3D Texture Classification Using the Belief Net of a Segmentation Tree

Sinisa Todorovic and Narendra Ahuja ICPR 2006

PROBLEM: 3D TEXTURE CLASSIFICATION

3D texture: variations in local height, color, and reflectance

Different lighting and viewpoint conditions

Different appearances of the same 3D texture

Prior Work: Benchmark CUReT Database

Examples of texture #4 in CUReT

Examples of texture #28 in CUReT

- Dana et. al, CVPR '97, ACM Trans. Graphics '99
- Dana & Nayar, ICCV '99
 - features = autocorrelation coefficients
 - model captures spatial relations among features for varying lighting conditions and viewpoints

Prior Work: Filter-Based 3D Texture Modeling

- Texture model = histograms of extracted features
- Modeling redundancy: multiple models per single texture class for varying illumination conditions and viewpoints
- Leung & Malik, IJCV '01: 3D textons in the filter space
- Cula & Dana, IJCV '04, and Varma & Zisserman, IJCV '05
 - images filtered by a bank of filters
 - universal vocabulary of filter-response textons
 - multiple frequency histograms of textons appearing in a class

Our Approach: Region-Based Texture Modeling

Find texture model that captures:

- TEXTURE PRIMITIVES
- REGION properties of texture primitives for varying ILLUMINATION and VIEWPOINTS
 - Geometric (area, boundary shape)
 - Photometric (gray-level intensity)
 - Topology
 - Recursive containment of regions
 - Layout relative region locations

Outline of Our Approach

GIVEN

Training images, each with different known illumination and viewpoint parameters

SEGMENT

Images at all photometric scales present

GENERATE SEGMENTATION TREE

Nodes in the tree are samples of texture primitives

LEARN FOR EACH TEXTURE CLASS

Models of texture primitives on the given training set, parameterized by illumination and viewpoints

GIVEN

A new texture image obtained under unknown illumination and viewpoint conditions

CLASSIFY

Multiscale Image Segmentation

Homogeneous regions at ALL contrasts and sizes

[N. Ahuja TPAMI '96, Tobb & Ahuja TIP '97, Arora & Ahuja ICPR '06]

Example segmentations for a range of contrasts $\boldsymbol{\sigma}$

Multiscale Segmentation to Segmentation Tree

Node = Segmented Region

- Each node in the segmentation tree is associated with the properties of the corresponding segmented region:
 - Intrinsic and relative photometric properties
 - Intrinsic and relative geometric properties
- The properties of a given region are expressed relative to that region's parent properties
- Texture model:
 - invariant to texture orientation in the image plane
 - invariant to small changes in resolution (scale) at which texture is imaged

Region Properties Relative to Parent Region

• Relative gray-level contrast

$$\mu_i = \text{mean intensity of region } i$$

$$\sigma_i = \frac{|\mu_i - \mu_j|}{\max\{\mu_i, \mu_j\}}$$

Relative gray-level variance

 $\Sigma_i = \frac{\text{variance}_i}{\text{variance}_j}$

• Relative area

$$A_i = \frac{\operatorname{area}_i}{\operatorname{area}_i}$$

• Rotation invariant shape context

observable attribute vector

Outline of Our Approach

GIVEN

Training images, each with different known illumination and viewpoint parameters

SEGMENT

Images at all photometric scales present

GENERATE SEGMENTATION TREE

Nodes in the tree are samples of texture primitives

LEARN FOR EACH TEXTURE CLASS

Models of texture primitives on the given training set, parameterized by illumination and viewpoints

GIVEN

A new texture image obtained under unknown illumination and viewpoint conditions

CLASSIFY

Modeling Vocabulary of Texture Primitives

Node = Sample from possible *L* **texture primitives**

Texture primitive generates observable region attributes

Modeling Image Segmentation Tree

Belief net has the structure of segmentation tree

Training per Class

GIVEN

Images with N different viewpoints and illumination LEARN

N models parameterized by viewpoint and illumination using the standard belief propagation on trees

$$P(X, Y | \mathcal{T}, \mathcal{V}_{1}, \mathcal{I}_{1})$$

$$P(X, Y | \mathcal{T}, \mathcal{V}_{2}, \mathcal{I}_{2})$$

$$\vdots$$

$$\mathcal{V} = \text{Viewpoint}$$

$$\mathcal{I} = \text{Illumination}$$

$$P(X, Y | \mathcal{T}, \mathcal{V}_{N}, \mathcal{I}_{N})$$

$$\mathcal{T} = \text{Texture class}$$

Reducing the Number of Models per Class

Classification

GIVEN

Image captured from <u>unknown viewpoint</u>, and under <u>unknown lighting</u> conditions

SEGMENT

Images at all photometric scales present

GENERATE SEGMENTATION TREE

Nodes in the tree are samples of texture primitives

COMPUTE

Using the standard belief propagation on trees

$$\hat{\mathcal{T}} = \arg \max_{\mathcal{T}, \mathcal{V}, \mathcal{I}} P(X, Y | \mathcal{T}, \mathcal{V}, \mathcal{I})$$

$$\mathcal{V} = \text{Viewpoint}$$

$$\mathcal{I} = \text{Illumination}$$

T = Texture class

Experimental Results

Dataset = 20 texture classes in CUReT

- Performance evaluated by varying:
 - number of texture primitives
 - number of models per texture class (redundancy)
 - number of training images per class

Recognition Rate vs. Modeling Redundancy

Recognition Rate vs. Size of Training Set

Recognition Rate vs. Number of Texture Primitives

Summary and Conclusion

- Region-based approach to 3D texture classification
- Feature extraction = Multiscale image segmentation
- Belief nets capture successfully photometric, geometric and topological properties of texture primitives for a few selected illumination and viewpoint values
- Belief nets have a great generalization capability to classify images with unknown illumination and viewpoint parameters
- Recognition rate 98.09% on 20 classes in CUReT outperforms the state of art

THANK YOU!

{sintod, ahuja}@vision.ai.uiuc.edu

http://vision.ai.uiuc.edu/~sintod