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Abstract

Marine biologists commonly use underwater videos for
their research on studying the behaviors of sea organisms.
Their video analysis, however, is typically based on visual
inspection. This incurs prohibitively large user costs, and
severely limits the scope of biological studies. There is a
need for developing vision algorithms that can address spe-
cific needs of marine biologists, such as fine-grained cate-
gorization of fish motion patterns. This is a difficult prob-
lem, because of very small inter-class and large intra-class
differences between fish motion patterns. Our approach
consists of three steps. First, we apply our new fish detector
to identify and localize fish occurrences in each frame, un-
der partial occlusion, and amidst dynamic texture patterns
formed by whirls of sand on the sea bed. Then, we conduct
tracking-by-detection. Given the similarity between fish de-
tections, defined in terms of fish appearance and motion
properties, we formulate fish tracking as transitively linking
similar detections between every two consecutive frames,
so as to maintain their unique track IDs. Finally, we extract
histograms of fish displacements along the estimated tracks.
The histograms are classified by the Random Forest tech-
nique to recognize distinct classes of fish motion patterns.
Evaluation on challenging underwater videos demonstrates
that our approach outperforms the state of the art.

1. Introduction

This paper presents an approach to video categorization
aimed at facilitating a particular marine biology study. With
the proliferation of inexpensive and easy-to-use digital tech-
nologies for video acquisition, there is a tremendous growth
of underwater video footage. This has enabled significant
progress in fisheries ecology. For example, the Fishery Re-
source Analysis and Monitoring Division (FRAM) of the

Northwest Fisheries Science Center manages West-coast
Groundfish stocks and their ecosystems only based on large
video collections. Also, an analysis of videos showing de-
mersal fish off the North West Coast [1] have resulted in
important biological findings on the effects of low levels of
dissolved oxygen (DO) on early life stages of demersal fish
[8,11,21]. The findings state that varying concentrations of
DO in the water – ranging from lethal via sub-lethal to nor-
mal – can be quantified by observing fish swimming speed,
direction, periodicity, and escape response time. These ob-
servations are important, since alternative methods of mea-
suring DO levels have many disadvantages. One such dis-
advantage is that they provide only local measurements, and
thus have to be deployed in large numbers over a large spa-
tial area to acquire statistically significant data. A inexpen-
sive and potentially more accurate estimates of DO levels
can be obtained by observing fish behavior in underwater
videos. In the above examples, and in general, video anal-
ysis in marine biology is typically not automated, but re-
quires laborious visual inspection. Thus, there is a criti-
cal need for developing computer vision approaches to help
marine biologists in their analysis of underwater videos.

1.1. The Problem

Motivated by the aforementioned needs of marine biol-
ogy, we have developed an approach to classifying videos
by fish motion patterns, also referred to as behavior classes,
which occur in the videos. The classes of fish behavior are
defined in terms of fish swimming speed, direction, peri-
odicity, and escape response time. The underwater videos
that we consider in this paper are publicly available [1].
The videos are captured by a camera, mounted on a mov-
ing trawl, which drags a chain along the sea bed, and thus
makes move flat fish lying hidden under the sand (Fig. 1).
The videos are acquired twice a day in the morning and af-
ternoon, at sea depths 30m, 40 m, and 50m. The video
acquisition is aimed at correlating fish behavior with a spe-
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Figure 1. Our video acquisition system and challenges of underwater videos: (left) The videos are captured by a moving camera, mounted
on the submerged trawl sled. A chain is dragged over the sea bed to stir flatfish lying in the sand surface. This causes whirlsof sand.
(middle and right) Fish are well camouflaged to have the same color and texture as surrounding sand, and may be partially occluded by the
chain or partially occlude one another when swimming in a school of fish. The annotated dataset will be made publicly available at [1].

cific sea depth and time of the day, for which the biologists
already know the corresponding DO levels. The three sea
depths and half-a-day frequency of collecting the videos
jointly define six event classes, corresponding to six be-
havioral patterns of fish. Given a new (previously unseen)
video, the goal is to identify the sea depth and time of cap-
turing that video (i.e., its class). This problem is difficult,
because the above six event classes are characterized by
very small inter-class differences and very large intra-class
variations in fish motions.

