
Increasing the Robustness of Boosting Algorithms within

the Linear-Programming Framework ∗

Yijun Sun†,§, Sinisa Todorovic‡, and Jian Li§

† Interdisciplinary Center for Biotechnology Research
§ Department of Electrical and Computer Engineering

University of Florida, Gainesville, FL 32610
‡Beckman Institute, University of Illinois at Urbana-Champaign,

405 N. Mathews Ave, Urbana, IL 61801, USA

Abstract

AdaBoost has been successfully used in many signal classification systems. However,

it has been observed that on highly noisy data AdaBoost easily leads to overfitting,

which seriously constrains its applicability. In this paper, we address this problem

by proposing a new regularized boosting algorithm LPnorm2-AdaBoost (LPNA). This

algorithm arises from a close connection between AdaBoost and linear programming.

In the algorithm, skewness of the data distribution is controlled during the training

to prevent outliers from spoiling decision boundaries. To this end, a smooth convex

penalty function (l2 norm) is introduced in the objective function of a minimax problem.

A stabilized column generation technique is used to transform the optimization problem

into a simple linear programming problem. The effectiveness of the proposed algorithm

is demonstrated through experiments on many diverse datasets.

Keywords: pattern classification, large margin classifier, AdaBoost, linear program-

ming, minimax problem, soft margin, regularization.

Journal of VLSI Signal Processing Systems

Submitted in April 2006

∗Please address all correspondence to: Dr. Yijun Sun, Interdisciplinary Center for Biotechnology Re-

search, University of Florida, P.O. Box 103622, Gainesville, FL 32610-3622, USA. E-mail: sun@dsp.ufl.edu.

1

1 Introduction

AdaBoost is a method for improving the accuracy of a learning algorithm (a.k.a. base

learner). This is achieved by iteratively calling the base learner on re-sampled training

data, and by combining the so-produced hypothesis functions together to form an ensemble

classifier [1, 2]. AdaBoost has been successfully implemented in many signal processing

systems [3, 4, 5, 6, 7, 8]. An extensive experimental evidence shows that AdaBoost rarely

suffers from overfitting problems in low noisy regimes [2, 9, 10]. Recent studies on highly

noisy patterns, however, have clearly demonstrated that overfitting in AdaBoost can occur

[9, 10], which is a critical factor that constrains a wider applicability of AdaBoost. In this

paper, our main goal is to address this problem.

In general, there are two distinct overfitting cases: (i) when a simple base learner (e.g.,

stump) or an unstable base learner (e.g., C4.5 [11]), and (ii) when a powerful base classifier

(e.g., radial basis functions–RBF) is used. The analysis of the asymptotic behavior of

AdaBoost in the first case shows that after a large number of iterations, the testing error

may start to increase, despite the continuing increase in the margin of an ensemble classifier

[12]. In the second case, AdaBoost quickly leads to overfitting only after a few iterations.

These observations indicate that a regularization scheme is needed for AdaBoost in noisy

settings.

One method to alleviate the overfitting of AdaBoost is to choose a simple base learner,

and implement an early stop strategy. However, in this case, AdaBoost may not outperform

a single well-designed classifier, such as RBF and support vector machine (SVM), which

renders the use of AdaBoost unjustified. The second case of overfitting, when a strong base

learner is used in AdaBoost, has not been to date well treated in the literature. Only a few

algorithms have been proposed to address the problem, among which AdaBoostReg achieves

the state-of-the-art generalization results on noisy data [10]. The basic idea is to control the

tradeoff between the margin and the sample influences to achieve a soft margin. Although,

in comparison with other regularized algorithms, AdaBoostReg empirically shows the best

performance [10], it is not clear whether it converges, nor what its actual optimization

problem is, since the regularization in AdaBoostReg is introduced on the algorithm level

[2, 13].

In this paper, we present a new regularized boosting algorithm aiming to improve the

performance of a strong base learner. Our work is directly motivated by a close connection

between AdaBoost and linear programming (LP). This connection was first noted in [14,

15], and was used in [12] to derive a new LP based boosting algorithm, referred to as

LP-AdaBoost. LP-AdaBoost directly maximizes the classifier margin given a finite set

of hypothesis functions. Empirical analyses of LP-AdaBoost show that the algorithm is

capable of achieving a larger classifier margin than AdaBoost, as expected. However, LP-

2

AdaBoost almost always yields a worse performance than AdaBoost. This can be explained

that LP-AdaBoost produces a classification scheme, which optimizes performance in the

“worst case”. That is, LP-AdaBoost maximizes the smallest sample margin regardless of

the fact that data may not be separable. Thus, when the data distributions are highly

overlapped (due for example to mislabeling present in the training set), LP-AdaBoost can

be easily misled by a few outlier data samples, resulting in a suboptimal performance. One

possible approach to alleviating this problem is to introduce a regularization scheme in LP-

AdaBoost, which would control the skewness of the training-data distribution. Thereby,

base learners would be disallowed to allocate all its resources onto several “hard-to-learn”

samples, which typically turn out to be outliers.

The aforementioned idea is further explored in [10], where the original AdaBoost algo-

rithm is first used to generate a predefined number of hypothesis functions, and thereby

a linear programming problem is formulated. Slack variables are introduced into the op-

timization problem in the primal domain to achieve a soft margin, similar to SVM for

non-separable data cases, discussed in [16]. By pursuing a soft margin instead of a hard

margin, the resulting algorithm does not attempt to classify all training samples according

to their class labels, but allows for a small training error. A more general algorithm is

proposed in [17], where, instead of using AdaBoost for probing a hypothesis space with a

possibly infinite number of members, a column generation technique is used to iteratively

generate hypothesis functions when needed. Both algorithms can been interpreted in the

dual domain as a strategy to constrain the data distribution into a box, and hence can

be viewed as a penalty scheme on the distribution skewness using a hard limited type of

penalty function. In this paper, we only consider the column-generation based algorithm,

since it is more theoretically appealing than the one proposed in [10]. We refer to the

algorithm as LPreg-AdaBoost.

