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Abstract—This paper presents a new computational framework for detecting and segmenting object occurrences in images. We

combine Hough forest (HF) and conditional random field (CRF) into HFRF to assign labels of object classes to image regions. HF

captures intrinsic and contextual properties of objects. CRF then fuses the labeling hypotheses generated by HF for identifying every

object occurrence. Interaction between HF and CRF happens in HFRF inference, which uses the Metropolis-Hastings algorithm. The

Metropolis-Hastings reversible jumps depend on two ratios of proposal and posterior distributions. Instead of estimating four

distributions, we directly compute the two ratios using HF. In leaf nodes, HF records class histograms of training examples and

information about their configurations. This evidence is used in inference for nonparametric estimation of the two distribution ratios.

Our empirical evaluation on benchmark datasets demonstrates higher average precision rates of object detection, smaller object

segmentation error, and faster convergence rates of our inference, relative to the state of the art. The paper also presents theoretical

error bounds of HF and HFRF applied to a two-class object detection and segmentation.

Index Terms—Object recognition and segmentation, conditional random field, Hough forest, Metropolis-Hastings algorithm

Ç

1 INTRODUCTION

THIS paper presents a new computational framework,
called Hough forest random field (HFRF). HFRF

provides a principled way to jointly reason about multiple,
statistically dependent random variables and their attri-
butes. We derive theoretical performance bounds of HFRF,
and demonstrate its utility on a challenging task of conjoint
object recognition and segmentation.

Identifying subimage ownership among occurrences of
distinct object classes in an image is one of the funda-
mental problems in computer vision [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11]. Our approach builds on the
following common recognition strategies: 1) Objects of
interest in the scene occupy image regions, characterized
by class-specific appearance, shape, and spatial-layout
properties; 2) neighboring image parts are likely to be
correlated since they may be occupied by the same object
or distinct objects that typically co-occur (e.g., cars and
road); and 3) recognized objects provide contextual cues
for identifying other objects, their scale, and spatial
configuration in the scene. We formalize steps 1-3 by
using image regions as basic features and assigning labels
of object classes to these regions in the MAP inference of a
graphical model. The model is aimed at capturing
statistical intrinsic and contextual properties of target
object classes in terms of region appearance, shape,
spatial-layout, and co-occurrence properties.

Specifically, we use Conditional Random Field (CRF)

[12]—one of the most popular graphical models for object

recognition and segmentation [2], [3], [4], [5], [6], [7], [8].

A CRF defines a posterior distribution of hidden random

variables YYYY (e.g., object-class labels), given observed

image features XXXX, in a factored form: pðYYYY jXXXX; ����Þ ¼ 1
Zð����Þ

expð�
P

c  cðYYYY c;XXXX; ����ÞÞ. Observable image features, XXXX,

could be pixels [2], [3], image patches [4], [5], or image

regions [6], [7], [8]. Each potential function,  c, accounts for

statistical dependencies of a subset of hidden random

variables, YYYY c � YYYY , conditioned on observables, XXXX, and is

parameterized by model parameters ����. The potentials are

often defined as linear functions of parameters,

 cðYYYY c;XXXX; ����Þ ¼ ����T�c, where �c is a descriptor vector

associated with image features X [2], [3], [4]. Learning ���� is

hard because computation of the partition function Zð����Þ is

intractable for most graphs (except for chains and trees).

Inference of this model amounts to an energy minimization

problem, and is typically posed as the joint MAP assignment

that minimizes the energy
P

c  cðYYYY c;XXXX; ����Þ. Such an inference

is also intractable for general graphs. This requires con-

sidering approximate algorithms, e.g., graph cut and loopy

belief propagation (LBP). The effect of these approximations

on the original semantics of CRF is poorly understood.

We address intractable CRF inference with the Metropo-

lis-Hastings (MH) algorithm [13]. MH draws samples YYYY ðtÞ

from the CRF’s posterior, pðYYYY jXXXXÞ, and thus generates a

Markov chain in which state YYYY ðtþ1Þ depends only on the

previous state YYYY ðtÞ. The jumps between the states are

reversible, and governed by a proposal distribution

qðYYYY ðtÞ ! YYYY ðtþ1ÞÞ. The proposal is accepted if the acceptance

rate, �, drawn from the uniform distribution, Uð0; 1Þ,
satisfies �<minf1; qðYYYY

ðtþ1Þ!YYYY ðtÞÞ
qðYYYY ðtÞ!YYYY ðtþ1ÞÞ

pðYYYY ðtþ1ÞjXXXXÞ
pðYYYY ðtÞjXXXXÞ g. As can be seen,

MH is regulated by two ratios of the proposal and posterior
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distributions. Note that the partition function Z cancels out

in these ratios. Consequently, MH does not require

computation of Z, thereby addressing the key bottleneck of

CRF learning and inference.
However, convergence of MH typically requires expo-

nential time (except for chains models), which hinders the
use of MH in many applications. The literature abounds
with diverse approaches to improving the MH convergence
rate. For example, the Swendsen-Wang algorithm has been
successfully used in computer vision [14]. This and related
approaches are based on proposing more efficient rever-
sible jumps across the states. But they still require
estimation of the proposal and posterior distributions in
each proposed state for computing the acceptance rate �.

In this paper, we improve the convergence rate of MH by
directly estimating the two ratios of the proposal and posterior
distributions instead of computing each individual distribu-
tion. Related work usually estimates the four distributions:
qðYYYY ðtþ1Þ!YYYY ðtÞÞ, qðYYYY ðtÞ!YYYY ðtþ1ÞÞ, pðYYYY ðtþ1ÞjXXXXÞ, and pðYYYY ðtÞjXXXXÞ
[14]. In contrast, we directly estimate the two ratios,

qrðtÞ ¼
q
�
YYYY ðtþ1Þ ! YYYY ðtÞ

�
q
�
YYYY ðtÞ ! YYYY ðtþ1Þ� and prðtÞ ¼

p
�
YYYY ðtþ1ÞjXXXX

�
p
�
YYYY ðtÞjXXXX

� ; ð1Þ

in a discriminative manner. The Hough forest (HF) [15] is
used to estimate qrðtÞ and prðtÞ. The HF is trained such that
the estimated ratios take high values only over a few states,
while for the most of the state space they are close to zero.
Consequently, the resulting �s are not sufficiently large for
MH to visit most of the proposed states. This improves the
convergence rate because MH does not waste computa-
tional resources to visit many states.

Given a training set of labeled image regions, HF grows
many decision trees. We view the trees as a way of
discriminatively structuring evidence about: 1) the class
distributions in the training set, and 2) spatial relations of
training image regions relative to manually annotated
bounding boxes (BBs) of objects in the training images. In
particular, image regions (i.e., their descriptors) are
“dropped” down every decision tree of HF until they reach
leaf nodes. Each leaf of each tree stores: 1) a histogram of
the number of training image regions from each class that
reached that leaf, and 2) the positions and scales of labeled
object bounding boxes that overlap with image regions that
reached that leaf. When a new image is encountered, its
regions are also “dropped” down every decision tree in the
forest until they reach leaf nodes. We use the class
histograms and spatial layouts of object bounding boxes
of training examples, stored in these leaves, for robust
estimation of qrðtÞ and prðtÞ.

HF represents an integral part of CRF—i.e., HF is not
used as a plug-in to compute the potential functions,
 cðYYYY c;XXXX; ����Þ ¼ ����T�c, of a CRF. Instead, these two modeling
paradigms jointly form a unified object representation
termed HFRF.

Contributions:

. We combine HF and CRF into a new computational
framework HFRF. HFRF is used for object recogni-
tion and segmentation in challenging images with
occlusions and varying numbers and scales of
object occurrences.

. Learning is efficiently conducted by HF which
collects the class histograms and spatial information
about object bounding boxes in training images. This
training evidence is then used for estimation of qrðtÞ

and prðtÞ, required by MH-based inference of HFRF.
. Our evaluation on benchmark datasets demonstrates

higher recall and precision of object detection,
smaller object segmentation error, and faster con-
vergence rates of our inference relative to the state of
the art.

. For a two-class object recognition problem, we
derive theoretical error bounds of estimating qrðtÞ

and prðtÞ, as well as theoretical performance bounds
of HFRF.

Paper organization: Section 2 reviews prior work.
Sections 3, 4, and 5 specify the CRF model, its MH-based
inference, and HF-based learning. Section 7 presents our
experimental evaluation. A theoretical analysis of HFRF is
given in Section 8. Our concluding remarks are given in
Section 9.

2 LITERATURE REVIEW

This section reviews prior work on random fields and
random forests, and points out our contributions.

