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Video Painting with
Space-Time-Varying Style Parameters
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Abstract —Artists use different means of stylization to control the focus on different objects in the scene. This allows them to portray
complex meaning and achieve certain artistic effects. Most prior work on painterly rendering of videos, however, uses only a single
painting style, with fixed global parameters, irrespective of objects and their layout in the images. This often leads to inadequate artistic
control. Moreover, brush stroke orientation is typically assumed to follow an everywhere continuous directional field. In this article, we
propose a video painting system that accounts for the spatial support of objects in the images or video, and uses this information to
specify style parameters and stroke orientation for painterly rendering. Since objects occupy distinct image locations and move relatively
smoothly from one video frame to another, our object-based painterly rendering approach is characterized by style parameters that
coherently vary in space and time. Space-time-varying style parameters enable more artistic freedom, such as emphasis/deemphasis,
increase or decrease of contrast, exaggeration or abstraction of different objects in the scene in a temporally coherent fashion.

Index Terms —Non-photorealistic rendering, video painting, multi-style painting, tensor field design

✦

1 INTRODUCTION

PAINTERLY rendering of images and videos has received
much attention in the past two decades. In this article,

we describe a video painting framework in which style pa-
rameters as well as brush stroke orientations can be specified
individually for each region (object or background) in some
keyframes and propagated to other frames in a temporally
coherent fashion. We will refer to this as the problem ofmulti-
style painterly rendering, or simplymulti-style painting. There
are a number of benefits in multi-style painting:

1) By spatially varying style parameters such as brush
stroke length, width, and opacity, the artist has the free-
dom to emphasize or deemphasize certain objects in the
scene (Fig. 1 (c): flower (emphasized) and leaves (deem-
phasized)), to control the level of abstraction or realism
in the resulting painting (Fig. 2 (d-e)), to increase or
decrease contrasts between neighboring objects (Fig. 3
(c): contrast between red/orange peppers and greenish
peppers is increased), to exaggerate or trivialize, and
certain cinematographic concepts such as calmness or
stress.

2) By temporally varying style parameters based on the
objects, the artist can maintain the aforementioned co-
herence and control, or modify the parameters, such as
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achieving a rack focus effect (Fig. 9).
3) By allowing region-based brush stroke orientation de-

sign, the user has additional tools to achieve the afore-
mentioned effects as well as to create illusions (Fig. 4).

Despite the potential benefits enabled by multi-style painting,
there has been relatively little research in this area. Most
existing work in image and video painting has focused on
mimicking a single painting style where the style parameters
such as brush stroke length, width, and opacity are constant
over the whole spacetime domain [1], [2], [3], [4], [5], [6], [7],
[8]. While there has been some work that can enable certain
region-based non-photorealistic effects [9], [10], their focus
is to typically on automatic stylization for some particular
effect. Consequently, there is relatively little exploration on
the artistic design of multi-style effects once the segmentation
is available. Furthermore, there is little work in systematic
design of brush orientations in video painting [11].

In this article, we address these issues by providing a painterly
rendering framework for videos. In this framework, the video
is first segmented into regions (objects or background) in
temporally coherent fashion using an existing technique [12].
Next, the user defines style parameters and brush orientation
for desired objects by specifying them in somekeyframes.
These user specification are then automatically propagated to
the other frames as well as regions without any specifications
through constrained optimization. Finally, the style parameters
and stroke orientations will be used to generate the final
rendering.

Our approach facilitates interactive artistic design and ex-
periments once the segmentation becomes available. Style
parameters can be specified in a small number of objects in
some keyframes and automatically propagated to the whole
video. In addition, as part of approach, we have developed
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Fig. 1. Two stylized frames from a video showing a blooming flower: (a) the original frame, (b) the segmentation of the
frame into three parts: petals, leaves, and stamens, (c) a single van Gogh style is applied to the entire frame, and (d)
the same van Gogh style applied to the petals, whereas spatially varying Pointillist settings are applied to the leaves
and stamens with different stroke diameters. The use of different styles, and spatially varying style parameters results
in de-emphasizing the leaves, portraying the realistic fine granularity of the stamens, and enhancing overall contrast
among the three regions. This is possible with the ability to produce temporally coherent segmentation.

(a) (b) (c)

(d) (e)

Fig. 2. An image of a bird (a) is painted in constant style parameter values (b-c) and spatially-varying values (d-e).
The difference between (b) and (c) is the size of the strokes. In (b) details are preserved while in (c) the image is
abstracted uniformly. With a binary segmentation (bird and background), the artist controls the amount of abstraction
as well as the focus in the painting results (d: focus on the bird; e: emphasis given to the background flowers).

an image-basedpainterly rendering algorithm that can lead to
more coherent results than existing geometry-based method in
which curved brush strokes are explicitly defined. Moveover,
we make use of the color of strokes to sort brush strokes, which
has resulted in strokes with softer edges and partially alleviated
the flickering issue in the video setting. Finally, we allow
the user to easily design brush stroke orientations in a video,
which, to the best of our knowledge, is the first of its kind.
Note that the brush stroke orientations can be discontinuous
across region boundaries, which is often desirable but has not
been supported in past stroke orientation field design systems
such as [13], [6], [11].