In this paper, we consider controlling the data distribution skewness by a smooth convex

penalty function, specified as an additional term of the objective function in the original

minimax formulation of LP-AdaBoost. This leads to a piecewise convex optimization prob-

lem. We use a stabilized column generation technique to iteratively generate the columns

of a gain matrix and linearize the optimization problem into a simple LP problem. Unlike

AdaBoostReg, the proposed algorithm that we call LPnorm2-AdaBoost has a clear underlying

optimization scheme, and can be shown to converge in a finite number of iterations. Em-

pirical results over a wide range of data demonstrate that our algorithm achieves a similar,

and in some cases significantly better classification performance than AdaBoostReg.

The remainder of the paper is organized as follows. First, in Section 2 we present

a brief review of AdaBoost. In Section 3 we study the connection between the minimax

optimization problem and AdaBoost. Based on these discussions, a new algorithm, referred

3

to as LPnorm2-AdaBoost, is proposed. To demonstrate the effectiveness of the proposed

algorithm, in Section 5, the results of a large-scale experiment on several artificial and real-

world datasets are reported. We finally conclude the paper in Section 6 with our remarks.

2 AdaBoost

In this section, we give a brief review of AdaBoost. Suppose we have a training data set

D = {(xn, yn)}N
n=1 ∈ Rl ×{±1}, where xn is a data-feature vector, and yn is its associated

label. Given a class of hypothesis functions H = {h(x) : x → {±1}}, also called base

learners, we are interested in finding an ensemble function F (x) constructed as:

F (x) =
∑

t

αtht(x) or f(x) =
1∑
t αt

F (x) (1)

to improve the classification accuracy of the base learners. Both the combination coefficients

α = {αt}t and the hypothesis functions ht(x) are determined in the learning process.

Several ensemble methods [1, 18, 19] have been developed in the past few years, among

which AdaBoost is the most popular. It is generally considered a first step towards practical

boosting algorithm development. The pseudocode of AdaBoost is presented in Fig. 1. For

more detailed description, the interested reader is referred to [2] and the references therein.

The main idea of AdaBoost is to repeatedly apply a base learning algorithm to the re-

sampled versions of training data to produce a collection of hypothesis functions that are

finally combined via a weighted linear vote to form the final decision. Each data pattern,

xn, is associated with a weight, d(t)(n), in the t-th iteration. The weights are normalized

over the dataset so that they form the data distribution, d(t) = {d(t)(n)}n, which changes

in every training iteration. An intuitive idea in AdaBoost is that misclassified patterns in a

given training iteration are associated with larger weights in the subsequent iteration (see

Eq. (3)). Thereby, the base learner focuses more on those harder cases, for instance, the

patterns near the decision boundary.

From Eq. (2), which is used to compute the hypothesis combination coefficients, it can

be shown that AdaBoost exponentially reduces the training error to zero as the number

of combined classifiers increases. However, driving the training error to zero does not

guarantee that the final classifier can generalize well on unseen test patterns. One may

even suspect that AdaBoost quickly leads to overfitting. However, there is a growing body

of empirical evidences that show that AdaBoost effectively reduces the generalization error,

and in many cases the generalization error continues to decrease even after the training error

reaches zero.

The impressive generalization capability of AdaBoost has been extensively investigated

both experimentally and theoretically [12, 20, 21, 22, 23]. One leading explanation is

4

AdaBoost

Initialization: D = {(xn, yn)}N
n=1, set the maximum iteration number T , set the data

distributions d(1)(n) = 1/N , for n = 1 : N

for t = 1 : T

1. Train base learner with respect to data distribution d(t) and get hypothesis ht(x) :

x → {±1}.

2. Calculate weighted training error ǫt of ht:

ǫt =

N∑

n=1

d(t)(n)I(yn 6= ht(xn))

where I(·) is the indicator function.

3. Compute combination coefficient:

αt =
1

2
ln

(
1 − ǫt

ǫt

)
(2)

4. Update weights:

d(t+1)(n) = d(t)(n) exp (−αtynht(xn)) /Ct (3)

where Ct is the normalization constant such that
∑N

n=1 d(t+1)(n) = 1.

end

Output : F (x) =
∑T

t=1 αtht(x)

Figure 1: The pseudocode of AdaBoost.

5

the margin theory [23], stating that AdaBoost asymptotically maximizes the margin of

the resulting ensemble classifier, defined as ρ = min1≤n≤N ynf(xn) = min1≤n≤N ρ(xn).

The problem of maximizing the classifier margin can be solved exactly by using linear

programming:

max(ρ,α) ρ ,

s.t. ρ(xn) ≥ ρ, n = 1, · · · , N ,

‖α‖1 = 1,α ≥ 0 .

(4)

In the recent paper [24], however, the equivalence of the two algorithms has been proven

to not always hold. Nevertheless, these two algorithms are closely connected in the sense

that both algorithms try to maximize the classifier margin. Throughout this paper, we will

make use of this connection to devise new AdaBoost-like algorithms.

3 Regularized LP Boosting Algorithms

In this section, we propose a novel regularized AdaBoost algorithm. To this end, we first

discuss the relationship between AdaBoost and the minimax problem. The connection

between the well-known minimax problem [25] and AdaBoost was first noted in [14, 15],

and was used to determine the maximum margin that one can achieve given a hypothesis

class by exploiting the dual relationship in linear programming. For simplicity, at the

moment, we assume that the cardinality of the hypothesis function set is finite and is equal

to T . We define a gain matrix, Z, where znt = ynht(xn) is the margin of sample xn

with respect to the t-th hypothesis function ht. Now let us look at the following minimax

optimization problem:

max
α∈Γ(T)

min
d∈Γ(N)

dTZα , (5)

where Γ(T) is the distribution simplex defined as Γ(T) = {α : α ∈ RT ,
∑T

t=1 αt=1,α≥0}.

