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Abstract—This paper addresses detection and localization of human activities in videos. We focus on activities that may have variable
spatiotemporal arrangements of parts, and numbers of actors. Such activities are represented by a Sum-Product Network (SPN). A
product node in SPN represents a particular arrangement of parts, and a sum node represents alternative arrangements. The sums
and products are hierarchically organized, and grounded onto space-time windows covering the video. The windows provide evidence
about the activity classes based on the Counting Grid (CG) model of visual words. This evidence is propagated bottom-up and top-
down to parse the SPN graph for the explanation of the video. The node connectivity and model parameters of SPN and CG are
jointly learned under two settings, weakly supervised, and supervised. For evaluation, we use our new Volleyball dataset, along with
the benchmark datasets VIRAT, UT- Interactions, KTH, and TRECVID MED 2011. Our video classification and activity localization are
superior to those of the state of the art on these datasets.

Index Terms—Sum-Product Networks, Activity Recognition, Hierarchical Models

F

1 INTRODUCTION

THIS work addresses the problem of activity detection
and localization in videos. Our focus is on activ-

ities with multiple, alternative structures. An activity
structure is defined as a spatiotemporal arrangement
of subactivities, where the recursion ends at primitive
actions. Variations in activity structure may arise from
different sets of primitive actions, and their different
space-time arrangements. For example, according to the
rules of volleyball, many alternative sequences of ball
passes between the players may all define a unique
volleyball play, e.g., “setting-ball-to-left”. This problem
arises in many applications.

A common approach to representing an activity struc-
ture is to explicitly model temporal relations (e.g.,
“followed-by”, “before”, “during”) between subactivi-
ties. Such expressive models typically have intractable
inference and learning. In this work, we present an
expressive activity model with efficient exact inference.
Our key intuition is that changes in configurations of
primitive actions, comprising an activity, will give rise to
changes in histograms of video features. For example, a
change in feature histograms will occur when “walking”
is followed by “jumping”. Instead of explicitly capturing
temporal configurations of primitives, we will model
changes of feature histograms across the video, charac-
terizing the activities. For modeling and computational
efficiency, we will explicitly capture hierarchical changes
of feature histograms, so as to account for: i) Hierarchical
activity decompositions into subactivities until primitive
actions, and ii) Sharing of primitives among a number
of more complex subactivities.

To represent a video, we place a regular, space-time
grid of points across the video, as illustrated in Fig. 1a,
and partition the video into a set of space-time windows,
each encompassing a number of grid points. Every grid
point is associated with a visual word from a dictionary.

Every window is modeled as a Bag-of-Words (BoW)
characterized by a multinomial distribution over counts
of visual words occurring within the window. When the
BoWs fall on the video foreground, i.e., activity instance,
then they are taken to represent activity primitives.

A Naı̈ve-Bayes product of the aforementioned multi-
nomial distributions of BoWs is called a Counting Grid
model. CG was used for capturing constraints and
changes of feature histograms across different parts of a
still image [2], or text document [3]. We use CGs to rep-
resent space-time configurations of activity primitives.
Specifically, the product of multinomial distributions
of a set of BoWs extracted from the video are used
to represent a particular spatiotemporal arrangement
of the activity primitives. For short, we will use the
phrase a product of BoWs to indicate the model of
such an arrangement of the primitives. For modeling
alternative configurations of variable activity structure,
these products are combined in a mixture distribution. A
mixture of BoW products can be interpreted as a model
of subactivity, where each component in the mixture
captures the subactivity’s variable structure.

Our key contribution is to model an activity by hier-
archically organizing the mixtures of BoW products. The
mixtures of a given hierarchical level are used as product
terms of the Naı̈ve-Bayes model at the next parent level.
We formalize this hierarchical model as the sum-product
network (SPN) illustrated in Fig. 1b. SPN is a generalized
directed acyclic graph, consisting of three types of nodes
– namely, terminal, product, and sum nodes [4], [5]. The
terminal nodes correspond to the BoWs of the video. The
product nodes compute the Naı̈ve-Bayes products of the
BoWs. The sum nodes compute the mixture distributions
of the Naı̈ve-Bayes products of the BoWs. All children
of a sum are products or terminals, and all children of a
product are sums. Children nodes in SPN can be reused
and shared by multiple distinct parents. Edges connect-
ing a sum node with its children products are weighted,
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Fig. 1. Our approach: (a) A video is represented by the counting grid model (CG) of visual words; every grid point u is assigned a distribution of
word counts πuz ; space-time windows Bb are placed across the counting grid and characterized by a Bag-of-Words model in terms of aggregate
distributions of word counts on the grid that fall within the window,

∑
u∈Bb

πuz . (b) Our activity model is the sum-product network (SPN) that
consists of levels of sum and product nodes, ending with space-time windows at terminal nodes; children nodes in the SPN can be shared by
multiple parents. (c) SPN inference amounts to parsing, and identifying foreground (green space-time windows). (d) Localization of the activity
“unloading of the trunk” in an example sequence from the VIRAT dataset [1].

where the weights correspond to the relative significance
of the component in the mixture distribution.