The rest of the article is organized as follows. Section 2
reviews related work. Section 3 describes the style and orien-
tation design capabilities of our system and Section 4 explains
our image-based multi-style renderer for images and videos. In
Section 5 we describe how we generate a spatiotemporal video
segmentation. We present results in Section 6 and summarize
and discuss some future work in Section 7.

2 RELATED WORK

We will review two areas that are most relevant to the contribu-
tions of this article: painterly rendering and flow visualization.
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Fig. 3. This figure illustrates the control over the increase or decrease in contrast with spatially-varying style
parameters. Given an image of peppers of various colors (a), two paintings are produced: (b) single-style, and (c)
multi-style. Notice that the painting in (c) is obtained from (b) when increasing brightness and the amount of the detail
to red and orange peppers only.

Painterly Rendering: Painterly rendering has been a well-
researched area in computer graphics. To review all the work
is beyond the scope of this article. We here focus on the most
relevant work.

Haeberli [1] introduces the idea of painterly rendering as
a form of visual representation of objects. Litwinowicz [2]
presents a system in which Impressionistic effects can be
created for images and videos based on user specified stroke
parameters. Hertzmann [13] describes an automatic algorithm
that generates a number of styles of painting effects with
various stroke sizes. A more physically realistic affect by
adding height fields onto brush strokes which is used to
add shading effect to the strokes [5]. Hertzmann [3] de-
scribes another painterly rendering method by formulating
brush stroke placement as an energy optimization problem.
Brush strokes can be added and removed as the optimization
process iterates. In a rather different approach, Hertzmann
et al. [14] augment images with painterly appearance using
texture synthesis techniques.

Various techniques can be presented to produce video painting.
Hertzmann and Perlin [7] extend the multi-layer approach of
Hertzmann [13] to videos. In this approach, brush strokes from
the previous frame will reused in the next frame after being
moved according to the optical flow. Klein et al. [15] extend
the notion of brush strokes to tubes in 3D spacetime, leading
to more coherent but sometime undesirable appearances. Hays
and Essa [6] provide a high-quality painterly renderer for
videos by reusing the idea of optical flow and by restraining
the speed of brush stroke rotation. DeCarlo and Santella
propose a framework for abstracting a video [4], which is
later used to produce video watercolorization [8]. In addition,
Meier produces coherent rendering results for synthetic 3D
scenes using a combination of geometry- and image-based
techniques [16]. Cunzi et al. [17] address the “shower door”
effect in 3D virtual walkthrough by moving the background in
a plausible manner. These techniques assume a single set style
parameters while our approach assumes space-time-varying
styles parameters.

All of this work focuses on the rendering aspect of the paint-
ing. In contrast, we wish to provide a system that facilitates

and supports the design and rendering process with varying
style parameters. Hertzmann’s work [13], [3] in providing
level-of-detail control to the user is inspirational to this paper.
However, we provide a more systematic approach that includes
an effective segmentation tool and a user interface for varying
style parameter design. Moreover, in this article we introduce
the idea of creating a time-dependent tensor field to guide
brush stroke orientations in a video. Past work [18], [11]
applies tensor field design to image painting only. Based on
our literature review, our system is the first that enables the
time-dependent design capability.

Flow Visualization: In this article, we present a painterly
renderer that is inspired by flow visualization techniques
(Section 4). To review all related work in flow visualization
is beyond the scope of this article, and we will only mention
the most relevant work.

An efficient way of visualizing a vector field is by showing
a set of streamlines, i.e., curves that are tangent to the vector
field everywhere along their paths. Cabral and Leedom [19]
present one such technique by performingline integral con-
volution (LIC) on an initial texture of white noise according
to the vector field. For every pixel, they assign a value by ex-
tracting the streamline that contain the pixel and computing the
average intensity of the initial texture along the streamline. The
approach results in a high-quality continuous representation of
the vector field. However, it is computationally expensive since
it requires tracing a streamline for every pixel. Later, Stalling
and Hege describe a faster way of creating LIC images by
reducing the number of streamlines that need to be traced
(FastLIC) [20]. Van Wijk [21] develops an interactive and
high-quality image-based flow visualization technique (IBFV)
for planar vector fields. IBFV enables interactive display of
vector fields with the assistance of graphics hardware.

Zhang et al. [11] demonstrate that the edge field extracted from
an image is a tensor field. They also point out that treating a
tensor field as a vector field by simply removing the ambiguity
in the orientation causes visual artifacts. Delmarcelle and
Hesselink [22] propose to visualize 2D or 3D tensor fields
with hyperstreamlines, which are curves that tangent to the
major eigenvectors of the tensor fields everywhere along their
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Fig. 4. This figure illustrates the importance of object-based stroke orientation design. Given an input of a cat, brush
stroke orientation is based on the strong edges in the image (a). The user desires to assign a constant directional field
for the background to achieve contrast between the background and the cat. Without segmentation, a single user-
specified constraint (colored arrow in (b)) can only help achieve the artistic goal in a very local region (b). By adding
more constraints in (c), the stroke orientations in the background start to conform. However, this has the side effect
that these constraints also impact the orientation fields in the cat (white regions on her body). With the segmentation
(d), the user can easily achieve the artistic goal with one constraint without modifying the stroke orientations inside
the cat (e). Notice the stroke orientations in (e) is the same as in (a). In (f) hallucinational circular patterns are added
to the background, again, without impacting the stroke orientations in the cat.

paths. Zheng and Pang [23] propose a tensor field visualization
technique that they callHyperLIC. This method makes use of
LIC to produce images that resemble visualizations based on
hyperstreamlines. Zhang et al. [11] adapt the IBFV approach
of van Wijk to tensor fields, which results in an interactive
and high-quality tensor field visualization.