Random fields have been used with great success for
object recognition and segmentation [2], [3], [16]. These
problems can be cast as an image labeling problem, where
the goal is to predict class labels, Y, of a given set of image
features X (e.g., regions). Random fields factorize the joint
distribution pðX;YÞ or the posterior distribution pðYjXÞ
into a product of local interactions. Conditional random
fields [2], [12] have become popular for their improved
ability to capture the relationships between object-class
labels and the image by conditioning subsets of hidden
random variables of the model on the observables.

Inference of CRF is typically formulated as the energy
minimization problem, YYYY � ¼ arg minYYYY

P
c  cðYYYY c;XXXX; ����Þ [17],

[18], [19], [20], [21]. In a special case, e.g., for trees [22], the
energy is submodular, and thus its minimization can be
solved efficiently using linear programming relaxation
methods, e.g., belief propagation [23]. Graph-cut algorithms
have also been demonstrated as efficient in finding global
optima for submodular energies [24], [25]. In general, CRF
inference is intractable, and requires approximate algorithms.
Existing approximate algorithms can be broadly grouped as

1. graph-cuts methods [3], [26], [27],
2. message-passing algorithms based on cycle inequal-

ities [28], [29], [30] or LBP [4], [23], [31],
3. variational methods [32],
4. dual decomposition algorithms [33], [34], [35], and
5. approaches based on the roof duality relaxation

[25], [36].

Learning CRF parameters, ����, typically uses different
algorithms from those for inference [27], [37], [38], [39].
Recently, the structural SVM (i.e., large margin) formula-
tions of learning CRF parameters has shown great promise
in object recognition [40].

In this work, we depart from the standard linearization
of the potential functions,  cðYYYY c;XXXX; ����Þ ¼ ����T�c, and also
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unify CRF inference and learning within the same frame-
work. The unification is based on HF. For the CRF
inference, we use the MH algorithm, whose convergence
rate is improved by directly computing the two ratios of the
proposal and posterior distributions over states in the space
of MAP solutions. Our contribution is that we avoid the
usual commitment of prior work to estimating the linear
potential functions in the nominator and denominator of
the ratio

Q
c ����

T�ðtþ1Þ
cQ

c ����
T�ðtÞc

:

Instead, we use HF for directly estimating the two ratios
in a nonparametric manner.

Random Forests have been used for: 1) discriminative
learning of visual codewords for the Bag-of-Words model of
objects [41], [42], [43] and images [44], 2) segmenting and
grouping all neighboring instances of the same class [45],
and 3) segmenting every object occurrence [16]. Decision
trees have also been employed for estimating pairwise
potential functions of a CRF [46].

Our work is related to recent work on Hough forests for
object detection and localization [15]. Leaf nodes of HF
collect the information about the locations and sizes of object
bounding boxes in training images. This information,
however, is used to predict a spatial distribution of bounding
boxes in a test image. We instead use this information to
predict the two distribution ratios. Evidence trees are also
used for image classification [47], but only as a first stage of a
stacked-classifier architecture that replaces the standard
majority voting of Random Forest.

In our initial work [48], we fuse Random Forest and CRF
into a Random-Forest-Random-Field (RFRF) model for
labeling every pixel in the image with an appropriate object
class. RFRF, however, cannot distinguish between neigh-
boring, distinct instances of the same object class, but
simply clumps together all pixels with the same label. The
work presented in this paper advances our initial approach
by enabling segmentation of individual objects. Instead of
Random Forest used in [48], we employ HF, which
additionally captures the spatial layout properties of image
regions occupied by target objects.

3 CRF MODEL

Our CRF is defined over a set of multiscale image regions.
Regions are used as image features because they are
dimensionally matched with 2D object occurrences in the
image and thus facilitate modeling of various perceptual-
organization and contextual cues (e.g., continuation, smooth-
ness, containment, and adjacency) that are often used in
recognition [6], [7], [8], [9], [10], [11]. Access to regions is
provided by the state-of-the-art, multiscale segmentation
algorithm of [49]. Since the right scale at which objects occur
is unknown, we use all regions from all scales.

The extracted regions are organized in a graph,
G ¼ ðV ;E;XXXXÞ, where V and E are sets of nodes and edges,
and XXXX denotes their descriptors. The nodes i ¼ 1; . . . ; jV j
correspond to multiscale segments, and edges ði; jÞ 2 E
capture their spatial relations. Each node i is characterized

by a d-dimensional descriptor vector, xxxxi 2 IRd, whose
elements describe photometric and geometric properties
of the corresponding image region, including color, shape,
filter responses. The set of all region descriptors is
XXXX ¼ fxxxxi : i ¼ 1; . . .; jV jg. In addition, each edge ði; jÞ 2 E is
characterized by a descriptor indicating the spatial relation-
ship type between i and j. With a slight abuse of notation, we
denote this edge descriptor as ðxxxxi; xxxxjÞ. A pair of regions can
have one of the following relationships: 1) part of,
2) touching, and 3) far. Since the segmentation algorithm of
[49] is strictly hierarchical, region i is a descendent of region j
if i is fully embedded as subregion within ancestor j. Two
regions i and j touch if they share a boundary part. Finally,
if i and j are not in the hierarchical and touch relationships,
then they are declared as far.

CRF is defined as a graphical model over G, and is
illustrated in Fig. 1. Our CRF defines a posterior distribu-
tion of two types of hidden random variables, MMMM ¼ fYYYY ;OOOOg,
given observables XXXX. YYYY ¼ fyig represents a set of hidden
random variables associated with nodes of G, indicating the
class label of the corresponding region, yi 2 f1; . . . ; Kg,
where K denotes the total number of object classes. Also,
OOOO ¼ foijg represents a set of binary hidden random
variables associated with edges of G, indicating whether
two regions belong to the same object. If oij ¼ 1, then
regions i and j are occupied by the same object; otherwise,
oij ¼ 0 means i and j belong to two distinct objects.

Let pi and pij denote posterior distributions over nodes
and pairs of nodes in CRF, defined as

pi ¼ pðyijxxxxiÞ; ð2Þ

pij ¼ pðyi; yjjxxxxi; xxxxjÞpðoijjyi; yj; xxxxi; xxxxjÞ: ð3Þ

Then, the posterior of CRF is defined as

pðMMMMjGÞ ¼ pðYYYY ;OOOOjGÞ /
Q

i2V pi
Q
ði;jÞ2E pij ; ð4Þ

where / denotes proportionality to a normalizing constant.
Object recognition and segmentation are formulated as

multicoloring of CRF using the joint MAP assignment:

MMMM� ¼ ðYYYY �; OOOO�Þ ¼ arg max
YYYY ;OOOO

pðYYYY ;OOOOjGÞ; ð5Þ

as further explained in the next section.

4 CRF INFERENCE

For CRF inference, we use the Swendsen-Wang cut
algorithm (SW-cut), presented in [14]. SW-cut iterates the
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Fig. 1. Our CRF over image regions. Observable region descriptors
xxxxi; xxxxj and their hidden class labels yi; yj represent the nodes of CRF.
Node oij represents the binary indicator if regions i and j belong to the
same object. Every region pair is connected in the model (dashed lines),
but we show only one pair, for clarity.



Metropolis-Hastings reversible jumps. It iteratively searches

for the MAP inference by jointly coloring groups of image

regions and cutting their statistical dependencies in every

iteration. Unlike [14], the edges in our graphical model are

labeled, which helps guide the MH jumps toward the MAP

solution by taking into account object instance labeling. This

leads to an improved convergence rate of MH, as shown in

our results. In this section, we briefly review SW-cut, and

illustrate its iterations on a graph whose nodes represent

object class labels yi of CRF.
SW-cut iterates the following two steps: 1) Graph

Clustering probabilistically samples edges in a graph of

image regions based on pðyi; yjjxxxxi; xxxxjÞ and probabilistically

samples their labels oij 2 f0; 1g based on pðoijjyi; yj; xxxxi; xxxxjÞ.
This forms connected components, CCs. A CC is a subset of

neighboring nodes (i.e., image regions) with the same color

connected by edges with oij ¼ 1. That is, a CC represents an

instance of one of the object classes. If edge ði; jÞ is not

sampled, we say that it has been probabilistically “cut.” The

cut is a set of edges that would have linked CC to external

nodes. 2) Graph Relabeling first randomly selects one of the

CC’s obtained in Graph Clustering, then flips the color of all

nodes in that CC, randomly selecting one of the K object

classes, and, finally, cuts the CC’s edges to the rest of the

graph nodes having that same color. A particular label

assignment to both edges, in Graph Clustering, and nodes,

in Graph Relabeling, jointly define one state in a space of

inference solutions. In each iteration, SW-cut probabilisti-

cally decides whether to accept the new state or to keep the

previous state. Unlike other MCMC methods that consider

one node at a time (e.g., Gibbs sampler), SW-cut operates on

a number of nodes and edges at once. Consequently,

SW-cut converges faster and enables inference on relatively

large graphs. Fig. 2 shows an illustrative example.
In the following, we define the acceptance rate of MH

jumps. Let qðA! BÞ be the proposal probability for moving

from state A to B, and let qðB! AÞ denote the converse.