SPN is suitable for capturing alternative structures
of an activity, because the product nodes can encode
particular configurations of BoWs, i.e., primitives of an
activity, whereas the sum nodes can account for alter-
native configurations. Also, SPN can compactly encode
a large number of alternative arrangements of BoWs,
because SPN consists of a number of levels of sums and
products, where children nodes are shared by parents.

When a new video is encountered, we place a set
of space-time windows across the video’s regular grid.
We characterize the windows with BoWs, and use them
as terminal nodes of the SPN. SPN inference amounts
to parsing the SPN graph, i.e., selecting a subset of
optimal sum, product, and terminal nodes (i.e., BoWs)
that yields the explanation of activity occurrence Fig. 1c.
The resulting parse is a tree. The video is assigned the
label of the activity whose parse tree yields the highest
parse score. The selected subset of space-time windows
localize foreground video parts Fig. 1d.

For our evaluation, we have compiled and annotated
a new Volleyball dataset. Our video classification and
activity localization are superior to those of the state of
the art on the benchmarks datasets, including VIRAT [1],
UT-Interactions [6], KTH [7], TRECVID MED 2011 [8],
and Volleyball [9].

Contributions:
• Activity representation that integrates SPN+CG in a

unified framework;
• Introducing new hidden random variables over the

graph connectivity of our SPN+CG model, whereas
previous approaches on SPN including our prelim-
inary work treat SPN edges deterministically.

• Bottom-up and top-down inference algorithm;
• Joint learning of SPN and CG under both weak

supervision, and supervision
• Volleyball dataset.

In the following, Sec. 2 reviews prior work; Sec. 3
specifies SPN; Sec. 5 formulates CG, and a joint model of
SPN and CG; Sections 6 and 7 specify our inference and
learning algorithms; and Sec. 8 presents our experiments.

2 PRIOR WORK
Our literature review is focused on prior work that
models activities using graphical models. Then, we relate
our work to that on aggregating counts of visual words
in the video, and non-linear deep models. Finally, we
present our contributions, and explain what is new in
this paper relative to our preliminary work of [9].

Graphical models have been successfully used for
modeling spatiotemporal structure of activities [10]–[12].
Representative models include Dynamic Bayesian Net-
works [13]–[15], hierarchical graphical models [16]–[18],
AND-OR graphs [19]–[21], and Logic Networks [22]–
[24]. Recognition rates increase even further by ground-
ing graphical models onto object-detector responses [16],
rather than raw video features (e.g., optical flow). How-
ever, graphical models relevant for activity recognition
are typically intractable. As learning algorithms use in-
ference to estimate latent variables on training data un-
der weak supervision, and generally assume exact infer-
ence, their behavior in the context of heuristic inference
is not well understood. In contrast, SPN allows exact
inference under certain conditions that are unrestrictive
for our purposes, as discussed later.

Among the above graphical models, SPNs are most
related to AND-OR graphs, which are also capable of
encoding alternative decompositions and configurations
of activities [19]–[21], [25]–[27]. AND-OR graphs typi-
cally require a manual specification of nodes and graph
connectivity, each associated with hand-picked seman-
tic meaning (with few exceptions [28]). Thus, learn-
ing AND-OR graphs usually amounts to only learning
model parameters of nodes and edges representing user-
specified activity parts. In contrast, SPN has a “deeper”
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graph with significantly more levels than in AND-OR
graph, where the levels, nodes, and connectivity are
jointly estimated along with model parameters under
weak supervision. As a result, SPN automatically identi-
fies on its own latent activity parts relevant for detection
and localization, instead of requiring user specification.

On datasets with structure-rich activities (e.g., UT
interactions [6]), graphical models have superior per-
formance over representations which do not explicitly
capture activity structure, e.g., Bag-of-Words (BoW) [29],
[30], and probabilistic Latent Semantic Analysis (pLSA)
and Latent Dirichlet Allocation (LDA) [31]. Video repre-
sentations that aggregate local video features have been
used only for single-actor actions [30], [32], [33], punctual
and repetitive actions [34], or activities with parts that
occur in a fixed temporal order [35].

SPNs can be viewed as probabilistic, general-purpose
convolution networks, with max-pooling operations.
Convolutional Neural Networks and other non-linear
deep architectures have been used for activity recogni-
tion [36], [36]–[39]). Deep networks are constructed by
stacking a number of levels of graphical models. This
reduces their learning to parameter estimation. Unlike
deep networks, SPN has linear complexity in the number
of nodes, under unrestrictive conditions [4].