Our rendering pipeline adopts the approach Zhang et al. [11].
However, the application requirement is very different. We will
provide details about our advection algorithm in more detail
in Section 4.

3 STYLE AND ORIENTATION FIELD DESIGN

Our multi-style rendering framework consists of three
pipelines:

1) Video analysis and segmentation

2) Segmentation-enabled style and orientation design
3) Rendering

In the first stage, the input videoV is analyzed to compute the
following information: the per-frame edge fieldE and optical
flow field f as well as a temporally-coherent segmentation of
V into regionsRi (1≤ i ≤ n) in the space-time domain.

In the second stage, the user specifies style parameters and
designs stroke orientations based on the segmentation. This
results in a number of scalar fieldssj (1≤ j ≤ m), each of
which corresponds to a style parameter such as stroke width
or opacity, as well as a tensor fieldT that guides brush stroke
orientations in the video.

In the last step, an output videoV ′ was produced by our
painterly rendering algorithm that makes use of the segmenta-
tion, style parameters, optical flow, as well as the tensor field.
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The contributions of this work lie in the second and third
stages, which we describe in detail in this section and Sec-
tion 4, respectively. In Section 5 we will mention existing
techniques that we employ for video analysis, such as the
segmentation method of Brendel and Todorovic [12].

In the second stage, the user can interactively specify desired
style parameters as well as brush stroke orientations. These
parameters will then be used in the final stage of rendering the
output video (Section 4). The style parameters that our system
supports include the following, most of which are inspired by
work of Haeberli [1] and Hertzmann [13].

• Stroke size: describes the diameter of a stroke for Pointil-
lism styles and the width of the stroke for other styles
such as Impressionism, Expressionism, Van Gogh, and
Colorist Wash.

• Stroke length: is desirable brush stroke length which al-
lows long, curved brush strokes and can be used illustrate
natural anisotropy in the images such as silhouettes.

• Stroke opacity: controls the amount of transparency or
hardnessin a brush stroke and is useful achieving styles
such as the Colorist Wash.

• Color shift: describes changes in colors of all brush
strokes in the video or a region. It consists of three
parameters that describes the shift in Hue, Saturation, and
Value, respectively. This parameter can be used to alter
the overall tone of the image (Fig. 8).

• Color jittering: controls the maximal amount of jittering
in the color of each brush stroke. When this parameter
is zero, the color of each brush stroke is taken from
the pixel in the input video corresponding to the seed
location of the stroke. Having a non-zero value allows
greater variation and thus contrast between neighboring
brush strokes, which is desirable in Expressionism and
the Van Gogh style [6].

• In-stroke texture height and density: allows a stroke to be
textured, as in [5].

In addition to these art-driven parameters, we also support a
number of algorithm-specific parameters such as:

• Number of layers: which allows layers of brush strokes
of different sizes to be overlaid [13].

• Error threshold: is used to decide where on the canvas
additional strokes are needed [13].

Our system assumes that style parameters are defined at each
pixel.

The orientation of strokes is an important ingredient in con-
veying features with directions, such as the silhouette and
motions of objects in the scene. Unlike style parameters, the
orientation field is not a scalar field and contains directional
information. We will discuss the design of scalar-valued style
parameters and the orientation field in Sections 3.1 and 3.2,
respectively.

Fig. 5 shows the interface of our system. The window consists
of four parts: a canvas (upper-left), a control panel (right), a

Fig. 5. This figure shows the user interface of our system.

frame browser (middle-left), and a system message box (lower-
left). The canvas can be used to show the input (image or
video), segmentation, visualization of the orientation field, and
the painterly result. When the input has been segmented, the
user can select any region in the segmentation by clicking on
a pixel belonging to that region. When this happens, other
regions will be dimmed while the selected region remains its
original colors. Clicking on a selected region will unselect it
and undo the dimming of other regions. The user can then
use the control panel to assign style parameters or design
orientation fields for the selected region. For convenience, we
have provided some default styles such as van Gogh, Colorist
Wash, Impressionism, Pointillism, and Watercolor. The user
can simply apply any of the these styles to the designed object
by clicking the corresponding button. The style parameters
can be modified at any moment and the corresponding result
will be shown momentarily. In addition, the user can design
brush stroke orientation using the control on the tab titled
“Field Design / Display” (not shown in Fig. 5). Note that the
controls for field design is a straightforward adaption from
the tensor field design system of Zhang et al. [11]. The user
can use the frame browser to jump to any frame or to the
immediate previous or next keyframe for any given object,
with either style parameters or stroke orientations. When this
happens, any selected region will remain selected. Finally, the
message box is used to provide feedback to the user with
useful information. Next, we will describe the mathematical
framework behind our design functionalities.

