set A by 

If a is not an element of A, then we write 

A set can be specified by listing all of its elements, or by 
listing properties common to all elements.  For example, 
suppose that I is the set of all integers. A set B consisting 
the first five nonzero integers is specified using the 
notation 
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The set of all integers less than 10 is specified using the 
notation 

which we read as "C is the set of integers such that each 
members of the set is less than 10."  The "such that" condition is 
denoted by the symbol “ | “ .  As shown in the previous two 
equations, the elements of the set are enclosed by curly brackets.   

The set with no elements is called the empty or null set, denoted 
in this review by the symbol Ø. 
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Sets and Set Operations (Con’t) 

Two sets A and B are said to be equal if and only if they 
contain the same elements.  Set equality is denoted by   

If every element of B is also an element of A, we say that B is 
a subset of A: 

If the elements of two sets are not the same, we say that the sets 
are not equal, and denote this by 
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Sets and Set Operations (Con’t) 

Finally, we consider the concept of a universal set, which we 
denote by U and define to be the set containing all elements of 
interest in a given situation.  For example, in an experiment of 
tossing a coin, there are two possible (realistic) outcomes: heads 
or tails. If we denote heads by H and tails by T, the universal set 
in this case is {H,T}. Similarly, the universal set for the 
experiment of throwing a single die has six possible outcomes, 
which normally are denoted by the face value of the die, so in 
this case U = {1,2,3,4,5,6}. For obvious reasons, the universal 
set is frequently called the sample space, which we denote by S.  
It then follows that, for any set A, we assume that Ø ⊆ A ⊆ S, 
and for any element a, a ∈ S and a ∉ Ø. 
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Some Basic Set Operations 

The operations on sets associated with basic probability theory 
are straightforward.  The union of two sets A and B, denoted by 

is the set of elements that are either in A or in B, or in both.  In 
other words, 

Similarly, the intersection of sets A and B, denoted by 

is the set of elements common to both A and B; that is, 
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Two sets having no elements in common are said to be disjoint 
or mutually exclusive, in which case 

The complement of set A is defined as 

Clearly, (Ac)c=A.  Sometimes the complement of A is denoted 
as    . 
The difference of two sets A and B, denoted A - B, is the set 
of elements that belong to A, but not to B.  In other words, 
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Set Operations (Con’t) 

It is easily verified that  

The union operation is applicable to multiple sets.  For 
example the union of sets A1,A2,…,An is the set of points that 
belong to at least one of these sets.  Similar comments apply 
to the intersection of multiple sets.     

The following table summarizes several important relationships 
between sets.  Proofs for these relationships are found in most 
books dealing with elementary set theory. 
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Set Operations (Con’t) 
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Set Operations (Con’t) 

It often is quite useful to represent sets and sets operations in 
a so-called Venn diagram, in which S is represented as a 
rectangle, sets are represented as areas (typically circles), and 
points are associated with elements.  The following example 
shows various uses of Venn diagrams. 
Example:  The following figure shows various examples of 
Venn diagrams.  The shaded areas are the result (sets of points) 
of the operations indicated in the figure.  The diagrams in the top 
row are self explanatory.  The diagrams in the bottom row are 
used to prove the validity of the expression 

which is used in the proof of some probability relationships. 
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Relative Frequency & Probability 

A random experiment is an experiment in which it is not 
possible to predict the outcome.  Perhaps the best known 
random experiment is the tossing of a coin.  Assuming that 
the coin is not biased, we are used to the concept that, on 
average, half the tosses will produce heads (H) and the 
others will produce tails (T).  This is intuitive and we do 
not question it.  In fact, few of us have taken the time to 
verify that this is true. If we did, we would make use of the 
concept of relative frequency.  Let n denote the total 
number of tosses, nH the number of heads that turn up, and 
nT the number of tails.  Clearly, 
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Relative Frequency & Prob. (Con’t) 

Dividing both sides by n gives 

The term nH/n is called the relative frequency of the event we 
have denoted by H, and similarly for nT/n.  If we performed the 
tossing experiment a large number of times, we would find that 
each of these relative frequencies tends toward a stable, limiting 
value.  We call this value the probability of the event, and 
denoted it by P(event). 
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Relative Frequency & Prob. (Con’t) 

In the current discussion the probabilities of interest are P(H) and 
P(T).  We know in this case that P(H) = P(T) = 1/2.  Note that the 
event of an experiment need not signify a single outcome.  For 
example, in the tossing experiment we could let D denote the 
event "heads or tails," (note that the event is now a set) and the 
event E, "neither heads nor tails." Then, P(D) = 1 and P(E) = 0. 
The first important property of P is that, for an event A, 

That is, the probability of an event is a positive number 
bounded by 0 and 1. For the certain event, S, 
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Here the certain event means that the outcome is from the 
universal or sample set, S. Similarly, we have that for the 
impossible event, Sc 

This is the probability of an event being outside the sample 
set.  In the example given at the end of the previous 
paragraph, S = D and Sc = E. 