qðA! BÞ is defined as

qðA!BÞ ¼ qðCCjAÞqðBðCCÞjCC;AÞ; ð6Þ

where qðCCjAÞ denotes the probability of generating CC at

state A, and qðBðCCÞjCC;AÞ denotes the probability of re-

coloring CC to state B when CC is obtained in state A. From

(6), the acceptance rate, �ðA!BÞ, of the MH move from A

to B is defined as

�ðA! BÞ ¼ min 1;
qðB! AÞpðMMMM ¼ BjGÞ
qðA! BÞpðMMMM ¼ AjGÞ

� �
: ð7Þ

Note that complexity of computing (7) is relatively low. This
is because computing the ratio qrðA! BÞ ¼ qðB!AÞ

qðA!BÞ in (7)
involves only those edges that are “cut” aroundCC in statesA
andB—not all edges. Also, computing the ratio prðA! BÞ ¼
pðMMMM¼BjGÞ
pðMMMM¼AjGÞ accounts only for recolored nodes in CC and their
adjacent edges—not the entire graph G. All the other
probabilities have not changed from state A to state B, so
they will be canceled out in the ratio. From (6), the ratio
qðAðCCÞjCC;BÞ
qðBðCCÞjCC;AÞ in qrðA! BÞ can be canceled out because CCs

are assigned colors with the uniform distribution. Thus,
from (4), we have

qrðA! BÞ ¼
Q
ði;jÞ2CutB

�
1�pBij

�
Q
ði;jÞ2CutA

�
1�pAij

� ; ð8Þ

prðA! BÞ ¼
Y
i2CC

pBi
pAi

Y
j2NðiÞ

pBij

pAij
; ð9Þ

where CutA and CutB denote the sets of “cut” edges in
states A and B, and NðiÞ is the set of neighbors of node i,
NðiÞ ¼ fj : j 2 V ; ði; jÞ 2 Eg. Fig. 2c shows an example of
how to compute qrAB and prAB.

With probability �ðA! BÞ, the algorithm will move to
state B. Otherwise, it remains in state A and tries to
probabilistically select a different CC or to propose a
different coloring scheme for the same CC.

As shown in [14], SW-cut is relatively insensitive to
different initializations. In our experiments, we initialize the
labels of all nodes and edges using the Bayesian decision on
the corresponding posteriors pi and pij. As mentioned in
Section 1, the ratios in (8) and (9) are computed using HF,
whose learning is explained in the following section.

5 LEARNING

This section presents our training setting, explains how to
learn HF from a set of labeled image regions, and specifies
three types of statistics stored in HF that are used for
estimating the ratios, given by (8) and (9).

5.1 Training Setting

We assume that training images are manually labeled with
bounding boxes around target object occurrences, and that
the boxes are tagged with the appropriate object class label.
Thus, our training dataset consists of m labeled regions
from training images, fðxxxxi; yi; bbbbiÞ : i ¼ 1; . . . ;mg.
xxxxi is a d-dimensional descriptor, xxxxi 2 IRd, encoding the

photometric and geometric properties of region i.
yi is the object class label associated with region i. If i

falls within an object bounding box labeled with class
y 2 f1; 2; . . . ; Kg, it receives label y, i.e., yi ¼ y. If i is covered
by a number of object bounding boxes of different classes,
then i is added to the training set multiple times to account
for all distinct class labels it covers.
bbbbi represents the information about the object bounding

box which covers region i. Specifically, bbbbi is a vector whose
elements include: lengths of two sides of the bounding box
ðai; biÞ, and the offset vector of i’s centroid from the
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Fig. 2. One iteration of SW-cut illustrated on an example graph of image
regions. The figure shows only yi nodes of CRF, for clarity. (a) Initial
state A represents the configuration of connected components, CCs, in
the graph after edges have been probabilistically sampled (bold) or “cut”
(dashed). SW-cut randomly selects CC ¼ f2; 5g. (b) The coloring of all
nodes in the CC is randomly changed, resulting in new state B. Now, the
CC has the same label as nodes 1 and 4, which results in cutting edges
ð1; 2Þ and ð2; 4Þ. (c) The proposed and posterior distributions of states A
and B. Best viewed in color.



bounding-box center, �ie
�
ffiffiffiffiffi
�1
p

. For scale and rotation invar-
iance, both the side lengths and the offset vector are computed
with respect to i’s reference system (and thus indexed by i) as
follows: The best fitting ellipse of i is transformed to a unit
circle, so the principal axes of the ellipse coincide with the x-
axis and y-axis of the image. The estimated transformation is
applied to the bounding box. In this reference system, we
compute the offset and normalized size of the transformed
bounding box, bbbbi ¼ ð�i cos �i; �i sin �i; ai; biÞ, as illustrated in
Fig. 3. Note that if region i belongs to the background class,
then there is no bounding box information, i.e., bbbbi is
undefined.

5.2 Constructing the Hough Forest

The training dataset fðxxxxi; yi; bbbbiÞ : i ¼ 1; . . . ;mg is used to
learn an ensemble of T ¼ 10 decision trees representing HF.
As is standard in the Random Forest and HF literature [15],
[50], each tree t ¼ 1; . . . ; T is constructed from a distinct,
randomly selected subset of training examples (i.e., image
regions in our case) to ensure variability across the trees.
A tree is constructed recursively starting from the root. A
node of the tree receives a set of training regions. If the
node depth is maximum (¼ 15) or the number of received
training regions is small (< 30), the node is declared as a
leaf. Otherwise, the node is declared as a nonleaf, and an
optimal discriminative pair ðcoordinate in xxxx; thresholdÞ is
chosen from a large pool of randomly generated tests to
split the received training examples. These examples are
then passed to the two newly created children nodes. The
recursion stops at leaf nodes.

Below, we explain the criterion for splitting the training
examples at a node. The key idea is to find the test which
maximally reduces uncertainty in both the class labels and
the size and location of bounding boxes of objects
occurring in training images. We follow [15] and define
two measures of uncertainty for a set of training regions
S ¼ fðxxxxi; yi; bbbbiÞg that reached the node. The class-label
uncertainty measures the impurity of the class labels,
U1ðSÞ ¼ jSj � HðYÞ, where HðYÞ is the class entropy. The
offset uncertainty measures the impurity of the bounding-
box vectors bbbbi, U2ðSÞ ¼

P
i:9bbbbi kbbbbi � bbbbSk

2, where bbbbS is the
mean vector over S. Note that U2ðSÞ ignores background
regions in S for which bbbbi is undefined.

For splitting S at tree node k, we generate a pool of tests
f�kg by uniformly sampling a particular coordinate in all
descriptors fxxxxig. The threshold value � for each test is

chosen uniformly at random in the range of values of the

selected coordinate. Then, with equal probability, we pick

the test �k
�

that either minimizes U1ðSÞ or U2ðSÞ, as �k
� ¼

arg minkðU�ðfij�kðxxxxiÞ < �gÞ þ U�ðfij�kðxxxxiÞ � �gÞÞ, where � ¼
1 or � ¼ 2. By interleaving nodes that decrease U1ðSÞ with

nodes that decrease U2ðSÞ, the tree construction ensures

that training regions which reach the leaves have low

variations in both class labels and offsets from object

bounding boxes in training images.
HF becomes equivalent to Random Forest when

bounding-box annotations of objects in training images

are not considered. That is, nodes in the decision trees of

RF split training regions such that only U1ðSÞ is mini-

mized. In our initial work [48], we used RF instead of HF.

5.3 The Three Statistics

After HF is constructed, we compute three types of useful

statistics from the training regions collected in every leaf

node. The three statistics are used in CRF inference to

estimate the two ratios qr and pr.
First, for every leaf node of HF, L, we compute one-class

counts �L ¼ f�LðyÞ : y ¼ 1; . . . ; Kg, where �LðyÞ is the

number of training examples belonging to class y that

reached L. Normalizing �LðyÞ over the total number of

regions in L gives an estimate of the posterior pðyijxxxxiÞ.
Second, for every pair of leaves, ðL;L0Þ, we compute two-

class counts �LL0 ¼ f LL0 ðy; y0; xxxx; xxxx0Þg, where  LL0 ðy; y0; xxxx; xxxx0Þ
is the number of training example pairs belonging to classes y

and y0 that reached L and L0, and simultaneously have the

spatial relationship type ðxxxx; xxxx0Þ 2 {“part-of,” “touching,”

“far”}. Normalizing  LL0 ðy; y0; xxxx; xxxx0Þ over the number of

pairs of regions in L and L0 that have relationship ðxxxxi; xxxxjÞ
would result in an estimate of the posterior pðyi; yjjxxxxi; xxxxjÞ.