Our contributions include a unified model of SPN and
CG for activity representation, and joint learning of SPN
and CG. Learning the connectivity and edge weights
of the SPN graph can be formulated as a variational
EM algorithm. In particular, we extend SPN learning
presented in [4], [5] to include learning of CG. We
formulate a new learning algorithm for this joint learning
generalized from the discriminative learning framework
of [5]. We study the learning algorithm under a weakly
supervised setting and a supervised setting.

This paper extends our preliminary work [9] in three
aspects. First, in [9], the SPN graph connectivity is
treated deterministically, whereas we here relax the deter-
ministic constraints on the SPN graph connectivity, and
explicitly infer the most probable graph structure of SPN.
Second, this paper presents new activity recognition
experiments, missing in [9], that are aimed at testing: i)
Sensitivity to various input parameters and the number
of training examples; ii) Valid vs. invalid graph structure
of SPN; iii) Supervised vs. weakly supervised learning of
SPN; and iv) Performance on detecting complex events
of challenging TRECVID MED 2011 dataset [8].

3 REVIEW OF SPN FOR BINARY PROBLEMS

This section reviews key concepts of SPN [4], which we
will use later to specify our model of human activities.
Tab. 2 summarizes our notation. The random variables
are denoted with capital letters, and their particular
values with small letters.

SPN is a rooted, directed acyclic graph with three
types of nodes: terminal, sum, and product nodes, as
illustrated in Fig. 1b.

Notation Explanation
Y Latent variable of activity classes.

H = {Hj} Latent indicators of product nodes.
X = {(Xb, Xb)} Latent indicators at terminal nodes.

C = {Cb} Observable counts of visual words.
B = {Bb} Space-time windows.
Z = {z} Dictionary of visual words.
πππu = [πuz ] Codeword distributions at grid points u.
θ = [θz ] Hyper parameters of the CG model
S(·) A score of SPN.

w = {wij;y} Weights of sum-product edges (i, j).

Fig. 2. Table of notation used in Sections 3-7.

The terminal (leaf) nodes represent pairs of indicator
random variables X = {(Xb, Xb) : Xb, Xb ∈ {0, 1}, b =
1, ..., n}. They are aimed at grounding SPN onto a set
of n spatiotemporal windows of the video. Each pair of
variables (Xb, Xb) indicates if the corresponding bth win-
dow belongs to the video foreground where the detected
human activity occurs, or to the background. Specif-
ically, the values (Xb, Xb)=(1, 0) and (Xb, Xb)=(0, 1)
indicate that bth window belongs to the foreground
and background, respectively. For each human activity
y = 1, . . . , A, we define the probability of Xb given
the observable visual cues cb in the corresponding bth
spatiotemporal window, PXb

(xb|cb, y). A more detailed
specification of PXb

(xb|cb, y) is given in the next section.
Since in this section we consider SPN for binary prob-
lems, for simplicity, we here drop cb and y from notation.
We also specify: PXb

(xb) = 1− PXb
(xb) = PXb

(1− xb).
In inference, the joint probability PX(x) is used for

localizing the target human activity in the video as
x̂ = arg maxx PX(x). SPN serves to efficiently compute
PX(x), and thus efficiently conduct inference. As shown
in [4], SPN estimates PX(x) as a polynomial of sums and
products of x. This polynomial is recursively computed
using the hierarchy of sum and product nodes in SPN.
The sum and product nodes of SPN are arranged in
alternating levels forming a hierarchical graph, i.e., all
children of a sum node are products or terminals, and
all children of a product node are sums. The root node
is a sum node, and produces the polynomial called the
SPN score, S(x), which is used to compute PX(x) as:

PX(x) = S(x)/S(1), (1)

where S(1) is the SPN score when all the binary vari-
ables are set to 1, X = 1. As we will show below,
S(1) normalizes S(x) in (1), because setting any pair of
variables to 1 in S(x), e.g., (Xb = 1, Xb = 1), amounts
to marginalizing out these two variables from S(x).

In the following, we explain how to recursively com-
pute S(x). Indices of the sum nodes are i, l; indices of
the product nodes are j, k; and i+ denotes the set of
children of i. An edge (i, j) that connects a sum node
i with its child node j ∈ i+ has a non-negative weight
wij ≥ 0, where

∑
j∈i+ wij = 1. All edges (k, l) that

connect a product node k with its children nodes l ∈ k+

have weights set to 1. We also use Xi ⊆ X to denote
a subset of variables that can be reached from node i
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in SPN. Using this notation, we recursively define the
scores produced by sum and product nodes as:

Si(xi) =
∑
j∈i+ wijSj(xj), Sk(xk) =

∏
l∈k+ Sl(xl). (2)

The recursion ends at sum nodes that are connected to
the terminal nodes, where

Si(xi) =
∑
b∈i+ [w1

ibxbPXb
(xb) + w2

ibxbPXb
(xb)]. (3)

From (3), setting (Xb = 1, Xb = 1) amounts to marginal-
izing out these two variables from S(x).