The above optimization scheme can be understood as finding a set of combination coeffi-

cients α, such that the performance of the obtained ensemble classifier in the worst case is

maximized. It can be shown that this classification scheme is equivalent to the maximum

margin classification scheme in Eq. (4):

max
α∈Γ(T)

min
d∈Γ(N)

dTZα ,

= max
α∈Γ(T)

min
1≤n≤N

T∑

t=1

αtznt ,

= max
α∈Γ(T)

ρ ,

s.t.

T∑

t=1

αtznt ≥ ρ , n = 1, · · · , N .

(6)

6

In the separable data case, a large margin is usually conducive to good generalization in

the sense that if a large margin can be achieved with respect to training data, an upper

bound on the generalization error is small [26]. However, in noisy data cases where the data

distribution is highly overlapped, the optimization scheme of Eq. (5) can be easily misled

by outlier samples. Consequently, it will lead to a classifier with a suboptimal performance.

Note that in the minimax problem in Eq. (5), the second minimization problem is

optimized over the entire probability space, which is not sufficiently restrictive. A natural

strategy is to constrain the distribution or add a penalty term to the objective function to

control the distribution skewness, so that the learning algorithm is not allowed to use all

of its resources to deal with several hard-to-learn samples. In the following subsections, we

will present two regularized boosting algorithms that fall within this framework.

3.1 LPreg-AdaBoost (LPRA)

By constraining the distribution into a box, i.e., d ≤ c, we get the following optimization

problem:

max
α∈Γ(T)

min
{d∈Γ(N),d≤c}

dTZα , (7)

where c is a constant vector, and d ≤ c means that each element of d is less than or

equal to the corresponding element of c. Eq. (7) can be understood as finding a set of

combination coefficients α such that the classification performance in the worst case within

the distribution box is maximized. After some simple mathematical manipulations, the

primal optimization problem of Eq. (7) reads

max
(ρ,λ,α)

ρ −

N∑

n=1

cnλn ,

s.t.
T∑

t=1

αtznt ≥ ρ − λn, n = 1, · · · , N ,

λn ≥ 0, n = 1, · · · , N ,

α ∈ Γ(T) .

(8)

LPreg-AdaBoost (LPRA) [17] is a special case of the above optimization scheme in which

c1 = c2 = · · · = cN = C. A similar regularization strategy is also used in support vector

machine [16] to handle the nonseparable data case. The regularization in Eq. (8) introduces

a nonnegative slack variable λn into the optimization problem to achieve a soft margin for

a pattern:

ρs(xn) = ρ(xn) + λn . (9)

The relaxation of hard margins allows some patterns to have a smaller margin than ρ,

and hence the algorithm does not classify all patterns according to their associated class

7

labels. The optimization problem of Eq. (8) is usually solved in the dual domain due to

implementation issues. It is straightforward to derive the dual problem of Eq. (8) as

min
(γ,d)

γ ,

s.t.

N∑

n=1

dnznt ≤ γ, t = 1, · · · , T ,

d ≤ c,d ∈ Γ(N) .

(10)

From Eqs. (8) and (10) follows an important observation, that of the dual relationship

between achieving a soft margin and controlling the distribution skewness.

For convenience, we reformulate Eq. (7) as

max
α∈Γ(T)

min
d∈Γ(N)

dTZα + Ψ(‖d‖∞) , (11)

where ‖ · ‖p is the p-norm and Ψ(x) is a function defined as

Ψ(x) =

{
0 , if x ≤ C ,

∞ , if x > C .
(12)

Note that the box defined by {d : ‖d‖∞ ≤ C,d ∈ Γ(N)} is centered on the distribution

center d0 = [1/N, · · · , 1/N] (starting point of AdaBoost, see Fig. 1). Also, the parameter

C reflects to some extent the distribution skewness between the box boundary and d0.

Eq. (11) indicates that LPRA can be interpreted as a penalty scheme with a penalty of 0

within the box and ∞ outside the box. Therefore, this scheme is somewhat heuristic and

may be too restrictive. This analysis suggests that some other smooth penalty functions

may be considered for regularization.

Below, we briefly discuss the implementation of LPRA. In real applications, the car-

dinality of a hypothesis function set, H, can be very large or even infinite. Hence, the

gain matrix Z may not exist in an explicit form, and linear programming cannot be imple-

mented directly. This difficulty can be circumvented by using the column generation (CG)

technique [17]. The basic idea of CG is that instead of explicitly solving the optimization

problem over the entire set of H, CG restricts the dual problem by only considering the

hypothesis functions generated until that moment, and uses the base learner as an “oracle”

to generate a new hypothesis, referred to as column, until there are no hypothesis functions

within H that violate the condition
∑N

n=1 dnznt ≤ γ. It has been shown that by using a

commercialized linear programming package, the CG based LPRA algorithm can achieve a

comparable performance to that of AdaBoost with respect to both classification accuracy

and processing time [17]. In the sequel, we will use |H| to denote the cardinality of a

hypothesis function set, and reserve T as the maximum number of iterations of a boosting

algorithm.

8

3.2 LPnorm2-AdaBoost (LPNA)

From Eq. (11), which formulates more conveniently the optimization problem of Eq. (7),

one plausible strategy to control the skewness of d is to add a penalty term, P (d), which

measures the distances between the query distributions and the distribution center, to the

expression in Eq. (5) as follows:

max
α∈Γ(|H|)

min
d∈Γ(N)

dTZα + βP (d) , (13)

where β is a user defined parameter that controls the distribution skewness, and hence the

training performance.