1.2. Our Approach

This paper presents an efficient and robust approach to
fine-grained event classification, illustrated in Fig. 2. It
consists of the following three steps. First, we apply our
new fish detector to identify and localize fish occurrences
in each frame, under partial occlusion, and amidst dynamic
texture patterns formed by whirls of sand on the sea bed.
Then, we conduct tracking-by-detection. Given a similar-
ity function between fish detections, defined in terms of fish
appearance and motion properties, we formulate fish track-
ing as transitively linking similar detections between every
two consecutive frames, so as to maintain their unique track
IDs. This data association problem is specified as maximum
weight clique problem, and solved using the replicator dy-
namics algorithm. Finally, we extract histograms of fish dis-
placements along the estimated tracks, and then classify the
histograms by the Random Forest [4] to recognize distinct
classes of fish motion patterns.

1.3. Challenges and Prior Work

Fine-grained classification of underwater videos presents
many challenges that are poorly addressed by existing work,
primarily stemming from two variables.Variability in Ap-
pearance:Fish exhibit large appearance variations in terms
of color, shape, size, and texture. These variations arise
from the following factors: natural growth and aging of
individual fish, long-term environmental factors, and tem-
porarily present fish interactions with the environment. For
example, as fish move through the water, their shape may

be highly deformable. In addition, fish appearance may
be affected by different imaging conditions, such as par-
tial occlusion and self-occlusion, low resolution, reflections
of light, varying camera viewpoints of fish (e.g., frontal or
side view). All these factors makes the problem of auto-
matically detecting and localizing fish in underwater videos
very challenging. Current work mainly focuses on recogni-
tion of rigid, articulated object classes (e.g., cars, or people
in certain postures [10, 12, 16]) which are prominently fea-
tured in the foreground.Open question: How to specify de-
tectors that can address a large variability of color, shape,
size, and texture of fish, viewed under different imaging con-
ditions?

Variability in Motion: Motions and actions of individual
fish (e.g., turning, foraging, evading obstacles), and inter-
actions with the other fish (e.g., swimming in a school of
fish, escaping from predators) are highly variable. Exist-
ing work mainly focuses on tracking rigid objects which
move smoothly, and thus is not appropriate for analyzing
highly erratic fish motions and their complex interactions
[5,9,13,17,22,23,25]. An alternative is to be use an object
detector to generate target hypotheses in each frame, and
then transitively link the detections so as to maintain their
unique identities. Transitive linking is very difficult in un-
derwater videos, due to dynamic textures in the background,
and severe partial occlusions. Similar challenges are usually
addressed by learning an affinity model between detections
in terms of color and speed [14,17–19], spatiotemporal con-
text [19], and occluder map [13]. Given affinities between
detections, the aforementioned work formulates tracking as
a data association problem. This is typically posed as bi-
partite matching, and solved by either the greedy Hungar-
ian algorithm, or the more sophisticated network flow al-
gorithms [26]. Tracking-by-detection approaches may per-
form poorly in the presence of long gaps in a sequence
of object detections (e.g., due to occlusions). This chal-
lenge can be addressed by a hierarchical association of de-
tections [13].Open question: How to conduct tracking of
highly deformable non-rigid objects, like fish, with erratic,
non-smooth motion trajectories, under sever occlusion, and
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Figure 2. Main steps of our approach: (1) Detection and localization of all fish occurrences in every video frame (red bounding boxes);
(2) Tracking-by-detection to transitively link similar fish detections across the frames; (3) Extraction of motion features along the track
estimates, and their classification using a Random Forest classifier [4]. The videos in our dataset are captured with a moving camera, and
have low contrast, low resolution, motion blur, and dynamictexture in the background from whirls of sand on the sea bed. Also, fish may
partially occlude one another, and they have erratic motionpatterns.