Third, for every pair of leaves, ðL;L0Þ, we compute the total

area overlap between bounding boxes bbbbi and bbbbi0 associated

with all regions i and i0 in L and L0, respectively, where the

regions satisfy the following conditions: 1) They all have the

same class label, 8ði; i0Þy ¼ yi ¼ yi0 , and 2) they all have the

same type of spatial relationship, 8ði; i0Þðxxxxi; xxxxi0 Þ ¼ ðxxxx; xxxx0Þ 2
{“part-of”, “touching”, “far”}. Let �LL0 ¼ f�LL0 ðy; xxxx; xxxx0Þg
denote the set of area overlaps of bounding boxes satisfying

conditions 1 and 2, where we compute

�LL0 ðy; xxxx; xxxx0Þ ¼
X

i2L;i02L0
y¼yi¼yi0

ðxxxx;xxxx0 Þ¼ðxxxxi ;xxxxi0 Þ

bbbbi \ bbbbi0
bbbbi [ bbbbi0

;

where bbbbi denotes the area of the bounding box i. Recall that

bbbbi and bbbbi0 are normalized and computed in the reference

coordinate systems of their respective regions i and i0.

Normalizing �LL0 ðy; xxxx; xxxx0Þ over the number of pairs of

regions in L and L0 that have class yi ¼ yj and relationship

ðxxxxi; xxxxjÞ would result in an estimate of the posterior

probability pðoij ¼ 1jyi ¼ yj; xxxxi; xxxxjÞ that two regions with

the same class label belong to a single object instance in the

image. Intuitively, this posterior is directly proportional to

the area overlap of the associated object bounding boxes.
In the following section, we explain how to use �L, �LL0 ,

and �LL0 in CRF inference.
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Fig. 3. To achieve scale and rotation invariance, the spatial information
about the object bounding box that contains two image regions 1 and 2
is computed separately for each region with respect to their respective
reference systems. The right figure presents the bounding box with
sides a and b before the transformation to each region’s reference
coordinate system.



6 ESTIMATING THE DISTRIBUTION RATIOS

Given HF, we are in a position to estimate the distribution
ratios in (8) and (9), and thus conduct MH jumps in CRF
inference. When a new image is encountered, its regions are
first “dropped” down through T decision trees of HF, as
illustrated in Fig. 4. Suppose regions i and j reach leaf nodes
Lti and Ltj, in trees t ¼ 1; . . . ; T , as shown in Fig. 4. Then, we
use the three statistics stored in Lti and Ltj—namely, one-
class counts �Lt

i
, two-class counts �Lt

i
Lt
j
, and bounding box

overlaps �LtiL
t
j
—to compute the ratio of posteriors pBi =p

A
i and

pBij=p
A
ij appearing in (9), and the ratio of proposal distribu-

tions qðB!AÞ=qðA!BÞ in (8).
In particular, suppose that an MH jump from state A to

state B, in CRF inference, involves recoloring two regions i
and j from their labels yAi and yAj in state A to new labels yBi
and yBj in state B. Then, the ratio of their posterior
distributions can be estimated using the class histograms,
stored in Lti and Ltj, as

pBi
pAi
� 1

T

XT
t¼1

�Lti

�
yBi
�

�Lti

�
yAi
� : ð10Þ

This is illustrated in Fig. 4a.
Regarding the posterior of region pairs, it is convenient

to express it as: pij ¼ pðyi; yjjxxxxi; xxxxjÞpðoijjyi; yj; xxxxi; xxxxjÞ, and
then to estimate the ratio pBij=p

A
ij as a product of two ratios:

p
�
yBi ; y

B
j jxxxxi; xxxxj

�
p
�
yAi ; y

A
j jxxxxi; xxxxj

� p
�
oBijjyBi ; yBj ; xxxxi; xxxxj

�
p
�
oAijjyAi ; yAj ; xxxxi; xxxxj

� :

Using the two-class histograms stored in HF, we compute

p
�
yBi ; y

B
j jxxxxi; xxxxj

�
p
�
yAi ; y

A
j jxxxxi; xxxxj

� � 1

T

XT
t¼1

 LtiL
t
j

�
yBi ; y

B
j ; xxxxi; xxxxj

�
 LtiLtj

�
yAi ; y

A
j ; xxxxi; xxxxj

� : ð11Þ

This is illustrated in Fig. 4b.

For estimating

p
�
oBijjyBi ; yBj ; xxxxi; xxxxj

�
p
�
oAijjyAi ; yAj ; xxxxi; xxxxj

� ;
note that it suffices to specify only the ratio

p
�
oBij ¼ 1jyBi ¼ yBj ; xxxxi; xxxxj

�
p
�
oAij ¼ 1jyAi ¼ yAj ; xxxxi; xxxxj

� :
This is because pðoij ¼ 0jyi; yj; xxxxi; xxxxjÞ ¼ 1� pðoij ¼ 1jyi; yj;
xxxxi; xxxxjÞ, and if yi 6¼ yj, then pðoij ¼ 1jyi; yj; xxxxi; xxxxjÞ ¼ 0. Thus,

using the posterior estimates �LtiLtj stored in HF, we readily

have

p
�
oBij ¼ 1jyB ¼ yBi ¼ yBj ; xxxxi; xxxxj

�
p
�
oAij ¼ 1jyA ¼ yAi ¼ yAj ; xxxxi; xxxxj

� � 1

T

XT
t¼1

�
Lt
i
Lt
j
ðyB;xxxxi;xxxxjÞ

N
Lt
i
Lt
j
ðyB;xxxxi;xxxxjÞ

�Lt
i
Lt
j
ðyA;xxxxi;xxxxjÞ

N
Lt
i
Lt
j
ðyA;xxxxi;xxxxjÞ

; ð12Þ

where NLL0 ðy; xxxx; xxxx0Þ is the number of all training region

pairs ðk; lÞ, stored in L and L0, that satisfy the following

conditions: k2L, l2L0, y ¼ yk ¼ yl, and ðxxxx; xxxx0Þ ¼ ðxxxxk; xxxxlÞ.
Finally, to estimate the ratio of proposal distributions

qðB!AÞ
qðA!BÞ , we need to compute each individual pij in (8) rather

than simply multiplying the estimates of their ratios. This is

because the numerator and denominator of qðB!AÞ
qðA!BÞ in (8) do

not contain the same set of “cut” edges, CutA 6¼ CutB. Since

pij ¼ pðyi; yjjxxxxi; xxxxjÞpðoijjyi; yj; xxxxi; xxxxjÞ, we estimate the two

posteriors separately. We approximate pðyi; yjjxxxxi; xxxxjÞ as an

average of two-class histograms:

pðyi; yjjxxxxi; xxxxjÞ �
1

T

XT
t¼1

 LtiLtjðyi; yj; xxxxi; xxxxjÞ
MLtiL

t
j
ðxxxxi; xxxxjÞ

; ð13Þ

where MLtiL
t
j
ðxxxxi; xxxxjÞ is the number of training region pairs in

Lti and Ltj that have relationship ðxxxxi; xxxxjÞ.
As mentioned above, to approximate pðoijjyi; yj; xxxxi; xxxxjÞ, it

suffices to estimate pðoij ¼ 1jyi ¼ yj ¼ y; xxxxi; xxxxjÞ as

pðoij ¼ 1jyi ¼ yj ¼ y; xxxxi; xxxxjÞ �
1

T

XT
t¼1

�LtiLtjðy; xxxxi; xxxxjÞ
NLtiL

t
j
ðy; xxxxi; xxxxjÞ

; ð14Þ

where NLtiL
t
j
ðy; xxxxi; xxxxjÞ is the number of all training region

pairs ðk; lÞ, stored in Lti and Ltj, that satisfy the following

conditions: k2Lti, l2Ltj, y ¼ yk ¼ yl, and ðxxxxi; xxxxjÞ ¼ ðxxxxk; xxxxlÞ.
In summary, an MH jump in CRF inference from state A

to B requires computation of qrðA! BÞ ¼ qðB!AÞ
qðA!BÞ , given by

(8), and prðA! BÞ ¼ pðMMMM¼BjGÞ
pðMMMM¼AjGÞ , given by (9). We estimate

prðA! BÞ as a product of expressions specified in (10),

(11), and (12). To compute qrðA! BÞ, we estimate each

posterior distribution pij in (8) as a product of expressions

specified in (13) and (14).
MH provides theoretical guarantees of convergence to

the globally optimal solution of a given energy function.

However, we approximate the energy function in (10)-(14),

and thus the final MH solution is only an approximation

with respect to the original energy function.
In the following, we first present our empirical evalua-

tion, and then derive the theoretical performance bounds.
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Fig. 4. Estimating the following distribution ratios: (a) pBi =p
A
i and

(b) pðyBi ; yBj jxxxxi; xxxxjÞ=pðyAi ; yAj jxxxxi; xxxxjÞ, using HF. When a new image is
encountered, its regions are “dropped” down through T decision trees of
HF. The figure shows that image regions i and j have reached leaf
nodes Lti and Ltj in trees t ¼ 1; . . . ; T . The colored circles in Lti and Ltj
represent training examples collected in learning, where each color
corresponds to one object class. Black dashed lines connect pairs of
nodes that have relationship ðxxxxi; xxxxjÞ.