In this paper, for penalty term P (d), we use the l2 norm function, which is one of the

most popular distance metrics. Since dT Zα+ β‖d−d0‖2 is convex in d and concave in α,

and the sets Γ(N) and Γ(T) are convex and compact, the max and min operations of Eq.

(13) can be interchanged (Generalized Minimax Theorem [27]). Therefore, Eq. (13) can be

reformulated as:

max
α∈Γ(|H|)

min
d∈Γ(N)

dTZα+β‖d − d0‖2 (14)

= min
d∈Γ(N)

max
α∈Γ(|H|)

dTZα + β‖d − d0‖2 , (15)

= min
d∈Γ(N)

max
1≤j≤|H|

∑N
n=1 dnznj + β‖d − d0‖2 , (16)

= min
d∈Γ(N)

γ + β‖d − d0‖2 ,

s.t.
∑N

n=1 dnznj ≤ γ, j = 1, · · · , |H| , (17)

= min
d∈Γ(N)

γ ,

s.t. sj(d) =
∑N

n=1 dnznj + β‖d − d0‖2 ≤ γ, j=1, · · ·, |H| . (18)

In the following, we describe how linear programming can be used to solve the opti-

mization problem of Eq. (18). We first define

s(d) = max
1≤j≤|H|

sj(d) = max
1≤j≤|H|

N∑

n=1

dnznj + β‖d − d0‖2 . (19)

Since sj(d) is a convex function in d, s(d) is a piece-wise convex function. Suppose now

we have a set of query distributions S = {d(t)}T
t=1. For each query distribution d(t), we can

find one supporting hyperplane for s(d), given by:

γ = s(d(t)) + ζs
t (d − d(t)) , (20)

where ζs
t is one element of the subdifferential ∂s(d(t)) of s at d(t). Due to the convexity of

s, a supporting hyperplane gives an underestimate of s. More precisely, Eq. (20) can be

9

expressed as:

γ = s(d(t)) + ζs
t (d − d(t)) , (21)

= max
1≤j≤|H|

sj(d
(t)) + ζs

t (d − d(t)) , (22)

= zT
.td

(t) + β‖d(t) − d0‖2 +

(
z.t + β

d(t) − d0

‖d(t) − d0‖2

)T

(d − d(t)) , (23)

=

(
z.t + β

d(t) − d0

‖d(t) − d0‖2

)T

d , (24)

where z.t is the t-th column of matrix Z given by

z.t = [y1ht(x1), · · · , yNht(xN)]T , (25)

and

ht = arg max
h∈H

N∑

n=1

d(t)
n h(xn)yn . (26)

Let us define

Z̃ = Z + β

[
d(1) − d0

‖d(1) − d0‖2
, · · · ,

d(T) − d0

‖d(T) − d0‖2

]
. (27)

Analogous to z.t, the columns of Z̃ are denoted as z̃.t.

It follows from Eq. (24) that the optimization problem of Eq. (18) can be linearly

approximated as:

min
(γ,d)

γ ,

s.t. z̃T
.td ≤ γ, t = 1, · · · , T ,

d ∈ Γ(N) ,

(28)

which is much easier to deal with than the original problem of Eq. (18). Fig. 2 illustrates

the proposed linear approximation of γ. Note that this is only a linear approximation,

which in general becomes better as more constraints are added.

The query distributions can be obtained by using the well-known column generation

technique. The column generation guarantees convergence of the optimization problem

of Eq. (18) in a finite number of iteration steps. The same technique is used for LPreg-

AdaBoost in [17]. Due to the degeneracy of Eq. (28), the column generation, however,

usually shows a pattern of slow convergence. Note that the problem of slow convergence,

particularly in the initial several iterations, is due to the spareness of the optimum solution

produced in each iteration. Not only does this make the learning process difficult, but this

also produces many unnecessary columns. The degeneracy problem is illustrated in Fig.

2. The circled numbers in Fig. 2 enumerate the generated columns (constraints). Note

10

3

1

2

γ

4

d

Figure 2: The slow convergence problem of column generation. The numbers in the circle

are the sequences of generated columns or constraints. It is clear that, given the columns

of 1 and 4, the columns of 2 and 3 will not be activated, i.e., the corresponding hypothesis

coefficients α2 and α3 are equal to zero.

that in the example of Fig. 2 given the columns of 1 and 4, the columns of 2 and 3 will

not be activated. This means that the corresponding hypothesis coefficients α2 and α3

equal to zero, according to the Karush-Kuhn-Tucker (KKT) condition [28]. Therefore, the

generation of h2 and h3 is redundant, as they do not contribute to the final solution.

One natural idea to alleviate the slow convergence problem is to constrain the solution

within a box, centered at the previous solution, also called the BOXSTEP method [29]:

min
(γ,d)

γ ,

s.t. z̃T
.td ≤ γ, t = 1, · · · , T ,

d ∈ Γ(N), ‖d − d(T)‖∞ ≤ B ,

(29)

where the parameter B defines the box size. Note that:

‖d − d(T)‖∞ = max
1≤n≤N

|d(n) − d(T)(n)| ≤ B ⇒

d(T) − 1B ≤ d ≤ 1B + d(T) ,
(30)

which together with the constraint of d ∈ Γ(N) gives:

max{d(T) − 1B,0} ≤ d ≤ 1B + d(T) . (31)

Consequently, the optimization problem in Eq. (29) can be further simplified as the following

11

LPnorm2-AdaBoost

Initialization: D = {(xn, yn)}N
n=1, the maximum number of iterations T , parameter β, Box

size B, data distribution d(1)(n) = 1/N , for n = 1 : N ,

for t = 1 : T

1. Train base learner with respect to distribution d(t) and get hypothesis ht(x) : x →

{±1}.