From (2) and (3), SPN can be viewed as a mixture
model, whose children are the mixture components,
which, in turn, are products of mixture models1.

Validity: As shown in [4], complexity of computing
S(1), defined in (1), is linear in the number of SPN
nodes, when the connectivity of SPN graph is valid.
An architecture is valid if it is complete and consistent.
SPN is complete if for every sum node its children
product nodes have access to the same set of terminal
nodes as that sum node. SPN is consistent if every
product node does not have in its set of children any
pair of random variables (Xb, Xb) ∈X . Note that in this
work the consistency constraint is always satisfied, by
construction, since the product nodes are not directly
linked to the terminal nodes. The validity of SPN is
not restrictive for our modeling of activity classes. This
is because a valid SPN can be defined over a large
graph with many redundant nodes and edges. Then, in
learning, some model weights wij can be estimated as
zero. Since product nodes j whose corresponding wij is
equal to zero do not affect the SPN score S(·), learning
that wij = 0 effectively amounts to “removing” these
redundant product nodes and their descendant nodes
from the initial, large SPN graph. After learning, the
resulting SPN will be valid, if the initial graph is valid2.

4 GROUNDING SPN ON COUNTING GRID

This section explains how to compute PXb
used in (3) for

computing the score of SPN. The video is partitioned
into a set of spatiotemporal windows, B = {Bb : b =
1, 2, ..., n}. The binary random variable Xb is associated
with every window Bb, and PXb

(Xb=1) denotes the
probability of selecting Bb as a part of video foreground.
PXb

is modeled using CG [2], [3], specified below.
Given a dictionary of visual words, Z , their occur-

rences in the video are governed by CG. CG is defined
over a regular space-time grid of points spanning the
video, as illustrated in Fig. 1a. Every point u on the
space-time grid probabilistically generates one visual

1. SPN score in Fig. 1b is S(x) = .5(.4x1PX1
(x1) + .2x1P

X1
(x1) +

.1x2PX2
(x2) + .3x2P

X2
(x2))(.2x2PX2

(x2) + .6x2P
X2

(x2) + .1x3PX3
(x3) +

.1x3P
X3

(x3))(.8x3PX3
(x3)+ .2x3P

X3
(x3))+ .1(.8x3PX3

(x3)+ .2x3P
X3

(x3))+

.4(.2x2PX2
(x2) + .6x2P

X2
(x2) + .1x3PX3

(x3) + .1x3P
X3

(x3))(.8x3PX3
(x3) +

.2x3P
X3

(x3)).
2. Note that the SPN model presented in [4] is similar to the And-

Or Tree (AOT) model presented in [40]. The main difference is in the
SPN’s validity constrains that allow for generative and discriminative
training compared to the discriminatively trained AOT in [40].

Fig. 3. A frame from our volleyball videos with the space-time grid of
points (blue), and a foreground space-time windowB (green), and visual
words generated by CG within B (right).

word z ∈ Z from the distribution πu = [πuz]. Each
πuz represents the probability of occurrence of word z
at point u on the grid, such that ∀u,

∑
z∈Z πuz = 1.

Fig. 3 illustrates a frame from our volleyball videos,
and the space-time grid of points and a foreground
space-time window b overlaid over the frame. The visual
words generated by CG within b are also depicted. The
words were computed using the method of [36].

We use the point distributions πu to specify a multino-
mial distribution of counts of visual words, PC(cb), for
every spatiotemporal window Bb ∈ B. First, we use the
aggregate distribution of word occurrences within the
window,

∑
u∈Bb

πuz , ∀z ∈ Z , to probabilistically sample
a visual word at every grid point u in Bb. Then, PC(cb)
is specified as a multinomial distribution of counts of
visual words cb = [cbz] observed within Bb:

PC(cb|πBb
) ∝

∏
z

[ ∑
u∈Bb

πuz
]cbz . (4)

We specify PXb
(Xb = 1|cb) as the posterior probability

of observing cb counts of visual words in Bb

PXb
(Xb = 1|cb) ∝ PC(cb|πBb

)P (πBb
) (5)

where PC(cb|πBb
) is defined in (4), and P (πBb

) is the
Dirichlet prior with hyper parameters θ = [θz]:

P (πBb
) ∝

∏
z

[
∑
u∈Bb

πuz]
θz−1. (6)

In the next section, we will specify a joint model of
SPN and CG aimed at detecting and localizing human
activities, y = 1, . . . , A occurring in the video. From (4)–
(6), for every activity, we define the probability that Bb
belongs to the video foreground of y as

PXb
(Xb = 1|cb, y) ∝

∏
z

[ ∑
u∈Bb

πuz;y
]cbz+θz;y−1

. (7)

The probability that the spatiotemporal window Bb be-
longs to the background of activity y is computed as
PXb

(Xb = 0|cb, y) = 1− PXb
(Xb = 1|cb, y).