Figure 3. Flowchart of the proposed fish detector.

amidst dynamic texture distractors?
To the best of our knowledge, there is no vision system

aimed at categorizing fine-grained motion classes of fish in
underwater videos. In the following three sections, we de-
scribe the three steps of our approach.

2. The Proposed Fish Detector

Our work is based on the use of optical flow for accu-
rate segmentation and background/foreground separation.
The complexity of the motion model assumed in detecting
the dominant change in a frame and the degree to which
a foreground image should be segmented are independent.
We consider a motion model that is based on the notion
of dominant change, so as to independently treat changes
that adhere to the assumed model and the ones that are non-
adherent. In particular, we use a simple translation motion
model as the dominant change between consecutive frames.
Outliers to this model are processed further to differentiate
between fish and noise.

To detect moving fish, optical flow is computed between
every two consecutive frames. Optical flow vectors are
then clustered to identify different motion groups. A back-
ground/foreground analysis is used to remove background
segments, and shape analysis is used to remove false posi-
tives (Fig. 3). For optical flow estimation we use the algo-
rithm proposed by Broxet al. [7], and for clustering we use
agglomerative hierarchical cluster tree with inner squared
distance metric (minimum variance) to compute the dis-

tance between the clusters [24]. In the following, we ex-
plain these steps in more detail.

Let us denote theith frame of the video asIi, and the
displacement vectors as(~u,~v) (Figs. 4(c), 4(d)). A feature
vector is built as~V = [~u ~v ~α ~β] for each pixel in frameIi,
where~α = arctan(~u,~v) is the angle of the displacement
(Fig. 4(e)), and~β =

√
~u2 + ~v2 is the amplitude of the dis-

placement (Fig. 4(f)). Clustering is used to build a regional
grouping of similar features (Fig. 4(g)). Assuming a con-
stant background motion, clustering results in one cluster
for the background andn clusters for the foreground, where
n is the number of moving objects in the scene.

Due to deviations from our assumption, and the com-
plexities stemming from the camera motion and the im-
aged scene, optical flow computation does not necessarily
return a constant displacement vector for the background
(Fig. 4(g)). In this case, to remove false positive results,
foreground/background analysis is performed. Clusters
with image regions which are bigger than the mean fish size
are assumed to belong to the background, and those smaller
sizes than the mean fish size are assumed to be noise and
ignored from further processing (Fig. 4(h)). In addition, we
compute the mean of feature vector for all remaining clus-
ters and remove those clusters which are similar to the back-
ground feature vector mean (Fig. 4(i)). Finally, we compute
the gradient changes within the remaining clusters. Assum-
ing that the fish undergo displacement in each frame, the
motion would introduce significant gradient changes. Thus,
all clusters with small gradient distribution are also removed
from further processing (orange color in Fig. 4(i)). Then,
for each of the remaining clusters,xi, yi, wi andhi are com-
puted (bounding box), wherei is the cluster ID (Fig. 4(j)).
Algorithm 1 summarizes our fish detector.
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Figure 4. Output of our fish detector. (a,b) Input frames, (c,d) ~u,
~v, (e,f) ~α, ~β, (g) Output of the clustering algorithm, (h) Output
after background estimation based on the mean fish size, (i) Out-
put after removing clusters that are similar to the background, (j)
Output bounding box. Cluster in orange is a false positive which
is removed, since there are no gradient changes inside the region.