2. Solve the optimization problem:

(d∗, γ∗) = arg min
(γ,d)

γ ,

s.t. z̃T
.jd ≤ γ, j = 1, · · · , t ,

max{d(t) − 1B,0} ≤ d ≤ 1B + d(t) ,
∑N

n=1 dn = 1 .

3. Update weights as d(t+1) = d∗.

end

Output : F (x) =
∑T

t=1 α∗
t ht(x)

where α
∗ is the Lagrangian multipliers from the last LP.

Figure 3: Pseudo-code of LPnorm2-AdaBoost algorithm.

LP problem:

min
(γ,d)

γ ,

s.t. z̃T
.td ≤ γ, t = 1, · · · , T ,

max{d(T) − 1B,0} ≤ d ≤ 1B + d(T) ,
N∑

n=1

dn = 1 .

(32)

Eq. (32) gives rise to a new LP based boosting algorithm, which we refer to as LPnorm2-

AdaBoost (LPNA), summarized in Fig. 3.

The proposed algorithm may be better understood in the primal domain. The dual

12

form of Eq. (28) is:

max
(ρ,α)

ρ

s.t.
T∑

t=1

αtznt + β
T∑

t=1

αt
d
(t)
n − 1/N

‖d(t) − d0‖2
≥ ρ, n = 1, · · · , N ,

α ∈ Γ(T) .

(33)

Similar to Eq. (8), Eq. (33) leads to the following definition of a sample soft margin:

ρs(xn) =

T∑

t=1

αtznt + β

T∑

t=1

αt
d
(t)
n − 1/N

‖d(t) − d0‖2
(34)

where the term (β
∑T

t=1 αt
d
(t)
n −1/N

‖d(t)−d0‖2
) can be interpreted as a “mistrust” in examples. Here,

the rationale is that a pattern which is often visited by the base learner (i.e., hard to

classify correctly) will have a high average distribution, and should have less influence on

the outcome of the final classifier. The parameter β controls the tradeoff between margin

and “mistrust”. It is interesting to note that our soft margin definition given by Eq. (34)

is very similar to that of AdaBoostReg, defined as:

ρReg(xn) =

T∑

t=1

αtznt + β

T∑

t=1

αtd
(t)
n , (35)

which is introduced in AdaBoost on the algorithm level [10]. The main difference is that our

soft margin is calculated with respect to the center distribution. If the query distributions

of a pattern, say xn, are always less than 1/N (i.e., xn is an easy example), the “mistrust”

in Eq. (34) can take a negative value. It means that the soft margin penalizes some

hard examples and at the same time rewards some easy examples. In [10, 23], it was

experimentally observed that AdaBoost increases the margin of the most hard-to-learn

examples at the cost of reducing the margins of the rest of the data. Therefore, by defining

a soft margin as in Eq. (34), we seek to reverse the boosting process to some extent, the

strength of which is controlled by β.

Below, we briefly discuss the implementation of the proposed LPNA. One important

parameter of LPNA is the box size, B. If B is too large, the algorithm will still suffer from

a slow convergence problem, and if B is too small, the updating of query distributions may

not be adequate, affecting the convergence rate of the algorithm. From our experience, we

find that B ∈ [3
N , 10

N] is appropriate, and in our experiments we choose B = 5
N .

4 Base Learner: RBF Network

In this paper, as the base learner of a specific boosting algorithm, we use the radial basis

function (RBF) network [30]. The RBF network is a multi-dimensional nonlinear mapping

13

based on the distances between the input vector and predefined center vectors. Using the

same notation as in Section 2, the mapping is specified as a weighted combination of J

basis functions:

h(x) =
J∑

j=1

πjφj(‖x − cj‖p), (36)

where φj(‖x − cj‖p) is a radial basis function, πj is a weight parameter, and J is a pre-

defined number of RBF centers, cj , j = 1, · · · , J . Also, basis functions φj(·) are arbitrary

nonlinear functions, and ‖ · ‖p denotes the p-norm (usually assumed Euclidean).

In the literature, one of the most popular RBF nets is the Gaussian RBF network [31],

where the basis functions are specified as the unnormalized form of the Gaussian density

function given by

g(x) = exp

(
−

1

2
(x− µ)TΣ−1(x − µ)

)
, (37)

where µ is the mean and Σ is the covariance matrix. For simplicity, Σ is often assumed to

have the form Σ = σ2I, where I is the identity matrix. Hence, the Gaussian RBF network

is given by

h(x) =

J∑

j=1

πjgj(x) =

J∑

j=1

πj exp

(
−
‖x − µj‖

2
2

2σ2
j

)
, (38)

where the µ’s represent center vectors, and the σ’s can be interpreted as the width of basis

functions.

The parameters of the Gaussian RBF network – namely, the means {µj}j , the variances

{σ2
j }j , and the weighting parameters {πj}j – are learned on training samples. In this paper,

we employ an iterative learning algorithm, where all the RBF parameters are simultaneously

computed by minimizing the following error function [10]:

E =
1

2

N∑

n=1

(yn − h(xn))2 +
λ

2N

J∑

j=1

π2
j , (39)

where λ is a regularization constant. In the first step, the means {µj}j are initialized by the

standard K-means clustering algorithm, while the variances {σj}j are determined as the

distance between µj and the closest µi, (i 6= j, i ∈ [1, J]). Then, in the following iteration

steps, a gradient descent of the error function in Eq. (39) is performed to update {µj}j ,

{σ2
j }j , and {πj}j. In this manner, the network fine-tunes itself to training data.