5 THE JOINT MODEL

This section formulates a joint model of SPN and CG.
SPN is grounded via its terminal nodes onto spatiotem-
poral windows of the video, where visual cues extracted
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from each window are modeled using CG. For every ac-
tivity class, SPN computes a polynomial of foreground-
background indicators associated with the spatiotempo-
ral windows. The activity class that gives the largest SPN
score is taken as present in the video. Inference also
produces a parse graph of SPN whose terminal nodes
identify the video foreground.

Random variables of the joint model include the fol-
lowing. As observables, we use the same counts of visual
words cb observed within spatiotemporal windows of
the video B = {Bb : b = 1, 2, ..., n}, as described in Sec. 4.
We also use the latent pairs of foreground-background
indicators X = {(Xb, Xb) : b = 1, ..., n} associated with
every window Bb ∈ B, specified in Sec. 3. For activity
classes y = 1, . . . , A, the probability of Xb given cb,
PXb

(xb; y), is given by (7). These variables is extended
by another set of latent variables, as explained below.

We use a random variable Y to denote the activity
class Y ∈ {1, ..., A}. We also associate latent indicators
H = {Hj : Hj ∈ {0, 1}, j = 1, 2, . . . } with every product
node j in SPN. When Hj = 1 for j ∈ i+, this means
that the sum computed at node i includes as one of
its terms the product computed at node j; otherwise,
jth product is excluded from the sum. These variables
help us relax the validity constraints on the SPN graph
connectivity. Specifically, in inference, our goal will be
to infer product-node indicators ĥ which maximize the
SPN score for activity recognition.

We specify a joint distribution, PYHX(y,h,x), that
characterizes our joint model as

PYHX(y,h,x) =
S(y,h,x)∑A
y=1 S(y,1,1)

, (8)

where, similar to (1), S(y,h,x) is the score produced at
the root node of SPN, and S(y,1,1) is the SPN score
when all indicators H and X are marginalized out.

To compute (8), we extend the definitions of the sum
and product scores of SPN presented in Sec. 3 as

Si(y,hi,xi) =
∑
j∈i+

wij;yhjSj(y,hj ,xj), y = 1, . . . , A,

Sk(y,hk,xk) =
∏
l∈k+

Sl(y,hl,xl), y = 1, . . . , A,

(9)
where the model parameters wij;y are indexed by the
activity class y. The recursion ends with the scores of
sum nodes that connect to the terminals, specified for
every activity y = 1, . . . , A as

Si(y,hi,xi) =
∑
b∈i+

[
w1
ib;yxbPXb

(xb|cb, y)

+w2
ib;yxbPXb

(xb|cb, y)
]
.

(10)

From (7), (9), (10), our model parameters include Ω ={
{wij;y}, {πuz;y}, {θz;y} : y = 1, . . . , A

}
.

Validity: Similar to the binary SPNs introduced in [4],
it is worth noting that our joint model of SPN and CG
allows for efficient computation of S(y,1,1), given by

(8). Specifically, its complexity is linear in the number
of SPN nodes, when the connectivity of SPN graph
is valid, i.e., satisfies the completeness and consistency
constraints, defined in Sec. 3. Again, the consistency
constraint is always satisfied by construction. The va-
lidity constraints of our joint model is not restrictive
for modeling human activities that we consider in this
work. This is because a valid SPN can be defined over
a large graph with many redundant nodes and edges.
When latent indicators ĥj are estimated to be zero, or
when weights wij are learned to have zero values, then
the corresponding product nodes j cannot affect the
SPN score S(·). That is, these product nodes and their
descendants are effectively “removed” from the valid
network, yielding a valid joint model of SPN and CG.

6 INFERENCE
Given a video, we recognize activity ŷ, and identify
spatiotemporal windows x̂ that belong to foreground.
For recognition, we maximize the marginal of the joint
distribution, given by (8), as

ŷ = arg max
y

∑
h,x

PYHX(y,h,x) = arg max
y

S(y,1,1),

(11)
where S(y,1,1) can be computed in a bottom-up pass
through the network. For localization, we conduct a
greedy top-down parsing of SPN by estimating latent
indicators ĥ at each SPN level. When the top-down pars-
ing reaches the terminal nodes, we estimate the latent
foreground indicators x̂. Thus, our inference consists of
the bottom-up and top-down computational steps.

We extract video features at points of the counting
grid, and map the features to a dictionary of visual
words. Then, we place a set of windows B across the
grid, and compute the counts of visual words within
every bag. These counts are taken as observables for
computing the SPN scores S(y,h,x), for activity classes
y = 1, . . . , A.

Bottom-up pass: The scores of sum and product
nodes, given by (9), are recursively computed with all
product-node indicators set to 1, Hj = 1, j = 1, 2, ..., as
well as all foreground indicators set to 1, Xb = Xb = 1,
b = 1, ..., n. By setting H = 1 and X = 1, we marginalize
out H and X in the SPN score. The bottom-up pass
starts at the sum nodes connected to the terminals, where
we compute for every activity y = 1, . . . , A:

Si(y,1,1) =
∑
b∈i+

[w1
ib;yPXb

(1|cb, y) + w2
ib;yPXb

(1|cb, y)].