7 RESULTS

Datasets. We evaluate HFRF on three benchmark datasets:
the MSRC dataset [3], the Street-Scene dataset [6], [51] and
the PASCAL VOC 2007 dataset [52]. The MSRC dataset
consists of 591 images showing objects from 21 categories.
We duplicate the evaluation setup of [3], i.e., we use the
standard random split of MSRC dataset into training and
test images. Note that object classes in MSRC images are
manually segmented, but bounding boxes around indivi-
dual instances are not provided. Therefore, instead of HF,
we use Random Forest for this dataset, as explained in
Section 5.2. That is, for thr MSRC dataset, we use the
approach of our initial work, termed RFRF, presented in [48].
The Street-Scene dataset consists of 3,547 images of urban
environments, where individual objects (cars, pedestrians,
and bicycles) are annotated with bounding boxes. As in [6],
one-fifth of the Street-Scene images are used for testing and
the rest for training. The PASCAL VOC 2007 dataset consists
of 9,963 images depicting 20 object classes, where each object
is annotated with a bounding box. The data are split into
50 percent for training and 50 percent for testing, where the
distributions of images and objects by class are approxi-
mately uniform across the training and test sets.

Evaluation metrics. Object recognition and segmentation
are evaluated using the pixel-wise classification accuracy,
averaged across all test images and object classes. This
metric is suitable because it does not favor object classes
that occur in images more frequently. Object detection is
evaluated in terms of Average Precision (AP) according to
the VOC protocol [52]. The AP summarizes the precision-
recall curve, and is specified as the average precision at a set
of 11 equally spaced recall values ½0; 0:1; . . . ; 1�. We also
evaluate object segmentation error for all objects that are
correctly detected, i.e., for true positives (TPs). This is
computed as pixel-wise segmentation error with respect to
the ground truth object masks. These masks are available
for the Street-Scene and PASCAL datasets.

Training setup. Images are segmented using the state-of-
the-art multiscale segmentation algorithm of [49]. This
algorithm takes the perceptual significance of a region
boundary, Pb 2 ½0; 255�, as an input parameter. We vary
Pb ¼ 30:10:150, and thus obtain a hierarchy of regions for
each image. A region is characterized by a descriptor vector
consisting of the following properties:

1. 30-bin color histogram in the CIELAB space,
2. 250D histogram of filter responses of the MR8 filter

bank and the Laplacian of Gaussian filters computed
at each pixel, and mapped to 250 codewords whose
dictionary is obtained by K-means over all training
images,

3. 128D region boundary descriptor measuring oriented
contour energy along eight orientations of each cell of
a 4	 4 grid overlaid over the region’s bounding box,

4. coordinates of the region’s centroid normalized to
the image size.

Regions extracted from training images are used to learn the
HF. Training images are labeled with bounding boxes
around object occurrences, so each region that falls within a
bounding box is assigned the label of that box. If a region
covers a number of bounding boxes of different classes, it is

added to the training set multiple times to account for each
distinct label. Each object region is also associated with an
offset vector from the region’s centroid to the center of the
bounding box. This vector is normalized with respect to the
reference coordinate system of the region, as explained in
Section 5. As is standard in HF literature [15], [50], we use
equal-size random splits of training data to train T ¼ 10
decision trees of HF. The complexity of this step is OðmÞ,
where m is the total number of regions. The growth of each
tree is constrained so its depth is less than 15 and its every
leaf node contains at least R ¼ 30 training examples.

Testing setup. To recognize and segment objects in a
new test image, we first extract a hierarchy of regions from
the image by the segmentation algorithm of [49]. Then, we
build the fully connected CRF graph from extracted regions
(Section 3), and run the SW-cut inference (Section 4). We
use HF to estimate the distribution ratios required for
Metropolis-Hastings jumps. Note that we do not require a
threshold as input parameter for inferring the labels of
nodes and edges of our CRF.

We examine the following three variants of our approach.
HFRF-1: The spatial relationships of regions, ðxxxxi; xxxxjÞ, are not
accounted for when computing pij in (11)-(14). HFRF-2: The
region relationships touching and far are considered, while
the part of relationship is not accounted for. HFRF-3: All
three types of region layout and structural relationships are
modeled. In this paper, we consider HFRF-3 as our default
variant and explicitly state when the other two are used
instead. Note that considering region layouts and part of
relationships changes only the three statistics recorded in
leaf nodes of HF, but it does not affect complexity.

Also, we compare HFRF with our initial model RFRF,
presented in [48], on a task where this comparison is
possible. Since RFRF is not capable of detecting instances of
an object class, the comparison is limited to the task of
assigning object class labels to image regions.

7.1 Quantitative Results

Convergence rate. We compare the convergence rates of
HFRF inference with that of RFRF inference [48], and the
standard SW-cut algorithm presented in [14]. The standard
SW-cut is used for inference of a random field that defines
the Gibbs distribution as

pðYYYY jGÞ / exp �EðYYYY jGÞf g;
EðYYYY jGÞ ¼

X
i

�iðyi; xxxxiÞ þ
X
i

X
j2NðiÞ

 ijðyi; yj; xxxxi; xxxxjÞ; ð15Þ

where both the unary potential �i ¼ wT
1 f1ðxxxxiÞ and the

pairwise potential  ij ¼ wT
2 f 2ðxxxxi; xxxxjÞ represent a weighted

sum of features f 1ðxxxxiÞ associated with region i, and
features f 2ðxxxxi; xxxxjÞ associated with pairs of regions i and j.
For fair comparison, we use the same set of color, texture,
and shape features that we use in our HFRF to define
f1ðxxxxiÞ. The pairwise features are defined as similarity
f2ðxxxxi; xxxxjÞ ¼ expð�

P
l 	lkf1;lðxxxxiÞ � f1;lðxxxxjÞk2Þ. To learn the

parameters w1, w2, and f	lg of the Gibbs distribution in
(15), we use Stochastic Gradient Descent [61]. This
formulation of the Gibbs distribution is very similar to
that of [14], and thus allows us to fairly compare the
convergence rates of our inference with theirs. Fig. 5 shows
the convergence rates of HFRF inference, RFRF inference
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[48], and the standard SW-cut algorithm presented in [14].
For this comparison, we use test images of the Street-Scene
and PASCAL VOC 2009 datasets. As can be seen, HFRF
inference converges, on average, twice as fast as the
original SW-cut algorithm [14], and to a lower energy.
Similarly, HFRF inference converges faster than RFRF
inference. One reason for this is that edges of HFRF are
labeled, unlike in RFRF. This helps guide the MH jumps
faster toward the MAP solution of HFRF inference by
taking into account object instance labeling.

Object recognition and segmentation. Tables 1 and 2
show our pixel-wise classification accuracy on PASCAL
2009, Street-Scene, and MSRC images. Table 2 also compares
the three variants of HFRF on MSRC and Street-Scene
images with the state-of-the-art CRF-based approaches [3],
[6], [56], [57]. The standard deviations in this table are
computed across classes, as is standard for these datasets—-
not over different training/validation/test data splits. In
Table 2, we observe higher standard deviations on the MSRC
dataset than those on the Street-Scene dataset. This is, in
part, because we do not have access to bounding boxes of
object instances in training on MSRC. By contrast, the Street-
Scene provides the bounding boxes, and thus we improve
accuracy by exploiting richer annotations in training. We
also observe that HFRF has the lowest standard deviations.
As can be seen, the additional consideration of the spatial
relationships—touching and far—increases performance
relative to that of HFRF-1. Our performance is best when
all three types of region relationships are modeled.

Although we outperform the approaches of [6], [56] in
Table 2, note that this comparison is unfair to us since they
additionally use higher level cues about the horizon
location and 3D scene layout in their object recognition
and segmentation. In addition, HFRF outperforms the latest
CRF models on both datasets. Table 2 shows that HFRF
improves the results of our initial RFRF-based approach
[48]. Finally, Table 2 also presents computation times of our
and competing methods. As can be seen, the faster
convergence rates of MH-based inference of HFRF leads
to speed-ups relative to RFRF [48].