5 Experimental Results

To demonstrate the effectiveness of the proposed algorithm, a large-scale experiment is

conducted. The performance of our algorithm is compared with that of the following

14

Table 1: Summary of 12 datasets
No. Features No. Train No. Test No. Realizations

Banana 2 400 4900 100

Bcancer 9 200 77 100

Diabetics 8 468 300 100

German 20 700 300 100

Heart 13 170 100 100

Ringnorm 20 400 7000 100

Fsolar 9 666 400 100

Thyroid 5 140 75 100

Titanic 3 150 2051 100

Waveform 21 400 4600 100

Splice 60 1000 2175 20

Twonorm 20 400 700 100

classifiers: (1) the radial basis function (RBF) network, described in Sec. 4, (2) AdaBoost,

discussed in Sec. 2, (3) AdaBoostReg, mentioned in Sec. 1 and detailed in [2, 10, 13], and

(4) LPRA, explained in Sec. 3.1 and detailed in [17]. The radial basis function net is used

as the base learner for all boosting algorithms. All of the RBF parameters, including the

number of the RBF centers and the number of training iterations, are the same as those

used in [10]. Here, we avoid verbatim repetition of the detailed, lengthy description of the

RBF parameters, and refer the reader to [10].

We use 12 artificial and real-world datasets: banana, waveform, diabetics, breast cancer,

ringnorm, twonorm, splice, heart, german, titanic, thyroid and flare solar. The datasets

are taken from the publicly available UCI, DELVE and STATLOG benchmark repositions.

Alterations to these datasets can be obtained from the IDA repository [32], where the

datasets have been randomly partitioned into 100 realizations of training and testing data

(splice has only 20 realizations). The detailed data information is summarized in Table 1.

In the experiments, the tuning of the regularization parameter β is done through cross-

validation based on training data. Throughout, the maximum number of training iterations

of LPNA and LPRA is heuristically set to T = 150. As typically done in the literature

[33, 34], we preset the number of training steps to obtain a reasonable comparison of the

performance of the algorithms balanced against certain processing-time constraints. The

commercialized optimization package XPRESS is used as the LP solver.

In the sequel, we present several examples in which we illustrate the properties of

the proposed algorithm. First, we show classification results on banana data set, whose

samples are characterized by two-dimensional feature vectors. The decision boundaries of

RBF, AdaBoost and LPNA are plotted in Fig. 4. Note that AdaBoost tries to classify each

pattern according to its associated class label, and forms a “zigzag” decision boundary,

15

which clearly illustrates the overfitting phenomenon of AdaBoost. Both RBF and LPNA

yield smooth and similar decision boundaries. In this case, it is difficult to determine which

decision boundary is better visually. This indicates that RBF with well tuned structural

parameters is a strong classifier. Hence, it is not surprising that boosting such a strong

classifier without any regularization will easily lead to overfitting.

In the second example, we present the training and testing results, and margin plots of

AdaBoost and LPNA based on one realization of waveform data in Fig. 5. AdaBoost tries

to maximize the margin of each pattern, and hence effectively reduces the training error

to zero. However, it quickly leads to overfitting. In contrast, LPNA tries to maximize the

soft margin, purposely allowing some difficult-to-learn examples to remain with small hard

margins. Thereby, LPNA effectively alleviates the overfitting problem of AdaBoost. As can

be seen in Fig. 5, in the beginning the classification error for LPNA on test data gradually

decreases as the number of iterations become larger. After a certain number of iterations,

the classification error for LPNA reaches a stable minimum value. Similar performance of

LPNA is observed over all the datasets used.

Table 2 presents a more comprehensive comparison of LPNA with the following algo-

rithms: RBF [10], AdaBoost [10], AdaBoostReg [10], and LPreg-AdaBoost (LPRA) [17].

The comparison concerns the average classification results and their standard deviations

over 100 realizations of the 12 datasets, as detailed in Table 2. The best results are marked

in boldface. From the table, we note the following:

1. AdaBoost with RBF as a base learner performs worse than a single RBF classifier in

almost all cases. This is due to overfitting of AdaBoost. In many cases, AdaBoost

leads to overfitting quickly, only after a few iterations, which clearly indicates that

regularization is needed for AdaBoost.

2. LPNA can significantly improve the performance of RBF. Moreover, the regularization

of LPNA alleviates the overfitting problem of AdaBoost.

3. We observe that LPNA achieves a similar, and in some cases (e.g., waveform) better

classification performance than AdaBoostReg. This highlights the success of our ap-

proach. Note that AdaBoostReg has been established as one of the best regularized

AdaBoost algorithms, which reportedly outperforms support vector machine with

RBF kernel on the given 12 datasets [10].

4. We also make a comparison between LPRA and LPNA. Though LPRA can achieve

better performance than AdaBoost, in almost all cases LPRA is inferior to LPNA.

This may be explained due to a heuristic hard-limited penalty function used in LPRA

that is inferior to the penalty function used in LPNA.

16

Table 2: Classification errors and standard deviations (%) of the RBF, AdaBoost(AB),

AdaBoostReg(ABR), LPnorm2-AdaBoost (LPNA), LPreg-AdaBoost (LPRA) [17]. The best

results are marked in boldface.

RBF [10] AB [10] ABR [10] LPNA LPRA

Banana 10.8±0.6 12.3±0.7 10.9±0.4 10.7±0.4 10.9±0.9

Waveform 10.7±1.1 10.8±0.6 9.8±0.8 9.4±0.4 9.8±0.5

Bcancer 27.6±4.7 30.4±4.7 26.5±4.5 25.9±4.5 26.7±4.7

Diabetics 24.3±1.9 26.5±2.3 23.8±1.8 23.8±1.8 24.3±2.0

German 24.7±2.4 27.5±2.5 24.3±2.1 23.9±2.3 24.5±2.3

Heart 17.6±3.3 20.3±3.4 16.5±3.5 16.9±3.2 17.5±3.6

Ringnorm 1.7±0.2 1.9±0.3 1.6±0.1 1.6±0.2 1.7±0.2

Fsolar 34.4±2.0 35.7±1.8 34.2±2.2 34.3±1.8 34.6±2.0

Thyroid 4.5±2.1 4.4±2.2 4.6±2.2 4.3±2.2 4.4±2.1

Titanic 23.3±1.3 22.6±1.2 22.6±1.2 22.5±1.1 23.3±0.9

Splice 10.0±1.0 10.1±0.5 9.5±0.7 9.4±0.7 9.5±0.6

Twonorm 2.9±0.3 3.0±0.3 2.7±0.2 2.7±0.2 2.8±0.2

5. The proposed LPNA algorithm can be readily extended to the case in which the base

learner produces a soft decision. The soft decisions of RBF can be computed as:

h(x) = (e2z − 1)/(e2z + 1) ∈ [−1,+1], where z ∈ R is the output of RBF given a

pattern x. The classification results of LPNA(S) that uses the outlined soft infor-

mation of RBF are reported in Table 3. By exploiting the confidence information,

LPNA(S) performs slightly better than the original LPNA that uses hard RBF deci-

sions (LPNA(H)). In machine learning the notion of convergence is associated to the

number of iteration steps it takes an algorithm to achieve a specific classification error.

As can be seen in Fig. 6, for LPNA(H) it takes 150 itertations, while for LPNA(S),

only 50 iterations to achieve the same classification error. Typically, the experiments

show that LPNA(S) converges faster than LPNA(H) with respect to the classification

error on the test datasets.

Finally, note that complexity of LPNA is equal to that of the column-generation based

LPRA algorithm [17]. It has been shown that by using a commercialized linear program-

ming package, the column-generation based LPRA algorithm can achieve a comparable

performance to that of AdaBoost with respect to both classification accuracy and process-

ing time [17].

17

Table 3: Classification errors and standard deviations of LPNA(H) and LPNA(S) that use

hard and soft decisions, respectively.
LPNA(H) LPNA(S)

Banana 10.7±0.4 10.6±0.4

Waveform 9.4±0.4 9.3±0.4

Bcancer 25.9±4.5 26.5±4.6

Diabetis 23.8±1.8 23.8±1.8

German 23.9±2.3 24.0±2.2

Heart 16.9±3.2 17.0±3.1

Ringnorm 1.6±0.2 1.6±0.2

Fsolar 34.3±1.8 34.2±2.0

Thyroid 4.3±2.2 4.2±2.2

Titanic 22.5±1.1 22.5±1.1

Splice 9.4±0.7 9.3±0.7

Twonorm 2.7±0.2 2.7±0.2

6 Conclusions

In this paper, we have addressed the problem of overfitting in AdaBoost in noisy settings,

which may hinder the implementation of AdaBoost for real-world applications. By exploring

a close connection between AdaBoost and linear programming, we have proposed a new

regularized AdaBoost algorithm – LPnorm2–AdaBoost, or short LPNA. The algorithm is

based on an intuitive idea of controlling the data distribution skewness in the learning

process by introducing a smooth convex penalty function into the objective of the minimax

problem. Thereby, outliers are prevented from spoiling decision boundaries in training.

We have used the stabilized column generation technique to transform the optimization

problem into a simple linear programming problem.

We have presented the results of a large-scale experiment on 12 datasets, in which LPNA

is also compared with the following classifiers: RBF net [30], AdaBoost [1], AdaBoostReg

[10], and LPRA [17]. Empirical results show that LPNA effectively alleviates the overfitting

problem of AdaBoost, and achieves a slightly better overall classification performance than

to date the best regularized AdaBoost algorithm called AdaBoostReg.

The empirical validation clearly indicates the success of the proposed approach, es-

pecially in light of years’ long dominance of AdaBoostReg. More importantly, unlike

AdaBoostReg, where regularization is heuristically introduced on the algorithm level, our

LPNA has a clear underlying optimization scheme.

18

References

[1] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning

and an application to boosting,” J. Computer and System Sciences, vol. 55, no. 1, pp.

119–139, 1997.

[2] R. Meir and G. Rätsch, “An introduction to boosting and leveraging,” in Advanced

Lectures on Machine Learning, S. Mendelson and A. Smola, Eds. Springer, 2003, pp.

119–184.

[3] H. Schwenk, “Using boosting to improve a hybrid HMM/Neural Network speech rec-

ognizer,” in Proc. Intl. Conf. Acoustics, Speech, Signal Processing, Phoenix, AZ, USA,

1999, pp. 1009–1012.

[4] R. Zhang and . I. Rudnicky, “Improving the performance of an LVCSR system through

ensembles of acoustic models,” in Proc. Intl. Conf. Acoustics, Speech, Signal Process-

ing, vol. 1, Hong Kong, 2003, pp. 876–879.

[5] G.Tur, R. E. Schapire, and D. Hakkani-Tur, “Active learning for spoken language

understanding,” in Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Proc.,

Hong Kong, China, 2003.

[6] J. Miteran, J. Matas, E. Bourennane, M. Paindavoine, and J. Dubois, “Automatic

hardware implementation tool for a discrete adaboost-based decision algorithm,”

EURASIP Journal on Applied Signal Processing, vol. 2005, no. 7, pp. 1035–1046, 2005.

[7] R. Nishii and S. Eguchi, “Robust supervised image classifiers by spatial adaboost based

on robust loss functions,” in Proc. SPIE, Image and Signal Processing for Remote

Sensing XI, vol. 5982, no. 1, 2005.

[8] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kegl, “Meta-features and

AdaBoost for music classification,” in press, Machine Learning, 2006.

[9] T. G. Dietterich, “An experimental comparison of three methods for constructing en-

sembles of decision trees: Bagging, boosting, and randomization,” Machine Learning,

vol. 40, no. 2, pp. 139–157, 2000.

[10] G. Rätsch, T. Onoda, and K.-R. Müller, “Soft margins for AdaBoost,” Machine Learn-

ing, vol. 42, no. 3, pp. 287–320, 2001.