(12)
These scores are propagated bottom-up, for y = 1, . . . , A:

Si(y,1,1) =
∑
j∈i+

wij;ySj(y,1,1),

Sk(y,1,1) =
∏
l∈k+

Sl(y,1,1).
(13)

At the root node, the bottom-up pass performs activity
recognition as in (11).
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Top-down pass: Our goal is to infer x̂ for the recog-
nized ŷ. These estimates are computed top down, via
estimating ĥ for each SPN level. Specifically, we parse
the SPN graph, from the root node down, by identifying
ĥ at every sum node i from the following linear integer
problem:

max
{hj :j∈i+}

∑
j∈i+

hj [wij;ŷSj(ŷ,1,1)]

s.t.
∑
j∈i+ hj = 1; hj ∈ {0, 1}, for all j ∈ i+.

(14)

The entire subgraphs rooted at product nodes j for
which we estimated ĥj = 0 in (14) are removed from
the parse graph. That is, in the greedy top-down pass,
the optimization in (14) is computed only for sum nodes
whose parent product nodes k got selected ĥk = 1.

The top-down pass ends at sum nodes i that are
included in the parse graph and connected to the ter-
minals. In this final step, we estimate the foreground-
background video segmentation from the following lin-
ear integer problem:

max
{xb,xb}

∑
b

[
xb, xb

]>[
w1
ib;ŷPXb

(1|cb, ŷ), w2
ib;ŷPXb

(1|cb, ŷ)
]

s.t. xb + xb = 1, xb, xb ∈ {0, 1}, for all b ∈ i+.
(15)

Our inference is summarized in Alg. 1.

Algorithm 1: Inference

Input: Observed counts of visual words in the video.
Parameters{
{wij;y}, {πuz;y}, {θz;y} : y = 1, . . . , A

}
.

Output: Activity class ŷ, parse ĥ and foreground BoWs x̂.

1 Bottom-Up Pass:
2 Compute {PXb(1|cb, y) : b = 1, ..., n, y = 1, ..., A} as in (7);
3 Compute {Si(y,1,1) : y = 1, ..., A} for sum nodes i at the

leaf level of SPN as in (3);
4 Compute for all sum nodes {Si(y,1,1)} and all product

nodes {Sk(y,1,1)} for y = 1, ..., A as in (13);
5 Top-Down Pass:
6 Recognize activity ŷ at the root node as in (11);
7 Identify the parse graph ĥ as in (14) ;
8 Estimate foreground x̂ as in (15);

7 LEARNING

One of our key contributions is a joint learning of SPN
and CG. We extend SPN learning presented in [4], [5] to
include learning of CG. We formulate a new variational
learning algorithm for this joint learning, using two
settings, one is weakly supervised, and the other is
supervised. In the weakly supervised setting, we assume
that training videos are labeled with activity classes. In
the supervised setting, we assume access to ground-
truth foreground annotations in addition to class labels
of training videos.

Given a set of training videos T showing only positive
instances of an activity class, y = 1, . . . , A, our goal
is to learn parameters Ωy = {wy,πππy, θθθy}. We assume

that all training videos t ∈ T are partitioned into
the same layout of spatiotemporal windows Bt, and
that we can observe counts of visual words within
every window. Learning is formalized as maximizing
the model’s joint distribution over all training videos,
Ω̂y = arg maxΩy

∑
t∈T log

∑
ht,xt PYHX(y,ht,xt), where

y is the ground-truth activity class of training videos in
T . From (8), we have

Ω̂y = arg max
Ωy

∑
t∈T

log
∑
ht,xt

S(y,ht,xt)∑
y S(y,1t,1t)

,

≈ arg max
Ωy

∑
t∈T

max
ht,xt

log
S(y,ht,xt)∑
y S(y,1t,1t)

,

≈ arg max
Ωy

∑
t∈T

log
S(y, ĥt, x̂t)∑
y S(y,1t,1t)

, (weak supervision)

(16)
where, in the weak supervision setting, ĥt and x̂t are
estimated for each training video t ∈ T in the top-
down parse as in (14) and (15), respectively. In the
supervised setting, instead of x̂t, we use the ground-
truth foreground annotation xt in (16).

For estimating Ω̂y in (16) we use iteration which
alternates the following two steps:

1) Estimation of ŵ(τ+1)
y , given πππ

(τ)
y and θθθ

(τ)
y , using

gradient ascent

w
(τ+1)
ij;y = w

(τ)
ij;y + η∆w

(τ)
ij;y, (17)

where η > 0 is the learning rate, and ∆w
(τ)
ij;y is a

gradient of the objective in (16). After updating
all weights {wij;y : j ∈ i+}, as in (17), they
are normalized such that they sum to 1, for all
j ∈ i+ : w

(τ+1)
ij;y = w

(τ+1)
ij;y /

∑
j′∈i+ w

(τ+1)
ij′;y .