3.1 Style Parameter Design and Propagation

We will first discuss the design of spatially-varying style
parameters in an image or a frame of a video.
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Given an input image I and its segmentationR =
{R1,R2, ...,Rn}, our system allows a user to select a region
Ri (1 ≤ i ≤ n) and associate a set of style parametersS =
{s1,s2, ...,sm} to it. The style parameters are then assigned to
every pixel in Ri . We refer toRi as a key region. Regions
not receiving any specification are referred to asfree regions.
Our system automatically assigns values tofree regionsby
propagating the parameters from the key regions through the
following relaxation process. LetRj be a free region andp a
pixel in Rj . Also, let sk ∈ S be thek-th style parameter. Then

sk(p) = ∑
r

ωrsk(pr) (1)

wherepr ’s are neighboring pixels ofp in the image, andωr ≥ 0
is the weight of ther-th neighboring pixel satisfying∑r ωr = 1.
In our setting, we only consider four neighboring pixels and
chooseωr = 1

4. When p is on the boundary of the canvas
we adjust the weights accordingly. The collection of these
equations for pixels in the free regions gives rise to a system
of discreteLaplace equationsfor which the parameter values
of pixels in the key regions serve as boundary conditions.
The discrete Laplace equation results in a sparse linear system
which can be solved efficiently using a multi-grid Gauss-Seidel
method [24].

Given a videoV and a temporally coherent video object
segmentationR = R1,R2, ...,Rn, our system allows the user to
specify desired style parameters for a regionRi ∈R in a set
of keyframesFi, j : 1≤ j ≤ T(i) whereT(i) is the number of
keyframes for regionRi . Note thatT(i) may vary for different
regionsRi . Also, two regionsRi1 and Ri2 may not occur in
the same keyframe. The specified values are automatically
propagated to the rest of the video, i.e., to all pixels that were
not given a style. Similar to the case of images, this can be
achieved by using the Laplace equation as follows:

sk(pt) = ∑
r

ωrsk(pr)+ω f sk(F (pt))+ωbsk(F−1(pt)) (2)

whereF (pt) and F−1(pt)) are the images ofpt under the
forward and backward optical flows, respectively. The total
weight ∑r ωr + ω f + ωb = 1. However, this formulation re-
quires the equation be solved over the 3D domain ofM×N×L
whereM, N, L are the number of rows, columns, and frames,
respectively. While it is possible to solve this equation, doing
so can reduce the interactivity that we wish to provide to the
users. Instead of solving with the most general formulation
given by Equation 2, we break the problem down into two
sub-problems. First, given regionRi and a set of corresponding
keyframes, how do we estimate the style parameters of pixels
in Ri in a non-keyframe? Second, how do we estimate the
style parameters for a pixel in regionRi when there are no
keyframes, i.e.,T(i) = 0? To address these questions, we
consider the following two-step approach:

1) Given a regionRi and a frame numberj, we locate
the closest previous and next keyframes involvingRi .

If both exist, then we assign style parameters toRi

at frame j by performing an interpolation between
the style parameters of the two enveloping keyframes.
The interpolation functionf (t) can be linear or non-
linear. Non-linear interpolation schemes allow the user
to control the speed of transition between styles, which
can be used to generate the effects such as calmness
and stress. If only one exists, then we copy the style
parameters from the keyframe. In the special case that
j is a keyframe for regionRi , no action is needed. This
step ensures that the user specifications are continuously
propagated from keyframes to the entire video.

2) We resolve style parameters of regions for which no
keyframe was specified. Note that after the first step
there is at least one region in each frame that has
well defined style parameters. These values are simply
propagated to the rest of the pixels in a frame by reusing
Equation 1.

This two-step approach does not explicitly take into account
the optical flow since the relaxation is done independently
per frame. However, assuming that underlying video segmen-
tation is sufficiently temporally coherent, the aforementioned
approach approximates well the optimal solution.

3.2 Stroke Orientation Field Design and Propagation

Stroke orientation is an important parameter for providing
artistic control. Zhang et al. [11] describe a tensor field design
system for the purpose of guiding stroke orientation for image
painting. The tensor field can be created from scratch or
by modifying an existing field extracted from the image.
User specifications are converted into basis tensor fields and
summed. While this system has shown great promise in allow-
ing stroke orientation control, it is inefficient for our purposes
for two reasons. First, it is designed to work with only images
and does not generalize to video in a straightforward fashion.
Second, it assumes that the whole image is a single region
and always generates a continuous tensor field. However,
maintaining discontinuity in stroke orientations across object
boundaries is often desirable. Despite these limitations, we feel
that the idea of basis tensor fields is intuitive and effective.
Consequently, we adapt this approach to construct a tensor
field in a segmented video.

We first review relevant concepts of tensor fields and the idea
of tensor field design by combining basis tensor fields. A

second-order tensorT is a 2× 2 matrix

(
t11 t12

t21 t22

)
. T is

symmetricif t12 = t21 and tracelessif t11 + t22 = 0. In this
article, we consider second-order symmetric, traceless tensors,
referred to as tensors in the sequel, for simplicity. Such a tensor
has the following form:

T =
(

u v
v −u

)
= ρ

(
cosθ sinθ
sinθ −cosθ

)
(3)

where ρ =
√

t2
11+ t2

12 and θ = tan−1( t12
t11

). T is degenerate
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when ρ = 0. A non-degenerate tensor has two eigenvalues
±ρ and two families of mutually perpendicular eigenvectors
corresponding to the eigenvalues. Zhang et al. [11] use the
eigenvectors corresponding to the eigenvalue+ρ to guide the
stroke orientations. We will follow this convention.