[11] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

19

[12] A. J. Grove and D. Schuurmans, “Boosting in the limit: maximizing the margin of

learned ensembles,” in Proc. 15th Nat’l Conf. on Artificial Intelligence, Madison, WI,

USA, 1998, pp. 692–699.

[13] G. Rätsch, “Robust boosting via convex optimization: theory and application,” Ph.D.

dissertation, University of Potsdam, Germany, 2001.

[14] L. Breiman, “Prediction games and arcing algorithms,” Neural Computation, vol. 11,

no. 7, pp. 1493–1517, October 1999.

[15] Y. Freund and R. E. Schapire, “Game theory, on-line prediction and boostin,” in Proc.

9th Annual Conf. Computational Learning Theory, Desenzano del Garda, Italy, 1996,

pp. 325–332.

[16] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, vol. 20, pp.

273–297, 1995.

[17] A. Demiriz, K. P. Bennett, and J. Shawe-Taylor, “Linear programming boosting via

column generation,” Machine Learning, vol. 46, pp. 225–254, 2002.

[18] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, pp. 123–140, 1996.

[19] ——, “Arcing classifiers,” The Annals of Statistics, vol. 26, no. 3, pp. 801–849, 1998.

[20] L. Mason, J. Bartlett, P. Baxter, and M. Frean, “Functional gradient techniques

for combining hypotheses,” in Advances in Large Margin Classifiers, B. Scholkopf,

A. Smola, P. Bartlett, and D. Schuurmans, Eds. Cambridge, MA, USA: MIT Press,

2000, pp. 221–247.

[21] W. Jiang, “Some theoretical aspects of boosting in the presence of noisy data,” in Proc.

18th Intl. Conf. on Machine Learning, Williams College, MA, 2001, pp. 234–241.

[22] ——, “Is regularization unnecessary for boosting,” in Proc. Eighth Intl. Workshop on

Artificial Intelligence and Statistics, Key West, FL, 2001.

[23] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the margin: a

new explanation for the effectiveness of voting methods,” in Proc. 14th Intl. Conf. on

Machine Learning, Nashville, TN, USA, 1997, pp. 322–330.

[24] C. Rudin, I. Daubechies, and R. E. Schapire, “The dynamics of AdaBoost: Cyclic

behavior and convergence of margins,” J. Machine Learning Research, vol. 5, pp. 1557–

1595, Dec 2004.

20

[25] J. von Neumann, “Zur theorie der gesellschaftsspiele,” Mathematische Annalen., vol.

100, pp. 295–320, 1928.

[26] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.

[27] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. Amsterdam,

Holland: North-Holland Pub. Co., 1976.

[28] E. K. P. Chong and S. H. Zak, An Introduction to Optimization. New York: John

Wiley and Sons Inc., 2001.

[29] R. E. Marsten, W. W. Hogan, and J. W. Blankenship, “The BOXSTEP method for

large-scale optimization,” Operations Research, vol. 23, pp. 389–405, 1975.

[30] J. Moody and C. Darken, “Fast learning in networks of locally-tuned processing units,”

Neural Computation, vol. 1, no. 2, pp. 281–294, 1989.

[31] C. Bishop, Neural Networks for Pattern Recognition. Oxford: Claredon Press, 1995.

[32] G. Rätsch, “IDA benchmark repository,” 2001. [Online]. Available:

http://ida.first.fhg.de/projects/bench/benchmarks.htm

[33] R. Schapire and Y. Singer, “Improved boosting algorithms using confidence-rated pre-

dictions,” Machine Learning, vol. 37, no. 3, pp. 297–336, 1999.

[34] R. E. Schapire, “Using output codes to boost multiclass learning problems,” in Proc.

14th Intl. Conf. Machine Learning, Nashville, TN, USA, 1997, pp. 313–321.

21

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Decision Boundary (RBF)

0

0

0

0

0

0

00
0

0

(a) RBF

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Decision Boundary (AdaBoost)

0

0

0

0

0

0

0

0
0

0

0

0

0
0

(b) AdaBoost

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Decision Boundary (LPNA)

0

0

0

0

0

0

0

0

0

(c) LPNA

Figure 4: The decision boundaries of three methods: RBF, AdaBoost and LPNA based

on one realization of the banana data. AdaBoost tries to classify each pattern according

to its associated label and forms a zigzag decision boundary, which gives a straightforward

illustration of the overfitting phenomenon of AdaBoost. Both RBF and LPNA give smooth

and similar decision boundaries in this case.

22

0 50 100 150
0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

Iteration Number

C
la

ss
ifi

ca
tio

n
E

rr
or

Results(LPNA)

Train Error
Test Error

20 40 60 80 100 120 140
−1.5

−1

−0.5

0

0.5

1

Iteration Number

M
ar

gi
n

Margin (LPNA)

Soft Margin
Hard Margin

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12
Results(AdaBoost)

Iteration Number

C
la

ss
ifi

ca
tio

n
E

rr
or

Train Error
Test Error

0 50 100 150 200
−1.5

−1

−0.5

0

0.5

1
Margin(AdaBoost)

Iteration Number

M
ar

gi
n

Figure 5: Training and testing results, and margin plots of two methods: AdaBoost and

LPNA based on one realization of waveform data. AdaBoost can effectively reduce the

training error to zero but leads to overfitting only after a few iterations. LPNA effectively

alleviates the overfitting problem.

23

0 50 100 150
0.09

0.095

0.1

0.105

0.11

0.115
Testing Results(waveform)

Iteration Number

C
la

ss
ifi

ca
tio

n
E

rr
or

LPNA(S)
LPNA(H)

Figure 6: Testing results of LPNA(H) and LPNA(S) averaged over 100 realizations of

waveform dataset. LPNA(S) converges faster than LPNA(H) in terms of the classification

performance.

24