Digital Image Processing, 3rd ed. 

www.ImageProcessingPlace.com 

© 1992–2008  R. C. Gonzalez & R. E. Woods  

Gonzalez & Woods 
Review of Probability 

Relative Frequency & Prob. (Con’t) 

The event that either events A or B or both have occurred is 
simply the union of A and B (recall that events can be sets).  
Earlier, we denoted the union of two sets by A ∪ B.  One often 
finds the equivalent notation A+B used interchangeably in 
discussions on probability.  Similarly, the event that both A and 
B occurred is given by the intersection of A and B, which we 
denoted earlier by A ∩ B.  The equivalent notation AB is used 
much more frequently to denote the occurrence of both events in 
an experiment.  
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Relative Frequency & Prob. (Con’t) 

Suppose that we conduct our experiment n times.  Let n1 be the 
number of times that only event A occurs; n2 the number of 
times that B occurs; n3 the number of times that AB occurs; and 
n4 the number of times that neither A nor B occur.  Clearly, 
n1+n2+n3+n4=n. Using these numbers we obtain the following 
relative frequencies: 
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and 

Using the previous definition of probability based on relative 
frequencies we have the important result 

If A and B are mutually exclusive it follows that the set AB is 
empty and, consequently, P(AB) = 0. 
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The relative frequency of event A occurring, given that event B 
has occurred, is given by 

This conditional probability is denoted by P(A/B), where we 
note the use of the symbol “ / ” to denote conditional 
occurrence.  It is common terminology to refer to P(A/B) as the 
probability of A given B.   
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Similarly, the relative frequency of B occurring, given that A has 
occurred is 

We call this relative frequency the probability of B given A, and 
denote it by P(B/A).  
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A little manipulation of the preceding results yields the following 
important relationships 

and 

The second expression may be written as 

which is known as Bayes' theorem, so named after the 18th 
century mathematician Thomas Bayes. 
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Example:  Suppose that we want to extend the expression 

to three variables, A, B, and C. Recalling that AB is the same as 
A ∩ B, we replace B by B ∪ C in the preceding equation to 
obtain 

The second term in the right can be written as 

From the Table discussed earlier, we know that 
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so, 

Collecting terms gives us the final result 

Proceeding in a similar fashion gives 

The preceding approach can be used to generalize these 
expressions to N events. 
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If A and B are statistically independent, then P(B/A) = P(B) and 
it follows that 

and 

It was stated earlier that if sets (events) A and B are mutually 
exclusive, then A ∩ B = Ø from which it follows that P(AB) = 
P(A ∩ B) = 0.  As was just shown, the two sets are statistically 
independent if P(AB)=P(A)P(B), which we assume to be 
nonzero in general. Thus, we conclude that for two events to 
be statistically independent, they cannot be mutually 
exclusive. 
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For three events A, B, and C to be independent, it must be true 
that 

and 
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In general, for N events to be statistically independent, it must be 
true that, for all combinations 1 ≤ i ≤ j ≤ k ≤  . . . ≤ N 
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Example:  (a) An experiment consists of throwing a single die 
twice.  The probability of any of the six faces, 1 through 6, 
coming up in either experiment is 1/6.  Suppose that we want to 
find the probability that a 2 comes up, followed by a 4.  These 
two events are statistically independent (the second event does 
not depend on the outcome of the first).  Thus, letting A 
represent a 2 and B a 4, 