3. Fish Tracking

This section presents our approach to tracking all fish oc-
currences in the video. The total number of fish, their mo-
tions, and spatiotemporal configurations are unknown. We
use the fish detector presented in Sec. 2 to scan each video
frame, and detect likely locations of fish occurrences. As
an input parameter, the detector has a threshold which con-
trols the decision making as to which locations in a frame
to declare as fish occurrences against the background. We
purposefully select this threshold to be low, so as to gen-
erate many hypotheses of fish occurrences, and thus does
not miss the true ones. More formally, the threshold is set
such that the detector has high recall, and, consequently,
low precision. The obtained false positives are filtered out

Algorithm 1 : Fish detection
Input: frameIi, Ii+1

Output: x, y, w, h

1: Compute optical flow[~u ~v]← (Ii, Ii+1)

2: ~V = [~u ~v arctan(~u,~v)
√

~u2 + ~v2]

3: c = cluster(~V )
4: Backgroundcb ← size(c) > size(fish)
5: Mean feature vector of background

~V ∗

b =mean(~V (cb))
6: ~V ∗

i =mean(V (ci)), whereci is theith cluster

7: Remove
∥

∥

∥

~V ∗

i − ~V ∗

b

∥

∥

∥
< ξ

8: Computexi, yi, wi, andhi for each cluster

by transitively linking similar detections across the frames,
as illustrated in Fig. 5. In the sequel, we explain how to
transitively link similar fish detections.

Each detected bounding box,z, is characterized by a de-
scriptor,z, whose elements include: (a) location and size
of the bounding box, and (b) a PCA projected vector at 5%
reconstruction error of the following features: (b.i) HOG
descriptor of size81×1, (b.ii) HSV color histogram of size
256×3, and (b.iii) two 10-bin histograms of optical flow
alongx andy directions within the box.

Given two detectionsz andz′, and their descriptorsz
andz

′, similarity between them is defined as:

w = exp(−(z − z
′)T

M(z − z
′)), (1)

whereM is a distance metric.M is a diagonal matrix,
whose diagonal elements are inversely proportional to the
variance of each feature in the bounding box descriptorz.
These variances are estimated on training examples.

We formulate tracking as finding the maximum weight
clique of a graph whose nodes are pairs of detections and
edges encode their similarity, given by (1).

More formally, letZ(t) = {z(t)
1 , z

(t)
2 , . . . } denote the

set of object detections at timet, andZ = ∪t=1,...,T Z(t)

be the set of all detections. A track is an ordered set of
detectionsT = {z(t1)

a , z
(t2)
b , . . . }, such that∀t, |T ∩Z(t)| ≤

1. It follows that tracking can be defined as the problem of
finding a subset of all detections whose time sequences form
a set of non-overlapping tracks,Σ = {Tk : Tk∩Tl = ∅, k 6=
l, k, l = 1, 2, . . . }, Σ ⊆ Z, such that eachTk ∈ Σ is a set
of all detections of a unique target.

Tracking can be formalized by constructing a
graph, G = (V, E, w). V is the set of nodes rep-
resenting pairs of object detections from every two
consecutive frames, called tracklets,V = {i(t) :

i(t)=(z
(t)
a , z

(t+1)
b ), z

(t)
a ∈Z(t), z

(t+1)
b ∈Z(t+1), t=1, ..., T},

with cardinality |V |=n. E is the set of undi-
rected edges connecting only those trackletsi(t)∈V
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Figure 5. An example video sequence from our large dataset [1]: (top row) Our detections of fish occurrences (red boundingboxes), where
the detection threshold is set such that the recall is high. (bottom row) Our multi-target tracking results. As can be seen, our tracker is able to
address: rapid changes of fish motion directions, distractors such as whirls of sand and moving chain, and relatively lowcontrasts between
the fish and the background. We also successfully maintain the track IDs (marked with unique colors) even in the case of occlusion.

and j(t)∈V that do not share the same detection,
E = {(i(t), j(t)) : i(t)∩j(t)=∅, t=1, ..., T}. Finally,
w : V→R

+ associates positive weightswi with every node
i ∈ V , defined as similarity by Eq. (1).