Object detection. We run HFRF inference five times

with random restarts, and take the inference solution with

the maximum posterior distribution pðMMMMjGÞ. Each con-

nected component CC in that solution represents a

detected object instance and, simultaneously, its segmenta-

tion. The marginal posterior of a CC, given by
Q

i;j2CC pipij,

is taken as a confidence score of the corresponding object

detection. For evaluating the AP, as in the VOC protocol

[52], we choose 11 thresholds of the confidence scores to

obtain 11 equally spaced recall values ½0; 0:1; . . . ; 1�. We fit a

bounding box to every segmented object. A detected object

is considered TP if the largest intersection between BB and

a nearby ground-truth bounding box (GT) is greater than

one half of their union, TP: maxGT
intersectðBB;GTÞ

unionðBB;GTÞ > 0:5;

otherwise, a detected object is considered false positive.
Table 3 shows our car and pedestrian AP on the Street-

Scene dataset. We present a comparison with two baseline
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TABLE 1
Average Pixel-Wise Classification Accuracy (i.e., Object Segmentation Results) on the PASCAL VOC 2009 Dataset

Our segmentation results are competitive with the best-performing approaches of the 2009 VOC challenge [53], [54], [55].

TABLE 2
Pixel Classification Accuracy, Standard Deviation and Computation Times Averaged across All Object Classes

of the Three Variants of Our Approach on the MSRC and Street-Scene Datasets

The standard deviations are computed across classes, as is standard for these datasets—not over different training/validation/test data splits. The
MSRC dataset does not provide ground truth bounding boxes around object instances; therefore, instead of HF, we are bound to use Random Forest
for MSRC dataset. The comparison is with the state-of-the-art CRF methods presented in [3], [6], [56], [57], and with our RFRF [48].

TABLE 3
Object Detection Average Precision

on the Street-Scene Dataset

Fig. 5. Average convergence rates: (left) HFRF and SW-cut of a random
field with the Gibbs distribution presented in [14] on the Street-Scene test
images; (right) HFRF and RFRF [48] on PASCAL VOC 2009 test images.



sliding-window approaches, as well as a comparison with
[6]. Our method significantly improves over the baselines
and outperforms [6] as well. Table 4 shows that the AP of
HFRF is comparable to the state-of-the-art object detectors
on the PASCAL VOC 2007 dataset. On the Street Scene
dataset, the standard deviation of AP across all object
classes is 0.2 percent, and on the PASCAL 2007 dataset, it is
only 0.03 percent. We evaluate the segmentation error of
54:8%
 4:2% on this dataset, which is mainly due to errors
in the low-level segmentation. For example, Fig. 9a shows a
region where the tree is merged with its shadow in the low-
level segmentation due to low contrast. We also note that
the increase in the number of random restarts, beyond five
times, does not affect our AP on these two datasets.

7.2 Qualitative Results

Our object detection, recognition, and segmentation results
on example images from the MSRC, Street-Scene, and
PASCAL datasets are shown in Figs. 6, 7, and 8. Labels of
the finest-scale regions are depicted using distinct colors
since pixels get labels of the finest-scale regions. Detected
object instances are also delineated with colored bound-
aries, and tagged with the class label. Each tag corre-
sponds to one detected instance. As can be seen, HFRF
correctly identifies groups of regions that belong to the
same class and is also able to segment individual objects.
Fig. 9 shows some failure examples, as well as a
comparison to [48]. We note that there are two main
reasons for inaccurate detection. First, we cannot recover

from errors in the low-level segmentation, e.g., when an
object part is merged with the background (the train is
merged with its shadow in Fig. 9b), or two objects are
merged together (the two pedestrians in Fig. 9a). We also
note that most of the detection errors come from over-
lapping objects being merged into one; see, for example,
the sheep in Fig. 9c. This is because when objects are close
to each other, their parts vote for a similar location of their
center, and thus these regions get merged under the same
instance. Note that the methods that use standard
nonmaximum suppression for object detection, e.g., [15],
[58], suffer from the same problem.
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TABLE 4
Object Detection Average Precision on the PASCAL VOC 2007 Dataset

We compare HFRF detection results to the state-of-the-art object detectors of Felzenswalb et al. [58], Zhu et al. [59], and Pedersoli et al. [60].

Fig. 7. Object instance detection and segmentation by HFRF on
example images from the Street-Scene dataset. See the caption of
Fig. 6. Instance detection fails on the textured trees with low contrast
regions and the row of buildings. On the left, HFRF correctly merges the
two separate car regions into one instance.

Fig. 6. Object instance detection and segmentation by HFRF on
example images from the MSRC dataset. Black boundaries mark the
finest-scale regions found by the multiscale segmentation algorithm of
[49]. Regions occupied by detected object classes are color coded,
where each color corresponds to one class. Detected object instances
are also delineated with colored boundaries, and tagged with the class
label. Each tag corresponds to one detected instance. The results are
good despite occlusion and changes in illumination and scale. (best
viewed in color).

Fig. 8. Object instance detection and segmentation by HFRF on
example images from the PASCAL dataset. See the caption of Fig. 6.



7.3 Implementation Details

We chose the optimal configuration of HF in terms of the
number of decision trees, T ¼ 10, the maximum depth of
each tree, d ¼ 15, and the minimum number of regions in
each leaf node, R ¼ 30, using the following grid testing:
T ¼ 5; 10; 20; 50, d ¼ 10; 15; 20; 25, and R ¼ 10; 30; 50; 100.

Since the depth of each decision tree in HF is less than 15
(i.e., approximately constant), the complexity of dropping
an instance through one tree is Oð1Þ, and through HF with
T trees is OðT Þ. Our C-implementation of the HF-guided
SW-cut inference of CRF takes 10 to 30 s on a 2.40 GHz PC
with 3.48 GB RAM for MSRC, Street-Scene, and PASCAL
2007 images. Table 2 shows that our average running times
are comparable to those of the other CRF methods that use
approximate inference [3], [6], [56], [57].

8 THEORETICAL ANALYSIS

The results presented in Section 7 demonstrate that HFRF is
an efficient and powerful framework to jointly reason about
multiple, statistically dependent random variables and their
attributes. In this section, we seek a theoretical explanation
for such a good performance. In particular, we derive the
theoretical performance bounds of HFRF for the two-class
learning problem for simplicity.

Random Forest is difficult to analyze [50], [62], as is HF.
Regarding the consistency of Random Forest, it is known
that their rate of convergence to the optimal Bayes rule
depends only on the number of informative variables. It is
also shown that Random Forest, which cuts down to pure
leaves, uses a weighted, layered, nearest neighbor rule [62].
We are not aware of any theoretical analysis of HF as an
estimator of ratios of posterior distributions.

As explained in Section 4, we use the SW-cut for HFRF

inference. The SW-cut iterates the Metropolis-Hastings

reversible jumps, and thus explores the state space of

solutions. An MH jump from state A to another state B is

controlled by the acceptance rate �ðA! BÞ, which depends

on the ratios of the proposal and posterior distributions,
qðB!AÞpðMMMM¼BjGÞ
qðA!BÞpðMMMM¼AjGÞ . Below, we show that the error made by the

two-class HFRF in estimating these ratios is bounded. Our

derivation of the error bounds of HFRF is based on the

theoretical analysis of evidence trees, presented in [47].

8.1 An Upper Error Bound of HFRF

In general, MH allows jumps from states with higher
posterior distributions to states with lower posteriors. An
error occurs when a balanced reversible jump, qðB!AÞqðA!BÞ ¼ 1, is
encountered, i.e., when there is no preference between
jumping from state A to state B and reverse, and the
posterior distribution of state A is lower than that of B. In
this case, �ðA! BÞ ¼ 1 and the SW-cut will erroneously
visit state B. We are interested in finding the probability of
this error, P ð
Þ ¼ P ðpðMMMM¼BjGÞpðMMMM¼AjGÞ � 1Þ, specified as

P ð
Þ ¼ P
Y
i2CC

pBi
pAi

Y
j2NðiÞ

pBij

pAij
� 1

0
@

1
A: ð16Þ

P ð
Þ can be computed by estimating the pdf of a product of
random variables Ci ¼ pBi =pAi 2 ½0;1Þ and Dij ¼ pBij=pAij 2 ½0;
1Þ, within a graph’s connected component, i 2 CC, where
jCCj ¼ n, i ¼ 1; . . . ; n, and j 2 NðiÞ. In the following, we will
show how to compute the distributions fCðcÞ and fDðdÞ for
the products C ¼

Qn
i¼1 Ci and D ¼

Qn
i¼1

Q
j2NðiÞDij. From

these distributions and (16), we will derive the probability
that HFRF makes a wrong prediction, P ð
Þ ¼ P ðC �D � 1Þ.

8.2 A Mathematical Model of HFRF Performance

In this section, we derive that the HFRF estimates of the
ratios Ci, Dij have the exponential distribution. We consider
a binary classification problem, where training and test
instances may have positive and negative labels. The two
classes are balanced P ðy ¼ þ1Þ ¼ P ðy ¼ �1Þ ¼ 1=2. We
define � to be a fraction of pairs of training examples that
have a certain spatial relationship. The learning algorithm
that creates HF is not modeled. Instead, we assume that the
learned decision trees have the following properties.