We would have arrived at the same result by defining "2 
followed by 4" to be a single event, say C.  The sample set of 
all possible outcomes of two throws of a die is 36.  Then, P
(C)=1/36. 
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Example (Con’t):  (b) Consider now an experiment in which 
we draw one card from a standard card deck of 52 cards.  Let A 
denote the event that a king is drawn, B denote the event that a 
queen or jack is drawn, and C the event that a diamond-face 
card is drawn.  A brief review of the previous discussion on 
relative frequencies would show that 

and 
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Example (Con’t):  Furthermore, 

and 

Events A and B are mutually exclusive (we are drawing only one 
card, so it would be impossible to draw a king and a queen or 
jack simultaneously).  Thus, it follows from the preceding 
discussion that P(AB) = P(A ∩ B) = 0 [and also that P(AB) ≠ P
(A)P(B)]. 
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Example (Con’t):  (c) As a final experiment, consider the 
deck of 52 cards again, and let A1, A2, A3, and A4 represent the 
events of drawing an ace in each of four successive draws.  If 
we replace the card drawn before drawing the next card, then 
the events are statistically independent and it follows that 
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Example (Con’t):  Suppose now that we do not replace the 
cards that are drawn.  The events then are no longer statistically 
independent.  With reference to the results in the previous 
example, we write 

Thus we see that not replacing the drawn card reduced our 
chances of drawing fours successive aces by a factor of close to 
10.  This significant difference is perhaps larger than might be 
expected from intuition. 
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Random Variables 

Random variables often are a source of confusion when first 
encountered.  This need not be so, as the concept of a random 
variable is in principle quite simple.  A random variable, x, is a 
real-valued function defined on the events of the sample space, 
S.  In words, for each event in S, there is a real number that is 
the corresponding value of the random variable.  Viewed yet 
another way, a random variable maps each event in S onto the 
real line. That is it.  A simple, straightforward definition.  
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Random Variables (Con’t) 

Part of the confusion often found in connection with random 
variables is the fact that they are functions.  The notation also is 
partly responsible for the problem.  In other words, although 
typically the notation used to denote a random variable is as we 
have shown it here, x, or some other appropriate variable, to be 
strictly formal, a random variable should be written as a 
function x(·) where the argument is a specific event being 
considered.  However, this is seldom done, and, in our 
experience, trying to be formal by using function notation 
complicates the issue more than the clarity it introduces.  Thus, 
we will opt for the less formal notation, with the warning that it 
must be keep clearly in mind that random variables are 
functions. 
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Example:  Consider again the experiment of drawing a single 
card from a standard deck of 52 cards.  Suppose that we define 
the following events. A: a heart; B: a spade; C: a club; and D: a 
diamond, so that S = {A, B, C, D}.  A random variable is easily 
defined by letting x = 1 represent event A, x = 2 represent event 
B, and so on.   
As a second illustration, consider the experiment of throwing a 
single die and observing the value of the up-face.  We can 
define a random variable as the numerical outcome of the 
experiment (i.e., 1 through 6), but there are many other 
possibilities.  For example, a binary random variable could be 
defined simply by letting x = 0 represent the event that the 
outcome of throw is an even number and x = 1 otherwise. 
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Note the important fact in the examples just given that the 
probability of the events have not changed; all a random 
variable does is map events onto the real line. 
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Thus far we have been concerned with random variables whose 
values are discrete.  To handle continuous random variables we 
need some additional tools.  In the discrete case, the 
probabilities of events are numbers between 0 and 1.  When 
dealing with continuous quantities (which are not denumerable) 
we can no longer talk about the "probability of an event" 
because that probability is zero.  This is not as unfamiliar as it 
may seem.  For example, given a continuous function we know 
that the area of the function between two limits a and b is the 
integral from a to b of the function.  However, the area at a 
point is zero because the integral from,say, a to a is zero.  We 
are dealing with the same concept in the case of continuous 
random variables.  
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Thus, instead of talking about the probability of a specific value, 
we talk about the probability that the value of the random 
variable lies in a specified range.  In particular, we are 
interested in the probability that the random variable is less than 
or equal to (or, similarly, greater than or equal to) a specified 
constant a.  We write this as 

If this function is given for all values of a (i.e., - ∞ < a < ∞), then 
the values of random variable x have been defined.  Function F is 
called the cumulative probability distribution function or simply 
the cumulative distribution function (cdf).  The shortened term 
distribution function also is used. 
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Random Variables (Con’t) 

Observe that the notation we have used makes no distinction 
between a random variable and the values it assumes.  If 
confusion is likely to arise, we can use more formal notation in 
which we let capital letters denote the random variable and 
lowercase letters denote its values.  For example, the cdf using 
this notation is written as  