A tensor fieldis a continuous tensor-valued function. Useful
tensor patterns for painterly rendering include regular patterns
in which the eigenvector directions are the same everywhere
and singular patterns such aswedges, trisectors, nodesand
centers[11]. A basis tensor field corresponds to a pattern that
can be specified by the following radial basis function:

Ti(x,y) = e−d
√

(x−xi)2+(y−yi)2
M(x−xi ,y−yi) (4)

in which d is a decay constant,(xi ,yi) is the center of the
basis function, andM(s, t) is a function describing the tensor
patterns. For example, a regular pattern can be characterized

by a constant functionM =
(

u0 v0

v0 −u0

)
while a wedge can

be characterized byM(s, t) =
(

s t
t −s

)
.

In the framework proposed in [11], a tensor field is generated
by converting each user specification of a regular or singular
pattern into a basis field and combining them. This framework
has proven both fast and intuitive. In this article, we adopt the
same framework and adapt it to segmented videos.

Given an imageI with segmentationR = R1,R2, ...,Rn, a
region Ri is a key regionwith respect to orientation if the
brush stroke orientation inRi is either specified by the user or
automatically extracted from the image such as the edge field
(Section 5). Otherwise,Ri is a free region.

For a regionRi , the brush stroke orientation field is generated
as follows:Pi(p) = wiE(p)+(1−wi)∑ j Mi, j(p), in which E is
the edge field extracted from the image,Mi, j is the basis field
corresponding to a user specification (design element [11]),
and wi ∈ [0,1] is the weight constant assigned to the region.
Notice that the region-based field design approach affords
greater freedom in generating desired stroke orientations as
the user need not be concerned with the impact of a user
specification on pixels not in the intended region. In contrast,
the single-region field design often requires the user to add
additional specifications just to ensure that boundaries between
regions are preserved by the field. Note that the center of a
design element need not be inside the intended region. This
is useful when an object is broken into several connected
components such as the sun is partially occluded by the clouds
(Fig. 8).

For regions where no user specification is given, our system
assigns them values using the same framework in which style
parameters are propagated (Section 3.1). Notice that in this
case, we do not have a scalar field that represents some style
parameter. Instead, we need to propagate directional informa-
tion into free regions. Recall that the directional information
is encoded by a tensor field, i.e., its major eigenvectors. Zhang
et al. [11] have demonstrated that such propagation should be

done by treating each of the four entries in the tensor field as
an independent variable and solve the same Laplace Equation
for each of them (Equation 1).

by solving a pair of Laplace equations similar to Equation 1.
Basically, we treat the entries in the tensor field as independent
style parameters and reuse the multi-grid solved to propagate
the tensor field to unknown regions. Note that for the type
of tensors that we are concerned with, there are only two
independent variables in Equation 3:u = ρ cosθ and v =
ρ sinθ . Consequently, the amount of time to propagate stroke
orientations is roughly twice of much for a style parameter.

Designing a tensor field for a video poses another challenge. In
this setting, a set of constraints have been specified in different
keyframes, and we wish to propagate them to the whole video.
Similar to style parameters such as stroke length and opacity,
we first propagate the basis tensor fields from keyframes to
non-keyframes for regions where some user specifications
exist. The only complication here is that we need the ability to
update the center location(xi ,yi) and pattern functionMi, j(x,y)
of a user specification (Equation 4) from a keyframe to a non-
keyframe. This is necessary as the object such as a dolphin can
jump and spin, and the user specification for one frame will
not be able to achieve its original intention without accounting
for the motion of the object. Note that we do not use optical
flow for this purpose due to the noise and degeneracy often
associated with its estimation. Instead, we obtain the center
and orientation of an object by computing its best fitting ellipse
through linear PCA analysis [25]. This allows us to track the
motion of the object including translation (center movement),
global rotation (axis rotation), and isotropic and anisotropic
global scalings. We can now go through a non-keyframe and
compute the tensor field values for pixels inkey regionsusing
updated center location and pattern functions. Next, values
from the key regions in the frame are propagatedfree regions
by the aforementioned tensor-valued relaxation process.

4 MULTI-STYLE PAINTERLY RENDERING

Once all style parameters and stroke orientations have been
populated to each pixel in every frame, we enter the third stage
of our pipeline in which the video is processed according to
the style parameters. We provide two algorithms.

4.1 Explicit Stroke Method

The first one is a straightforward adaptation from the renderer
of Hertzmann [13] and Hays and Essa [6]. For images, this
approach first places the brush stroke seeds (points) on a
jittered 2D grid. Then every seed is traced along a directional
field, which results in astreamline. The streamline is then
fattened into a curved region (stroke) by a uniformly defined
stroke width. Once canvas has been populated with these
strokes, it is compared to a blurred version of the input image.
Additional brush strokes with a smaller brush stroke width
will be placed where the difference between the painting and
the blurred image is larger than some threshold. This process
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Fig. 6. An example workflow of our system: given the input image of an eye, the initial seeds are assembled in an
image (a) which is advected according to the edge field shown in (b) to obtain the first-layer painting (c). Additional
layers (d, e) are generated in a similar fashion, which are then combined with the first layer to form the final multi-style
rendering (f). The eye is rendered in a three-layer Impressionist style, the eyebrow in a one-layer van Gogh style, and
the face in a one-layer Pointillist style.

then repeats. The resulting images can be further enhanced
by embossing stroke textures to achieve a 3D effect [5]. It is
straightforward to use this approach to support varying style
parameters. The properties of a stroke are determined by the
pixel for which it is centered. This way we do not have
to recompute and re-evaluate the strokes during streamline
tracing. Fig. 6 illustrates this process with the painting of
an eye image using varying style parameters. For videos, we
follow the approach of Hays and Essa [6] by using the optical
flow to move the centers of strokes from the previous frame
and by adding and removing strokes when necessary.