2) Estimation of π̂ππ(τ+1)
y and θ̂θθ

(τ+1)

y , given ŵ(τ+1)
y , using

variational approximation.

In the following, we first specify the gradient ∆w
(τ)
ij;y

in the weakly supervised and supervised settings, and
then specify the second step of our iterative learning.

7.1 Estimation of the Gradient of SPN Parameters

To estimate the gradient ∆w
(τ)
ij;y from (16), in the weakly

supervised setting, we compute S(y, ĥt, x̂t) by parsing
the SPN graph as in (14). From (14), each sum node
selects only a single product node to be included in the
parse graph. As a result, the SPN score has the form
of a product S(y, ĥt, x̂t) =

∏
j [wij;ySj(y,1, x̂

t
j)]

ĥt
j , where

ĥtj ∈ {0, 1} for every product node j in SPN. From (16),
it follows that:

∆wij;y =
∑
t∈T

∂
[
ĥtj log[wij;ySj(y,1

t, x̂tj)]− logS(y,1t,1t)
]

∂wij;y
,

=
NWS
ij;y − |T |
wij;y

,

(18)
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where NWS
ij;y is the number of times the edge (i, j) is

included in the parse graph of SPN using (14) across
all training videos in T for activity class y.

Similar to the derivation in (18), we compute the
gradient ∆w

(τ)
ij;y in the supervised setting as

∆wij;y
NS
ij;y − |T |
wij;y

, (19)

where NS
ij;y is the number of times the edge (i, j) is

included in the parse graph of SPN in the supervised
setting for training videos of activity y in T .

7.2 Variational Learning of CG

In the weakly supervised setting, the second step of our
iterative learning computes πππy and θθθy by using the esti-
mates of SPN weights wy and foreground-background
estimates x̂t = {(x̂tb, x̂

t

b) : b = 1, . . . , n}, for training
videos t ∈ T of activity class y. Since S(1,1t,1t) does
not depend on πππy and θθθy , from (16), we have:

[π̂ππy, θ̂θθy] = max
πππy,θθθy

∑
t∈T

logS(y, ĥt, x̂t),

= max
πππy,θθθy

∑
t∈T

∑
Bb∈F t

logPC(ctb|πBb;y)P (πBb;y),

(20)
where F t denotes the set of spatiotemporal windows Bb
in the parse graph of video t estimated as belonging to
foreground, F t = {Bb : Bb ∈ Bt, x̂tb = 1}.

To solve the optimization problem in (20), we
find π̂ππy, θ̂θθy by maximizing a lower variational bound
V (πππy, θθθy) defined as follows. The objective in (20) can
be lower-bounded by the following expression:

Ṽ (πππy, θθθy)=
∑
t∈T

[ n∑
b=1

Qb;y log[(x̂tb − x̂
t

b)/Qb;y]

+

n∑
b=1

Qb;y
∑
z

(ctbz;y + θz;y − 1) log
∑
u∈Bb

πuz;y

]
,

(21)
where {Qb;y : b = 1, ..., n} is the variational distribution
over the latent selection of foreground spatiotemporal
windows Bb ∈ B in the video. Note that the second term
of (21) requires computing the summation

∑
u∈Bb

πuz;y
over all points of the counting grid within window Bb,
before applying the logarithm. We bound this second
term by using the Jensen’s inequality as:

log
∑
u∈Bb

πuz;y= log
∑
u∈Bb

πuz;yruz;y
ruz;y

≥
∑
u∈Bb

ruz;y log
πuz;y
ruz;y

(22)
where ruz;y is a probability distribution over points u,
ruz;y ≥ 0, and

∑
u∈Bb

ruz;y = 1. ruz;y can be computed
as a function of πuz;y , by constrained optimization of
the objective in (22), resulting in ruz;y =

πuz;y∑
u∈Bb

πuz;y
. By

substituting the expression of (22) in (21), we derive our

variational bound of the objective in (20) as

V (πππy, θθθy) =
∑
t∈T

[ n∑
b=1

Qb;y log[(x̂tb − x̂
t

b)/Qb;y]

+

n∑
b=1

Qb;y

[∑
z

(ctbz + θz;y − 1)
∑
u∈Bb

ruz;y log(
πuz;y
ruz;y

)

+
∑
u∈Bb

λπu
(
∑
z

πuz;y − 1)
]]
− λθ(

∑
z

θz;y − 1),

(23)
where the last two terms account for the follow-
ing probability-distribution constraints of πuz and θz :∑
z πuz = 1, and

∑
z θz = 1, and {λπu

} and λθ are the
Lagrangian coefficients.