When confusion is not likely, the cdf often is written simply as 
F(x).  This notation will be used in the following discussion 
when speaking generally about the cdf of a random variable. 
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Due to the fact that it is a probability, the cdf has the following 
properties: 

where x+ = x + ε, with ε being a positive, infinitesimally small 
number. 
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The probability density function (pdf) of random variable x is 
defined as the derivative of the cdf: 

The term density function is commonly used also. The pdf 
satisfies the following properties: 



Digital Image Processing, 3rd ed. 

www.ImageProcessingPlace.com 

© 1992–2008  R. C. Gonzalez & R. E. Woods  

Gonzalez & Woods 
Review of Probability 

Random Variables (Con’t) 

The preceding concepts are applicable to discrete random 
variables.  In this case, there is a finite no. of events and we 
talk about probabilities, rather than probability density 
functions. Integrals are replaced by summations and, 
sometimes, the random variables are subscripted.  For example, 
in the case of a discrete variable with N possible values we 
would denote the probabilities by P(xi), i=1, 2,…, N.  
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Random Variables (Con’t) 

In Sec. 3.3 of the book we used the notation p(rk), k = 0,1,…, L - 1, 
to denote the histogram of an image with L possible gray levels, rk, 
k = 0,1,…, L - 1, where p(rk) is the probability of the kth gray level 
(random event) occurring.  The discrete random variables in this 
case are gray levels.  It generally is clear from the context whether 
one is working with continuous or discrete random variables, and 
whether the use of subscripting is necessary for clarity.  Also, 
uppercase letters (e.g., P) are frequently used to distinguish 
between probabilities and probability density functions (e.g., p) 
when they are used together in the same discussion. 
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Random Variables (Con’t) 

If a random variable x is transformed by a monotonic 
transformation function T(x) to produce a new random variable y, 
the probability density function of y can be obtained from 
knowledge of T(x) and the probability density function of x, as 
follows: 

where the subscripts on the p's are used to denote the fact that 
they are different functions, and the vertical bars signify the 
absolute value.  A function T(x) is monotonically increasing if 
T(x1) < T(x2) for x1 <  x2, and monotonically decreasing if T(x1) 
> T(x2) for x1 < x2.  The preceding equation is valid if T(x) is an 
increasing or decreasing monotonic function. 



Digital Image Processing, 3rd ed. 

www.ImageProcessingPlace.com 

© 1992–2008  R. C. Gonzalez & R. E. Woods  

Gonzalez & Woods 
Review of Probability 

Expected Value and Moments 

The expected value of a function g(x) of a continuos random 
variable is defined as 

If the random variable is discrete the definition becomes 
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The expected value is one of the operations used most frequently 
when working with random variables.  For example, the expected 
value of random variable x is obtained by letting g(x) = x: 

when x is continuos and 

when x is discrete.  The expected value of x is equal to its 
average (or mean) value, hence the use of the equivalent notation     
and m. 
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The variance of a random variable, denoted by σ², is obtained by 
letting g(x) = x² which gives 

for continuous random variables and 

for discrete variables. 
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Of particular importance is the variance of random variables that 
have been normalized by subtracting their mean.  In this case, 
the variance is 

and 

for continuous and discrete random variables, respectively. The 
square root of the variance is called the standard deviation, and 
is denoted by σ. 
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We can continue along this line of thought and define the nth 
central moment of a continuous random variable by letting  

and 

for discrete variables, where we assume that n ≥ 0.  Clearly, µ0=1, 
µ1=0, and µ2=σ². The term central when referring to moments 
indicates that the mean of the random variables has been subtracted 
out.  The moments defined above in which the mean is not 
subtracted out sometimes are called moments about the origin. 
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In image processing, moments are used for a variety of purposes, 
including histogram processing, segmentation, and description.  In 
general, moments are used to characterize the probability density 
function of a random variable.  For example, the second, third, and 
fourth central moments are intimately related to the shape of the 
probability density function of a random variable. The second 
central moment (the centralized variance) is a measure of spread 
of values of a random variable about its mean value, the third 
central moment is a measure of skewness (bias to the left or right) 
of the values of x about the mean value, and the fourth moment is 
a relative measure of flatness.  In general, knowing all the 
moments of a density specifies that density. 
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Expected Value & Moments (Con’t) 