There are a number of complications. For example, the number
of layers, an integer, is a style parameter in our system that
can be propagated and interpolated. Yet, after the relaxation
process this number must become a rational number. To
overcome this problem, we snap the number of layers to the
nearest integer while maintaining a continuously transitioned
area error threshold. For a style that requires only one layer, we
will set the corresponding area error threshold to the maximum
number, which means no upper layer strokes are needed. Then,
gradually lowering this number as one travels into multi-layer
regions in which the area threshold is also lower, the number
of upper layer strokes gradually increases.

Another problem is the brush stroke density, which leads to a
strong sense of discontinuity. We do not address the density
problem as it requires the handling of discontinuity in the
number of strokes placed over the canvas. Instead, we assume

a constant density for all styles. While this seems overly
constraining, in practice we have found that the variety of
styles our approach can simulate is not significantly affected
by this limitation.

We have observed that this rendering technique seems to have
a strong emphasis on individual strokes, especially for van
Gogh and Impressionist styles. While this may be desired for
image rendering, we have noticed much flickering due to the
relative movement and visibility changes among overlapping
strokes. Though we can use in-stroke opacity textures, it
does not alleviate the problem due to the relatively small
size of the strokes. To deal with this, we have developed
a second renderer which we refer to as animplicit stroke
method. For convenience, we will also refer to the renderer
of Hertzmann [13] and Hays and Essa [6] as anexplicit stroke
method.

4.2 Implicit Stroke Method

Our implicit stroke method differs from the explicit stroke
method mainly in one regard: stroke generation. To generate
brush strokes on a layer, we first compute a set of seeds each
of which is the starting point of a brush stroke on this layer.
Next, every seed is drawn onto a temporary canvasC0 as a
colored disk where the color is from the pixel in the inputI
or a blurred version of it. Finally, we advect the canvas as an
image according to the stroke orientation field. The advection



IEEE TVCG, VOL. ?,NO. ?, AUGUST 200? 9

(a) (b) (c)

Fig. 7. This figure illustrates our process of advecting a
source image (a) in the direction of an underlying vector
field V. The image in (b) is obtained by warping (a) based
on V and composed with (a). Warping (b) and composing
it with (a) results in (c).

is performed by iteratively warping the current canvasCi and
compositing the result with the original canvasC0 to obtain
the new imageCi+1. Fig. 7 demonstrates this process. When
composing the images at the pixel level, we face a challenge
that the ID of the strokes are not well maintained during
the warping of the canvas (as an image). Consequently, this
can lead to inconsistent composition of pixels in overlapping
strokes which in turn leads to color bleeding between them. To
overcome this problem, we consider the following composite
function f for two imagesA andB:

f (p) =





A(p) bB(p) = 1
B(p) bA(p) = 1
min(A(p),B(p)) bA(p) = bB(p) = 0

(5)

wherebR(p) is a binary-valued function that takes a value of
0 if the pixel p is covered by a stroke in imageR. Otherwise,
it is given a value of1. Basically, if p is not covered by any
brush strokes in one of the images in composition, we use the
color of p from the other image. This ensures consistent colors
within a single stroke as it is being advected over the canvas.
Note that this includes the case whenbA(p) = bB(p) = 1, i.e.,
the pixel is not covered by brush strokes in either image. In
this case, the pixel belongs to background in both images and
will remain so after composition.

When a pixel is covered in both images, i.e., there are at least
two brush strokes that cover it, we choose the color which is
smaller according to a total order on the space of colors. Given
two colorsC1(R1,G1,B1) andC2(R2,G2,B2), we chooseC1 if

1) R2
1 +G2

1 +B2
1 < R2

2 +G2
2 +B2

2, or
2) R2

1 +G2
1 +B2

1 = R2
2 +G2

2 +B2
2 andG1 < G2, or

3) R2
1+G2

1+B2
1 = R2

2+G2
2+B2

2 andG1 = G2 andR1 < R2,
or

4) R2
1 +G2

1 +B2
1 = R2

2 +G2
2 +B2

2 andG1 = G2 andR1 = R2

andB1 < B2

Otherwise, we chooseC2. In practice, we have found less than
1% of total pixels ever require the second test. Notice that
any total ordering can reduce bleeding between neighboring
strokes. Finding the optimal ordering that achieves the best
artistic looks is beyond the scope of this article and left for
future exploration. The idea of a total color ordering has been
used in adding security to images [26]. Notice our definition
is slightly different from theirs.

While the implicit stroke method can also be accomplished
through techniques such asline integral convolution [19]
(LIC), we choose to adapt the technique of texture-based
tensor field visualization technique of Zhang et al. [11],
which is based on theimage-based flow visualization(IBFV)
technique of van Wijk [21].

The explicit and implicit methods can both support interactive
design, with the explicit method being slightly faster (under
0.5 second per frame for one layer). On the other hand, the
implicit method appears to focus less on individual strokes
and thus is less sensitive to sudden change in strokes and
more coherent in the video setting. All the example videos in
this article were generated using the implicit method.