Previous work has shown that the tracking problem
is equivalent to enumerating maximum weight cliques
(MWC) of G [6, 20]. The MWC problem is to find a sub-
set of mutually adjacent vertices (i.e., a clique) having the
largest total weight. For tracking, we sequentially enumer-
ate MWCs ofG. We first identify the largest MWC ofG.
Then we eliminate its nodes and edges, and recompute the
next MWC. This sequential enumeration is repeated until
the resulting MWC becomes prohibitively small (less than
10 video frames). Then, following the above definitions,
we link tracklets into distinct tracks, such that a track,T ,
may contain only one tracklet from eachΣ(t), t = 1, ..., T ,
andT may contain two consecutive trackletsi(t) ∈ Σ(t)

andj(t+1) ∈ Σ(t+1) only if i(t) ends andj(t+1) starts with
the same object detection. In the following, we present a
formulation of the MWC problem, and specify a MWC al-
gorithm.

3.1. The Maximum Weight Clique Problem

A subset ofV can be represented by an indicator vector
x = (xi) ∈ {0, 1}n, wherexi = 1 means that nodei
is in the subset, andxi = 0 otherwise. LetA denote the
weighted adjacency matrix ofG, whereAij = 1 − wij ,
andwij is the similarity between trackletsi and j, given
by (1). Then, from the well-known extension of Motzkin-
Straus theorem to weighted graphs, proposed by Pelillo and
his collaborators [3], the MWC ofG, denoted asx∗, can be
specified by the following quadratic integer program:

x
∗ = argmax

x
x

TA x,

s.t. ∀i ∈ V, xi ∈ {0, 1}, and
∑

i xi = 1,
(2)

where the constraints in (2) mean thatx belongs to the stan-
dard simplex.

The MWC problem in (2) is known to be NP-hard for
arbitrary graphs, and, according to recent theoretical re-

sults, so is the problem of approximating it within a con-
stant factor. In the next subsection, we present a parallel,
distributed heuristic for approximating the MWC problem
based on dynamics principles developed and studied in var-
ious branches of mathematical biology. The continuous for-
mulation of the MWC problem naturally maps onto a par-
allel, distributed computational network whose dynamical
behavior is governed by the so-called replicator equations.
These are dynamical systems introduced in evolutionary
game theory and population genetics to model evolutionary
processes on a macroscopic scale. The theoretical guaran-
tees that the solutions provided by our replicator dynamics
algorithm are actually the ones being sought are presented
in [3].

3.2. The Replicator Dynamics

We relax the integer quadratic problem in (2) to a con-
tinuous problem, such thatxi may take real values,∀i ∈
V, xi ∈ [0, 1]. Then, we iteratively seek a solution of the re-
laxed MWC problem by considering the following dynam-
ical system:

xi(t) = xi(t)
(A x(t))i

x(t)TA x(t)
, ∀i ∈ V. (3)

It is readily seen that the simplex constraints of (2), i.e.,
∆ = {∀i ∈ V, xi ∈ [0, 1], and

∑

i xi=1}, remain invariant
under the dynamic in (3). That is, every trajectory startingin
∆ will remain in ∆ for all iterationst = 1, 2, ... Moreover,
the stationary points of the dynamic in (3), i.e., the points
satisfyingxi(t + 1) = xi(t), coincide and are the solutions
of the equations

xi[(A x)i − x
T
A x] = 0, ∀i ∈ V. (4)

A stationary pointx is said to be asymptotically stable if
every trajectory converges tox ast→∞.

Both (3) and (4) are called replicator equations in theo-
retical biology, since they are used to model evolution over
time of relative frequencies of interacting, self-replicating
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entities. The replicator dynamics can also be interpreted as
a gradual and adaptive equilibrium selection process [3].

For tracking, i.e., identifying the MWC ofG, we use
the replicator dynamics, given by (3). When the algorithm
reaches an asymptotically stable stationary point, the result-
ing solution is taken as the MWCx∗. The corresponding
tracklets transitively linked within the obtainedx∗ repre-
sent our track estimate. To find another track, we eliminate
from G all nodes in the MWC whose corresponding indica-
torsx∗

i = 1, and repeat the replicator dynamics, given by
(3), on the remaining graph. The iterations stop when the
resulting MWC becomes prohibitively small.