Example:  Consider an experiment consisting of repeatedly firing 
a rifle at a target, and suppose that we wish to characterize the 
behavior of bullet impacts on the target in terms of whether we 
are shooting high or low..  We divide the target into an upper and 
lower region by passing a horizontal line through the bull's-eye.  
The events of interest are the vertical distances from the center of 
an impact hole to the horizontal line just described.  Distances 
above the line are considered positive and distances below the 
line are considered negative.  The distance is zero when a bullet 
hits the line. 
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Expected Value & Moments (Con’t) 

In this case, we define a random variable directly as the value of 
the distances in our sample set.  Computing the mean of the 
random variable indicates whether, on average, we are shooting 
high or low.  If the mean is zero, we know that the average of our 
shots are on the line.  However, the mean does not tell us how far 
our shots deviated from the horizontal. The variance (or standard 
deviation) will give us an idea of the spread of the shots.  A small 
variance indicates a tight grouping (with respect to the mean, and 
in the vertical position); a large variance indicates the opposite.  
Finally, a third moment of zero would tell us that the spread of the 
shots is symmetric about the mean value, a positive third moment 
would indicate a high bias, and a negative third moment would 
tell us that we are shooting low more than we are shooting high 
with respect to the mean location. 
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The Gaussian Probability Density Function 

Because of its importance, we will focus in this tutorial on the 
Gaussian probability density function to illustrate many of the 
preceding concepts, and also as the basis for generalization to 
more than one random variable.  The reader is referred to Section 
5.2.2 of the book for examples of other density functions. 

A random variable is called Gaussian if it has a probability 
density of the form 

where m and σ are as defined in the previous section.  The term 
normal also is used to refer to the Gaussian density.  A plot and 
properties of this density function are given in Section 5.2.2 of 
the book. 
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The Gaussian PDF (Con’t) 

The cumulative distribution function corresponding to the 
Gaussian density is 

which, as before, we interpret as the probability that the random 
variable lies between minus infinite and an arbitrary value x.  
This integral has no known closed-form solution, and it must be 
solved by numerical or other approximation methods.  Extensive 
tables exist for the Gaussian cdf. 
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Several Random Variables 

In the previous example, we used a single random variable to 
describe the behavior of rifle shots with respect to a horizontal 
line passing through the bull's-eye in the target.  Although this is 
useful information, it certainly leaves a lot to be desired in terms 
of telling us how well we are shooting with respect to the center 
of the target.  In order to do this we need two random variables 
that will map our events onto the xy-plane.  It is not difficult to 
see how if we wanted to describe events in 3-D space we would 
need three random variables. In general, we consider in this 
section the case of n random variables, which we denote by x1, 
x2,…, xn (the use of n here is not related to our use of the same 
symbol to denote the nth moment of a random variable).  
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Several Random Variables (Con’t) 

It is convenient to use vector notation when dealing with several 
random variables.  Thus, we represent a vector random variable x 
as 

Then, for example, the cumulative distribution function 
introduced earlier becomes 
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Several Random Variables (Con’t) 

when using vectors.  As before, when confusion is not likely, the 
cdf of a random variable vector often is written simply as F(x).  
This notation will be used in the following discussion when 
speaking generally about the cdf of a random variable vector. 

As in the single variable case, the probability density function of 
a random variable vector is defined in terms of derivatives of the 
cdf; that is, 



Digital Image Processing, 3rd ed. 

www.ImageProcessingPlace.com 

© 1992–2008  R. C. Gonzalez & R. E. Woods  

Gonzalez & Woods 
Review of Probability 

Several Random Variables (Con’t) 

The expected value of a function of x is defined basically as 
before: 
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Several Random Variables (Con’t) 

Cases dealing with expectation operations involving pairs of 
elements of x are particularly important. For example, the 
joint moment (about the origin) of order kq between variables 
xi and xj 
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Several Random Variables (Con’t) 

When working with any two random variables (any two 
elements of x) it is common practice to simplify the notation by 
using x and y to denote the random variables.  In this case the 
joint moment just defined becomes 

It is easy to see that ηk0 is the kth moment of x and η0q is the 
qth moment of y, as defined earlier. 
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Several Random Variables (Con’t) 

The moment η11 = E[xy] is called the correlation of x and y.  As 
discussed in Chapters 4 and 12 of the book, correlation is an 
important concept in image processing.  In fact, it is important in 
most areas of signal processing, where typically it is given a 
special symbol, such as Rxy: 
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Several Random Variables (Con’t) 