5 VIDEO ANALYSIS AND SEGMENTATION

In this section we describe how we compute the optical flow
and perform video segmentation. None of this work is novel
as we reuse existing methods.

Edge Field and Optical Flow Estimation: An automatic
video painting algorithm typically extracts the following in-
formation from the video: a directional field that orients
brush strokes in each frame, and an optical flow field that
moves brush strokes to follow the underlying objects that they
depict [7], [6].

Our estimation of the directional field is based on [13], [11].
First, we estimate the image gradient vector fieldG by using
a Sobel filter. Next, we generate a second-order symmetric
tensor field whose minor eigenvectors align with the image
gradient vectors. The major eigenvectors of this tensor field
are the directional field. Finally, we perform tensor field
smoothing [11] in both space and time. This leads to more
spatiotemporally coherent stroke orientations. Note that this
directional field will be modified during the second phase
of our framework: style and orientation design (Section 3.2).
Moreover, it can be computed using other edge detection
filters.

Optical flow estimation is done using the Lucas-Kanade
method [27]. In practice, we compute both the forward and
backward optical flow fields which allows us to transfer
user-specification in both style and orientation design from
keyframes to other frames (Section 3).

Spatiotemporal Video Segmentation:Obtaining spatiotem-
poral video segmentation is necessary for any region-based
video processing operations, such as video matting [28],
rotoscoping [29], and video tooning [9]. In our framework,
it enables region-based style and orientation design. There
are several approaches to achieving a spatiotemporal video
segmentation [30], [31], [10], [32], [9]. For our purposes,
any of these spatiotemporal video segmentation methods can
be used. Specifically, we use the method presented in [12],
because it does not require any models of, or prior knowledge
about objects and their motions in the scene. Also, it is rela-
tively fast and user friendly (see more detailed specifications
in Section 6).
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We wish to emphasize that it is not the goal of this article
to develop a new video segmentation method. Therefore,
we will below only briefly review the segmentation method
of [12] that we use in this paper, for completeness. The
algorithm initially performs frame-by-frame 2D segmentation,
and then tracks similar regions across the frames, such that
the resulting tracks are locally smooth. Tracking is conducted
by many-to-many matching of groups of spatially adjacent
regions in one frame with groups of adjacent regions in the
next frame. This partitions the spatiotemporal video volume
into tubes that are coherent in space and time. Since region
boundaries coincide with object boundaries, a cross section of
the tubes and any video frame delineates all objects present
in the frame. The extensive experimental evaluation of this
method, presented in [12], suggests that the proposed approach
compares favorably with the sate of the art.

6 RESULTS

We have applied our system to a large number of example
images or videos. Figs. 2, 3, and 4 provide examples in
which an input image is processed using multi-style rendering
to achieve various artistic goals. Next, we show frames from
processed videos.

As the first example we show the power of spatially-varying
styles with a video of a blooming flower that was segmented
into three regions: stamens, petals, and leaves (Fig. 1 (b)). The
stamens contain the highest-frequency details and the petals
have strongest anisotropy. There is also motion in the leaves
due to the movement of highlight (upper-right). Rendering
the video using the same style parameters such as van Gogh
(Fig. 1 (c)) often cannot adequately maintain the contrast
between these characteristics. Using spatially-varying style
parameters, the artist made the following style assignments:
stamens (a Pointillist style), petals (van Gogh style), and leaves
(a Pointillist style with a diameter twice as large as that for
the stamens) (Fig. 1 (d)). With this setting, the detail in the
stamens is maintained without sacrificing the contrast between
the three regions.

The second example video shows a setting sun moving behind
clouds (Fig. 8 (left)). The artist increased the contrast between
the clouds and sun by gradually shifting the hue of the
background (clouds and sky) from yellow to purplish blue
through controlled color modification and by shifting the
saturation of the strokes representing the sun toward pure
colors (Fig. 8 (right)). This allows stroke movement in the
dark sky region to become more visible, thus shifting the focus
from the sun to the sky and clouds to reinforce that the night is
coming. The design was inspired by van Gogh’sStarry Night.

The third example highlights the benefits of time-varying
styles in achieving an effect similar to a rack focus used in
cinema. In a rack focus the lens focus is changed during a shot
so that one object remains in focus while the other goes out
of focus. This is used to direct viewer attention to different
regions of the frame. In our example we are using variation

in Pointillist brush size as a means of emphasizing or de-
emphasizing regions of an image. The video shows a woman,
her child, and their interaction. The video is segmented into
the woman, her hat and hair, the child, her hair, and the
background. There are a number of motions in the video
such as the woman smiling, pointing, and kissing the child as
well as the child turning her head and smiling. Fig. 9 shows
three frames from the output video in which the artist initially
assigns a style to both faces with high details. Then the style is
gradually varied to a low-detailed one for the child to reduce
the attention on her as the mother points, turns her head, and
smiles (A frame in which this has occurred is shown in Fig. 9
(left)). Later the style for the child transitions back to the
original high-detail style as her mother kisses her. Meanwhile
the style for the mother is switched to the same low-detail one
used on the girl (Fig. 9 (middle)). Towards the end, the styles
for both women are returned to the same original high-detailed
one Fig. 9 (right). Notice the rack focus effect generated by
varying style parameters over time.