From (3), it is easy to show that the complexity of our
tracking algorithm isO(n2), wheren is the number of pairs
of fish detections across the video frames.

4. Video classification

This section presents our final third step in which we
extract motion features from the estimated fish tracks, and
then classify them using the Random Forest(RF) [4].

For each fish track in the video, obtained in the previous
step, we compute a fish motion descriptor. The descriptor
vector is defined as a log-polar histogram of fish displace-
ments between consecutive frames along the track. Similar
to the shape context descriptor, our histogram has 24 bins.
A particular displacement is counted in a bin which has the
magnitude and angle of the displacement. The histogram
thus collects a statistical evidence of fish motions along the
corresponding track in the video.

For classifying a new video, we “drop” each motion his-
togram descriptor through the RF [4]. A majority vote de-
cides the class of the video. Given a training set of labeled
examples of motion histograms, the RF grows many deci-
sion trees. We view the decision trees as a way of discrimi-
natively structuring evidence about the class distributions in
the training set. In particular, each leaf of each tree in RF
stores a number of training examples from each class that
reached that leaf. When a new motion descriptor is encoun-
tered, it is “dropped” down each of the trees in the RF, until
it reaches a leaf in every decision tree. The class of the new
descriptor is determined as a majority class of the training
examples stored in the reached leaf. Finally, the class of
the entire new video is determined as a majority class of the
training examples stored in all leaves reached by the motion
descriptors.

Training: In our implementation, we use five training
videos per each of the six classes, where the videos may
contain on an average more than 100 fish tracks. The fish
tracks are assigned motion histograms, which are then used
as training examples for constructing the RF, as described
in [4]. In particular, we use the standard random splits
of training data to train ten decision trees of the RF, con-
structed in the top-down way. The growth of each tree is

constrained so its depth is less than twenty, and each of its
leaf nodes contain at least ten training examples.

5. Results

This section presents our evaluation on 60 underwater
videos, each lasting about 30 seconds. The videos are cap-
tured by a camera mounted on an underwater trawl sledge,
as depicted in Fig. 1. The sledge has a chain that is dragged
over the sea bed to stir fish lying on the sand surface. As can
be observed in a few example frames in Fig. 1, the videos
present many challenges, including dynamic textured back-
ground, low contrasts between fish and background, motion
blur and occlusion. The dataset is split into 30 training and
30 test videos, where each of the six event classes is repre-
sented by five training and five test videos.

As a baseline, we have implemented the state-of-the-art
approach, presented in [15], that does not explicitly extract
motion tracks of targets, but reasons about the global statis-
tics of all the low-level features extracted from the video.
This approach achieves the state-of-the-art results in recog-
nition of complex human activities in movies, and thus we
expect that it will also work well on our videos. The ap-
proach uses space-time interest points as features, organizes
the points into space-time pyramids, and classifies them
with multi-channel non-linear SVMs. However, in our im-
plementation, we obtained a relatively poor accuracy rate of
42.3%, averaged over 30 test videos. This suggests that our
six event classes require an approach to fine-grained classi-
fication, which will explicitly account for particular motion
patterns along estimated fish tracks.

Given a video, we first run our fish detector (Sec. 2),
then, track the detections (Sec. 3), and finally classify the
extracted motion histograms (Sec. 4). For comparison, we
also consider state-of-the-art detectors to identify fish oc-
currences, including: (i) Implicit Shape Model (ISM) [16],
(ii) HOG detector [10], and (iii) Deformable part-based
model [12] with detection threshold set to -2 for high re-
call. The same detectors have been also used with success
in more standard videos (e.g., [5]). For detection evalua-
tion we use the following metric: ratio of intersection and
union of ground-truth and detected bounding boxes around
fish, ρ = D∩GT