If the condition 

holds, then the two random variables are said to be uncorrelated. 
From our earlier discussion, we know that if x and y are 
statistically independent, then p(x, y) = p(x)p(y), in which case we 
write 

Thus, we see that if two random variables are statistically 
independent then they are also uncorrelated.  The converse of 
this statement is not true in general. 
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Several Random Variables (Con’t) 

The joint central moment of order kq involving random 
variables x and y is defined as 

where mx = E[x] and my = E[y] are the means of x and y, as 
defined earlier. We note that 

are the variances of x and y, respectively. 

and 
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Several Random Variables (Con’t) 

The moment µ11 

is called the covariance of x and y.  As in the case of 
correlation, the covariance is an important concept, usually 
given a special symbol such as Cxy.  
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Several Random Variables (Con’t) 

By direct expansion of the terms inside the expected value 
brackets, and recalling the mx = E[x] and my = E[y], it is 
straightforward to show that  

From our discussion on correlation, we see that the covariance is 
zero if the random variables are either uncorrelated or statistically 
independent.  This is an important result worth remembering. 
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Several Random Variables (Con’t) 

If we divide the covariance by the square root of the product of 
the variances we obtain  

The quantity γ is called the correlation coefficient of random 
variables x and y.  It can be shown that γ is in the range -1 ≤ γ ≤ 1 
(see Problem 12.5).  As discussed in Section 12.2.1, the 
correlation coefficient is used in image processing for matching. 
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The Multivariate Gaussian Density 

As an illustration of a probability density function of more than 
one random variable, we consider the multivariate Gaussian 
probability density function, defined as 

where n is the dimensionality (number of components) of the 
random vector x, C is the covariance matrix (to be defined 
below), |C| is the determinant of matrix C, m is the mean 
vector (also to be defined below) and T indicates transposition 
(see the review of matrices and vectors). 
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The Multivariate Gaussian Density (Con’t) 

The mean vector is defined as 

and the covariance matrix is defined as 
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The Multivariate Gaussian Density (Con’t) 

The element of C are the covariances of the elements of x, such 
that 

where, for example, xi is the ith component of x and mi is the 
ith component of m. 
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The Multivariate Gaussian Density (Con’t) 

Covariance matrices are real and symmetric (see the review of 
matrices and vectors). The elements along the main diagonal of C 
are the variances of the elements x, such that cii= σxi².  When all 
the elements of x are uncorrelated or statistically independent, cij = 
0, and the covariance matrix becomes a diagonal matrix.  If all the 
variances are equal, then the covariance matrix becomes 
proportional to the identity matrix, with the constant of 
proportionality being the variance of the elements of x. 
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The Multivariate Gaussian Density (Con’t) 

Example:  Consider the following bivariate (n = 2) Gaussian 
probability density function 

with 

and 
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The Multivariate Gaussian Density (Con’t) 

where, because C is known to be symmetric, c12 = c21. A schematic 
diagram of this density is shown in Part (a) of the following figure. 
Part (b) is a horizontal slice of Part (a).  From the review of 
vectors and matrices, we know that the main directions of data 
spread are in the directions of the eigenvectors of C.  Furthermore, 
if the variables are uncorrelated or statistically independent, the 
covariance matrix will be diagonal and the eigenvectors will be in 
the same direction as the coordinate axes x1 and x2 (and the ellipse 
shown would be oriented along the x1 - and x2-axis).  If, the 
variances along the main diagonal are equal, the density would be 
symmetrical in all directions (in the form of a bell) and Part (b) 
would be a circle.  Note in Parts (a) and (b) that the density is 
centered at the mean values (m1,m2).  
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The Multivariate Gaussian Density (Con’t) 
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Linear Transformations of Random Variables 

As discussed in the Review of Matrices and Vectors, a linear 
transformation of a vector x to produce a vector y is of the form 
y = Ax.   Of particular importance in our work is the case when 
the rows of A are the eigenvectors of the covariance matrix. 
Because C is real and symmetric, we know from the discussion 
in the Review of Matrices and Vectors that it is always possible 
to find n orthonormal eigenvectors from which to form A.  The 
implications of this are discussed in considerable detail at the 
end of the Review of Matrices and Vectors, which we 
recommend should be read again as a conclusion to the present 
discussion. 