In the next example we show temporal transition of stress to
calmness with a video showing a dolphin repeatedly jumping
out of water (Fig. 10). Starting with a sense of stress in which
the artist shifts the stroke hues. This effect then smoothly
transitions into a sense of calmness as the degree of color
shifts is reduced.

In the last example we demonstrate the power of combining
varying style parameters with stroke orientation design with
the dolphin video. In Fig. 11 (left) the frame was rendered
using the same style parameters for every object in the scene:
the dolphin, the water, the sky, a mountain, and a bridge. The
artist then assigned different style parameters to these objects
(Fig. 11 (middle)) to add more details to the dolphin. The
interaction between the dolphin and the water was further
enhanced through stroke orientation design to create the il-
lusion of ripples (Fig. 11 (right): where the dolphin touches
the water).

The rendered clips corresponding to these images can be found
in the supplementary video1. The runtime of the employed
video segmentation method [12] depends on the number of
objects of interest and the frame size. For the dolphin video, it
took about30 seconds to process100frames without any user
intervention. However, this process in slowed down by changes
that the user may want to make in every frame. The design of
style parameters and orientation fields depends on the number
of objects, the number of keyframes, and the number of design
changes to be made. For the flower video, where there are
three regions, five keyframes, and the total design time was
230 seconds for311 frames. Please note that the parameters
for the supplementary video were designed by the artist on our
team, who was a novice to our system and needed only a small
period of time to be productive with our system - the period
that is comparable to learning to use any other commercially
available painterly rendering system. The design process is
made easier with our system by allowing the user to start from

1. http://web.engr.orst.edu/∼zhange/multistylepainting.html
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Fig. 8. Two frames from a video of sunset. Notice the change of hue in the background color allows the additional
focus on the sky and clouds.

Fig. 9. Rack focus is shown on three frames from a video with space-time-varying stroke diameters: (left: Frame 161)
both women in focus, (middle: Frame 429) mother in focus and girl out of focus, and (right: Frame 600) mother out of
focus and girl coming into focus.

some existing styles and make a small number of adjustments.
The orientation field design for the dolphin took approximately
ten minutes. Furthermore, the rendering time for these videos
is on the average of2.5 seconds/frame. The segmentation was
performed on a computer of1GB RAM and a1.3GHz CPU.
The design and rendering was done on a computer that has
an NVIDIA 8800GTX card with512MB video memory and
Pentium IV with a speed of3.80 GHZ.

7 CONCLUSION

In this article, we describe a system for the design and
painterly rendering of video with style parameters varying in
space and time. Our system enables a wide range of artistic
controls including brush stroke colors, widths, lengths, and
opacity as well as brush stroke orientations. To our knowl-
edge, the design of stroke orientation field in a temporally
coherent fashion is the first of this kind. Our design tool is
both interactive and intuitive. It can automatically propagate
rendering parameters to the video thus reducing the amount of
labor work. We provide two painterly renderers, explicit and
implicit methods, by adapting existing painting methods and
by applying flow visualization techniques, respectively. The
implicit stroke method requires less focus on individual strokes

and is thus less sensitive to sudden changes in stroke visibility.
We have demonstrated the effectiveness of our system with
several examples.

The efficiency of our system greatly depends on the quality
of the employed segmentation method. For example, when
there is semi-transparent object such as water in the dolphin
video, we have noticed that it is difficult to always obtain a
clean segmentation (See Fig. 12). As the dolphin jumps in
and out of water, it is not always clear how to classify pixels
that represent the part of dolphin underwater in a temporally
coherent fashion. The vision researchers on this team plan to
further investigate the issue as part of their future work.

Maintaining temporal coherence is still a great challenge. This
is perhaps the most clear in the flower example, where there is
stronger flickering effect toward the end when the flower has
fully bloomed. Fig. 13 illustrates with three frames. Notice that
there is little difference between the first frame in the sequence
(left) and the immediate next frame (middle). However, when
comparing the middle frame with the one in the right that is
10 frames after, it is quite clear that the order of neighboring
strokes have changed in many part of the image. The relatively
sudden visibility change between neighboring strokes is the
source of the problem and requires further investigation. On
the other hand, we note that the orientations of these strokes
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Fig. 10. Using space-time-varying style parameters we achieve a transition of a stress effect (left) to a calm effect
(right). In (middle) the transition is shown.

Fig. 11. Corresponding frames from three different renderings of a video of a swimming dolphin: (left) single-style,
(middle) multiple styles, and (right) same as middle with additional design of stroke orientations. Notice that with control
over stroke orientations (right), an illusion of rippling effect was added while the dolphin comes out of the water.

do not change significantly over time, indicating temporal
coherence of our tensor fields.

There are a number of future research avenues for this work.
First, we plan to investigate a more rigorous handling of
time-dependent tensor field design. In particular, we wish to
understand how to improve the quality of tensor field with
explicit control over its smoothness and topology, such as
singularities and bifurcations. We also plan to study how to
edit the optical flow field using vector field design techniques.
Second, the idea of using color orders to sort brush strokes
is interesting, and we plan to pursue this direction in the
near future. Finally, we are interested in means to propagate
style parameters and orientation fields directly in the spacetime
domain rather than the two-step approach we use in this paper.
We believe that solving in 3D can lead to more smooth results.
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