Each node of the tree can be either a c-node (for class) or
an s-node (for spatial). c-nodes split the training data so as
to minimize the class uncertainty, U1ð�Þ, whereas s-nodes
split the training examples so as to minimize the spatial
offset uncertainty U2ð�Þ, defined in Section 5.

Each leaf node of a tree: 1) stores a total of R training
instances, and 2) has a probabilistic margin � 2 ½0; 1=2Þ for
classification. By margin, we mean that in every leaf reached
by R training instances a fraction of 1=2þ � of the training
instances will belong to one class (e.g., positive) and a
fraction of 1=2� � of them will belong to the other class
(e.g., negative). We say that a leaf is positive if a majority of
the training instances collected by the leaf are positive or,
otherwise, we say that the leaf is negative.

Each pair of leaf nodes in a tree also has a probabilistic
margin �o, i.e., there is a probability 1=2þ �o that HF will
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Fig. 9. Comparison HFRF (middle row) versus RFRF of [48] (bottom
row). See the caption of Fig. 6. The top row shows original images.
(a) Street-scene dataset—RFRF merges the two pedestrians into one
detection, whereas HFRF corrects this. (b) The PASCAL VOC 2007
dataset—RFRF merges the two boats into one detection, whereas
HFRF corrects this. (c) The PASCAL VOC 2007 dataset—RFRF
merges many sheep into one detection because they all vote for a
similar center location, whereas HFRF corrects this. HFRF also
improves object segmentation results of RFRF by correctly separating
object regions from background regions, e.g., the sheep regions labeled
as background by RFRF in (c).



correctly label the hidden random variable oij of two
regions i and j that fall in those two leaves.

A new test instance is classified by dropping it through
T classification trees, and taking a majority vote of the labels
of all R � T training instances stored in the leaves reached by
the test instance. The object term oij of a pair of test
instances ði; jÞ with relationship e is classified by dropping
both instances through T classification trees, and taking a
majority vote of the labels of all �R2 � T training instances
with relationship e stored in the leaves reached by the test
instances. We refer to this classification procedure as
evidence voting [47], as opposed to decision voting over
the leaf labels in the standard HF [50].

In the following, we will first show in Lemma 1 that the
probabilistic margin � is a function of two margins—namely,
the margin gc defined for c-nodes, and the margin gs defined
for s-nodes. Then, we will prove in Propositions 1, 2, and 3
that the random variables Ci, Dij have exponential distribu-
tions. Below, we first give formal definitions of the margins gc
and gs.

Definition 1. gc is the probabilistic margin of HF at any c-node.
This means that an instance that arrives at a c-node will be
correctly routed down the decision tree with probability
1=2þ gc.

Definition 2. gs is the probabilistic margin of HF at any s-node.
This means that an instance that arrives at a s-node will be
correctly routed down the decision tree with probability
1=2þ gs.

A motivating example. This paragraph presents an
example specification of gc and gs. Thus, gc can be defined,
e.g., as the smallest distance from any data point to a
decision boundary defined by the split at that c-node. Also,
gs can be defined, e.g., as the symmetric Kullback-Leibler
divergence between the two distributions of bounding-box
offset vectors created by the split at that s-node.

Lemma 1. Given the probabilistic margins gc and gs at each
c-node and s-node, the probability that HF correctly labels an
instance is 1=2þ �, where � ¼ g2

c þ gcgs.
Proof. An instance dropped down a decision tree falls with

equal probability in a c-node, nc, or in an s-node, ns,
i.e., pðncÞ ¼ pðnsÞ ¼ 1=2. For nc, an instance is routed
correctly (e.g., to a positive leaf if it is a positive instance)
with probability 1=2þ gc, and labeled correctly with
probability 1=2þ gc. It is routed incorrectly with prob-
ability 1=2� gc and labeled incorrectly with probability
1=2� gc. For node ns, an instance is routed correctly with
probability 1=2þ gs, and labeled correctly with prob-
ability 1=2þ gc. It is routed incorrectly with probability
1=2� gs and labeled incorrectly with probability
1=2� gc. Hence, the probability that at any leaf node,
an instance is labeled correctly is

1=2½ð1=2þ gcÞð1=2þ gcÞ þ ð1=2� gcÞð1=2� gcÞ�

þ 1=2½ð1=2þ gsÞð1=2þ gcÞ þ ð1=2� gsÞð1=2� gcÞ�

¼ 1=2þ g2
c þ gcgs ¼ 1=2þ �:

ut

8.2.1 Distribution of the Random Variables Ci
Denote P ð
1Þ ¼ P ðCi � 1Þ the probability that evidence
voting misclassifies an instance. The following proposition
states that this probability is upper bounded.

Proposition 1. The probability that HF with T trees, where every
leaf stores R training instances, incorrectly classifies an
instance is upper bounded, P ð
1Þ � expð�2RT�2Þ.

Proof. Evidence voting for labeling an instance can be
formalized as drawing a total of R � T independent
Bernoulli random variables, with success rate p1, whose
outcomes are f�1;þ1g. þ1 is received for correct and �1
for incorrect labeling of the instance. The success rate p1

is the probability that an instance is correctly labeled, i.e.,
p1 ¼ 1=2þ � (Lemma 1). Let S1 denote a sum of these
Bernoulli random variables. A positive instance is
incorrectly labeled if S1 � 0, and a negative instance is
misclassified if S1 > 0. Since the two classes are
balanced, by applying the standard Chernoff bound,
we obtain P ð
1Þ ¼ P ðS1 � 0Þ � expð�2RT�2Þ. tu

From Proposition 1, it follows that the probability that
HF makes a wrong prediction about the posterior ratio of an
instance is upper bounded, P ðCi � 1Þ ¼ P ð
1Þ � expð �
2RT�2Þ; 8i 2 CC. This gives the probability density function
fCiðcÞ ¼ 1 expð�1cÞ, where 1 ¼ 2RT�2. Then, it follows
that the product C ¼

Qn
i¼1 Ci ¼ ðCiÞ

n has the distribution
fCðcÞ ¼ 1

n c
1�n
n expð1c

1
nÞ.

8.2.2 Distribution of the Random Variables Dij

We study two cases for the random variables Dij. In case 1,

we assume that pij ¼ pðyi; yjjxxxxi; xxxxjÞ—which is the setting of

our initial work, presented in [48]. Thus, we have Dij ¼
Dij;1 ¼

pðyBi ;yBj jxxxxi;xxxxjÞ
pðyAi ;yAj jxxxxi;xxxxjÞ

. In case 2, we consider the extended

definition of pij, as specified in Section 3, i.e., pij ¼
pðoij; yi; yjjxxxxi; xxxxjÞ. Thus, we have Dij ¼ Dij;1�Dij;2, where

Dij;1 ¼
p
�
yBi ;y

B
j jxxxxi;xxxxj

�
p
�
yAi ;y

A
j jxxxxi;xxxxj

� and Dij;2 ¼
p
�
oBijjyBi ;yBj ;xxxxi;xxxxj

�
p
�
oAijjyAi ;yAj ;xxxxi;xxxxj

� :
Below, we first consider case 1.

Evidence voting is also used for labeling pairs of
instances. The probability that evidence voting misclassifies
a pair of instances, P ð
2Þ ¼ P ðDij;1 � 1Þ, is upper bounded,
as stated in Proposition 2.

Proposition 2. The probability that HF with T trees, where every
leaf stores R training instances, incorrectly labels a pair of
instances with relationship e is upper bounded, P ð
2Þ �
expð�2�R2T�2Þ, with � ¼ �2 þ � � 1=4.

Proof. The proof is similar to the proof of Proposition 1. The
probability that an instance is correctly labeled is
1=2 þ �, so a pair of instances is correctly labeled with
probability ð1=2þ �Þ2 ¼ 1

2þ �, with � ¼ �2 þ � � 1
4 . Note

that � is positive, provided that � >
ffiffi
2
p
�1

2 , which we
enforce in practice when learning HF. Hence, � repre-
sents the margin of HF for classifying pairs of instances.