C∪GT
, whereD denotes the area of the detec-

tion bounding box, andGT denotes the area of the ground
truth bounding box. Forρ ≥ 0.5 we have true positive
(TP), and forρ < 0.5 we have false positive (FP). Table 1
presents our recall and precision results, and the compari-
son with the three state-of-the-art detectors. As can be seen,
the proposed method outperforms the three state-of-the-art
detectors both in terms of accuracy and running time. The
running times include the computation of low-level features
from raw pixels, and a scanning window procedure. The
relatively low values of recall and precision of the compet-
ing approaches suggest that our underwater video dataset is
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Detector Precision (%) Recall (%) Running Time
Ours (66.2 ± 5.4)% (64.12 ± 3.9)% 187.5s
ISM [16] 47.2% 59.2% ≈ 5 min
HOG [10] 38.5% 51.4% ≈ 4 min
Part-based [12] 44.1% 56.3% ≈ 8 min

Table 1. Average detection results on our underwater video dataset,
and the comparison with the three state-of-the-art detectors.

Tracker Prec. Accur.
False
Neg.

False
Pos.

ID
Switch

Ours 79.6% 74.2% 15.2% 2.7% 2.8
[5] 62.0% 62.9% 16.8% 13.3% 4.6
Ours + Detector [12] 73.2% 65.2% 25.2% 5.1% 5.8

Table 2. CLEAR MOT [2] results on our underwater video dataset,
and comparison with the state-of-the-art tracker.

very challenging.
Table 5 presents our CLEAR MOT results [2], and the

comparison with the state-of-the-art approach to multitar-
get tracking presented in [5]. The CLEAR MOT metrics
include the following values: Precision — ratio of intersec-
tion and union of ground-truth and detected bounding boxes
around fish; Accuracy — the sum of false negative rate and
false positive rate; and the Number of ID switches per ten
seconds of video footage. The tracker of [5] and the tracker
used in the proposed method both use the same detections
obtained via our fish detector. As can be seen, we signifi-
cantly outperform the tracker of [5]. It is worth noting that
we improve our precision rate after tracking. While our fish
detector yields precision of 66.2%, many false positives are
eliminated in tracking, resulting in precision of 79.6%. We
also ran our tracker on fish detections produced by the part-
based detector of [12]. These results are presented in the
bottom row of Table 5. As can be observed, our tracker
works better in conjunction with our detector, as expected,
since our detector yields better precision and recall rates.

After estimating the fish tracks, we computed motion
histograms associated with each track. The motion his-
tograms were classified using the RF into six classes
(Sec. 4). Our classification rate, averaged over 30 test
videos is79.8%. We have also considered learning the six
event classes using a linear Support Vector Machine (SVM)
classifier from the 30 training videos. To this end, we used
the default parameters of the publicly available software
tool LibSVM (Weika). The resulting SVM classification
rate is only58.7%. This suggests that a non-linear classifier
is more appropriate for our purposes.

6. Conclusion

We have presented an approach to fine-grained video
classification aimed at facilitating a specific biological re-
search. The videos show moving fish. The videos are cat-
egorized into six very similar classes, depending on the sea
depth and time of the day when the videos are captured.
As demonstrated by our experimental results, the state-of-

the-art is not able to address such a fine-grained video cat-
egorization problem. By contrast, our approach success-
fully and efficiently identifies six distinct motion patterns
of fish. Our approach consists of three main steps: fish de-
tection, tracking, and classification of extracted fish motion
features. We have presented a new fish detector that outper-
forms the state-of-the-art shape- and part-based detectors.
Our fish tracking has been formulated as finding the max-
imum weight clique of a graph composed of pairs of fish
detections from all consecutive video frames. We have char-
acterized the motions of tracked fish by histograms of fish
displacements. These histograms have been classified with
the Random Forest for video classification. The presented
approach advances the state of the art, and presents a viable
solution for automated video analytics in highly specialized
studies, like those in marine biology.
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