There are R2T pairs of training instances in the leaves
of HF. Since � is the fraction of pairs of instances with a
particular relationship e, there are a total of �R2T pairs
of training instances with that relationship. Evidence
voting for labeling a pair of instances can now be
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formalized as drawing �R2T independent Bernoulli
random variables, with success rate p2, whose outcomes
are f�1;þ1g, where þ1 is received for correct and �1 for
incorrect labeling of the instance pair. The success rate p2

is the probability that an instance pair is correctly
labeled, i.e., p2 ¼ 1

2þ �. Let S2 denote a sum of these
Bernoulli random variables. By applying the standard
Chernoff bound, we obtain that P ð
2Þ ¼ P ðS2 � 0Þ �
expð � 2�R2T�2Þ. tu

From Proposition 2, it follows that the probability that HF

makes a wrong prediction about the ratio of a pair of

instances is upper bounded, P ðDij;1 � 1Þ ¼ P ð
2Þ �
expð�2�R2T�2Þ, 8i 2 CC and j 2 NðiÞ. This gives the

probability density function fDij;1
ðdÞ ¼ 2 expð�2dÞ, where

2 ¼ 2�R2T�2. Then, it follows that the product D1 ¼Qn
i¼1

Q
j2NðiÞDij;1 ¼ ðDij;1Þnk � ðDij;1Þn has the distribution

fD1
ðdÞ ¼ 2

n d
1�n
n expð2d

1
nÞ. We here approximate that the

number of edges within CC is the same as the number of

nodes in CC as a result of “cutting” graph edges by the

SW-cut algorithm.
In case 2, we derive the probability that evidence voting

misclassifies the binary oij random variable of a pair of
instances, P ð
3Þ ¼ P ðDij;2 � 1Þ. The following proposition
states that this probability is upper bounded.

Proposition 3. The probability that HF with T trees, where every
leaf stores R training instances, incorrectly classifies the object
term of a pair of instances is upper bounded, P ð
3Þ �
expð�2�R2T�2

oÞ.
Proof. Evidence voting for labeling oij of a pair of instances

can be formalized as drawing a total of �R2T indepen-
dent Bernoulli random variables, with success rate p3,
whose outcomes are f�1;þ1g. þ1 is received for correct,
and �1 for incorrect labeling of the instance. The success
rate p3 is the probability that the object term of a pair of
instances is correctly labeled, i.e., p3 ¼ 1=2þ�o. Let S3

denote a sum of these Bernoulli random variables. By
applying the standard Chernoff bound, we obtain
P ð
3Þ ¼ P ðS3 � 0Þ � expð�2�R2T�2

oÞ. tu

From Proposition 3, it follows that the probability that
HF makes a wrong prediction about the ratio of the object
terms of pairs of instances is upper bounded, P ðDij;2 �
1Þ ¼ P ð
3Þ � expð�2�R2T�2

oÞ, 8i 2 CC. This gives the

probability density function fDij;2
ðdÞ ¼ 3 expð�3dÞ, where

3 ¼ 2�R2T�2
o . Then, it follows that the product D2 ¼Qn

i¼1

Q
j2NðiÞDij;2 ¼ ðDij;2Þnk � ðDij;2Þn has the distribution

fD2
ðdÞ ¼ 3

n d
1�n
n expð3d

1
nÞ.

8.2.3 Distribution of the Random Variable H ¼ C �D
Case 1: D ¼ D1. Since the random variable H ¼ C �D is the

product of two random variables with exponential distribu-

tions, it is possible to analytically derive the probability that

HF makes a wrong prediction, P ð
Þ ¼ P ðC �D � 1Þ, as

stated in the following theorem.

Theorem 1. The probability that the two-class HF makes a wrong

prediction is

P ð
Þ ¼ P ðC �D � 1Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
12

p
K1ð2

ffiffiffiffiffiffiffiffiffiffi
12

p
Þ; ð17Þ

where C 2 ½0;1Þ and D 2 ½0;1Þ are random variables

characterized by the probability density functions fCðcÞ ¼
1

n c
1�n
n expð�1c

1
nÞ and fDðdÞ ¼ fD1

ðdÞ ¼ 2

n d
1�n
n expð�2d

1
nÞ,

with parameters 1 and 2, and where K1 is the modified

Bessel function of the second kind.

Proof. Using the standard derivation steps from the integral

theory [63], we derive that fHðhÞ ¼
R1

0
1
c fCðcÞfD1

ðhcÞdc ¼
212

n h
1�n
n K0ð2

ffiffiffiffiffiffiffiffiffiffi
12

p
h

1
2nÞ. K0 is the modified Bessel func-

tion of the second kind. It follows that P ð
Þ ¼ P ðH�1Þ ¼
1�

R 1
0 fHðhÞdh ¼ 2

ffiffiffiffiffiffiffiffiffiffi
12

p
K1ð2

ffiffiffiffiffiffiffiffiffiffi
12

p
Þ, using properties of

the Bessel functions of the second kind. tu

From Theorem 1, P ð
Þ decreases when any of the
following parameters increases: R, T , �, and �. Fig. 10
shows the influence of � on P ð
Þ, when the other parameters
are fixed to their typical values: R ¼ 10 or 30, T ¼ 5 or 10,
and � ¼ 0:005.

Case 2: D ¼ D1 �D2. In this situation, the random

variable H ¼ C �D is the product of three random variables

with exponential distributions, and there is no closed-form

expression for P ð
Þ [64]. In the following, we will show

numerically that P ð
Þ is upper bounded.

Theorem 2. The probability that HF makes a wrong prediction is

P ð
Þ ¼ P ðC �D � 1Þ

¼ 2123

n2

Z 1
1

Z 1
0

h
1�n
n

1

c
exp �1c

1
n

� �
�

K0 2
ffiffiffiffiffiffiffiffiffiffi
23

p
h

1
2nc�

1
2n

� �
dc dh;
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Fig. 10. Case 1. Influence of the classifier’s probabilistic margin, �, on
the probability of error P ð
Þ, (16). We plot P ð
Þ for multiple values of T
and R, where T is the number of trees in the HF and R is the number of
training instances in each leaf node. As mentioned in Proposition 2,
� 2 ½

ffiffi
2
p
�1

2 ; 1
2�, so the dashed region is the range where P ð
Þ is not defined.

Fig. 11. Case 2. Influence of the classifier’s probabilistic margins, � and
�o, on the probability of error P ð
Þ, (16). We plot P ð
Þ for two values of n,
the number of nodes in a particular connected component (n ¼ 10 and
n ¼ 30). Note that for better visualization, we have cropped the plot to
display � 2 ½

ffiffi
2
p
�1

2 ; 0:3�, but that P ð
Þ stays equal to zero for � 2 ½0:3; 0:5�
as well.



where C 2 ½0;1Þ, D1 2 ½0;1Þ, and D2 2 ½0;1Þ are random
variables characterized by the probability density functions
fCðcÞ ¼ 1

n c
1�n
n expð�1c

1
nÞ, fD1

ðdÞ ¼ 2

n d
1�n
n expð�2d

1
nÞ, and

fD2
ðdÞ ¼ 3

n d
1�n
n expð�3d

1
nÞ with parameters 1, 2, and 3.

Proof. We have shown in Theorem 1 how to compute the
distribution of a product of random variables with
exponential distributions. Thus, we compute fDðdÞ ¼R1

0
1
c fD1
ðcÞfD2

ðdcÞdc ¼
223

n d
1�n
n K0ð2

ffiffiffiffiffiffiffiffiffiffi
23

p
d

1
2nÞ, where K0 is

the modified Bessel function of the second kind. It
follows that

fHðhÞ ¼
Z 1

0

1

c
fCðcÞfD

h

c

� �
dc ¼ 2123

n2
h

1�n
n

Z 1
0

1

c
exp �1c

1
n

� �
K0 2

ffiffiffiffiffiffiffiffiffiffi
23

p
h

1
2nc�

1
2n

� �
dc:

When replacing fHðhÞ in the expressionP ð
Þ ¼ P ðH�1Þ ¼R1
1 fHðhÞdh, we obtain the result in Theorem 2. tu

From Theorem 2, we can numerically show the influence
of the probabilistic margins � and �o on the probability of
error P ð
Þ. This is illustrated in Fig. 11.

9 CONCLUSION

We have addressed the problem of concurrent object
detection and segmentation in images. This problem is
formulated as maximizing the posterior distribution over
object-class labels associated with image regions, forming a
conditional random field. Regions with the same class label
are classified as belonging to either a single object instance
or two distinct instances. Our MAP inference of CRF is
based on the Metropolis-Hastings algorithm. In general, MH
is controlled by the two ratios of proposal and posterior
distributions of states in a space of possible label assign-
ments to image regions. Our key idea is to use a Hough
Forest to estimate these two ratios in a nonparametric
manner, directly from appearance, geometric, and spatial-
layout properties of image regions. Iterative MH jumps fuse
CRF and HF in a unified object representation termed HFRF.

Our empirical evaluation demonstrates superior object
detection and segmentation results of HFRF relative to the
state of the art. In addition, these results are obtained with
faster convergence rate than by using a standard formula-
tion of MH that requires a parametric estimation of the
nominators and denominators of the two ratios of proposal
and posterior distributions. HFRF outperforms a variant of
our approach, called RFRF, which uses Random Forest
instead of HF and ignores the information about annotated
bounding boxes of objects in training, in terms of both
average accuracy and computation times. The paper has
also presented a theoretical analysis of HF and HFRF
applied to a two-class object detection problem. Specifically,
we have derived the theoretical upper bounds of classifica-
tion error for HF and HFRF, and thus proved that these
errors are bounded.
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