Maximizing (23) with respect to πππy and θθθy gives the
following update rules:

π
(τ+1)
uz;y ∝ π(τ)

uz;y

∑
t∈T

n∑
b=1

Q
(τ)
b;y (ctbz + θ

(τ)
z − 1)∑

u∈Bb
π

(τ)
uz;y

,

θ
(τ+1)
z;y ∝ θ(τ)

z

n∑
b=1

Q
(τ)
b;y

∑
u∈Bb

π
(τ)
uz;y log[

∑
u∈Bb

π
(τ)
uz;y]∑

u∈Bb
π

(τ)
uz;y

.

(24)
where Qb;y that maximizes V (πππy, θθθy) can be computed
from (23) as

Q
(τ+1)
b;y ∝

exp[
∑

t,z,i∈j+
(w1

ibx̂
t
b−w2

ibx̂
t

b)(c
t
bz+θ

(τ)
z;y−1) log

∑
u∈Bb

π(τ)
uz;y].

(25)
In the supervised setting, the update equations of

π
(τ+1)
uz;y and θ

(τ+1)
z;y , given by (24), remain the same, while

Q
(τ+1)
b;y is computed by using the ground-truth fore-

ground annotations xtb and xtb in (25), instead of the
estimates x̂tb and x̂

t

b.

7.3 Initialization of Learning

The initial distributions {π(0)
uz;y} and {θ(0)

z;y} are estimated
as the average counts of visual-word occurrences, ob-
served at every point u of the counting grids of training
videos t ∈ T , such that

∑
z π

(0)
uz;y = 1, and

∑
z θ

(0)
z;y = 1.

Based on our empirical evaluation explained in Sec. 8,
the initial valid graph structure of SPN for learning is
specified as follows. The initial height of SPN is set
to 8 levels including: the alternating 3 levels of sum
nodes and 3 levels of product nodes, the lowest level
of terminal nodes, and a single root node at the top.
The initial width of SPN at each of the non-terminal
alternating levels is set to 10 nodes. At the lowest
level of sum nodes, we connect each sum to a distinct
group of terminal nodes, i.e., space-time windows in
the video. In particular, the video se partitioned into
10 non-overlapping intervals in time, and all binary
indicators Xb and Xb of space-time windows that fall
within interval i are connected to the corresponding
sum node i, i = 1, . . . , 10. For the higher levels of SPN,
we establish full connectivity between all nodes at the
consecutive levels, i.e., each parent node has 10 children,
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and each child node has 10 parents. Such a structure of
SPN is suitable for modeling a range of activity classes,
where foreground time intervals in the video are picked
by a few lowest-level sum nodes, and their configuration
by a few product nodes in the SPN’s parse graph.

In our experiments, we also evaluate our performance
when the initial graph structure of SPN does not satisfy
the completeness constraint, defined in Sec. 3. While
there are numerous possibilities to construct an invalid
graph structure, for comparison, we use a network as
similar to the above valid SPN as possible but with
a “nearly full” network connectivity. Thus, the initial
height and width of non-terminal levels of SPN are the
same as above. Also, the connectivity between the lowest
level of sum nodes and terminal nodes is the same as
above. But for the higher levels, every parent gets linked
to a distinct subset of 9 children nodes. Note that in
this way two children product nodes of a parent sum
node will have access to different subsets of terminal
nodes, which will violate the completeness constraint. At
the same time, the nearly full connectivity between the
levels of SPN enables sufficient redundancy for learning
to “remove” spurious nodes.

Our weakly supervised learning is summarized in
Alg. 2. In our experiments, Alg. 2 converges in about
τmax = 10 − 20 iterations, depending on the activity
class. After learning, the final SPN graph is obtained
by pruning edges with zero weights, and recursively
removing non-root parentless nodes.

Algorithm 2: Weakly Supervised Learning

Input: Training videos T = {t} of activity class y
Output: Ωy = {wy,πππy, θθθy}

1 Initialize the valid SPN graph structure;
2 Estimate w

(0)
y , πππ(0)

y , θθθ(0)y
3 for τ = 1 : τmax do
4 for t ∈ T do
5 Parse t using Alg. 1, and estimate x̂t;
6 end
7 Compute w

(τ)
y using (17) and (18) on T ;

8 Normalize w(τ) to sum to 1 for every sum node i ;
9 Compute πππ(τ) and θθθ(τ) as in (24)

10 end

8 RESULTS

This section specifies the datasets used for evaluation,
our features, and baselines, as well as presents our
quantitative and qualitative results.

8.1 Datasets

Most existing benchmark datasets – e.g., the Weizmann,
Trecvid, PETS04, CAVIAR, IXMAS, Hollywood datasets
– show relatively simple punctual or repetitive actions
with little structural variability [10]–[12]. The Olympic
Sports and UCF-101 are more challenging benchmark

datasets with structured, single person’s activities. How-
ever, these datasets are also not suitable for our evalua-
tion, since most of their activity classes have determin-
istic temporal structure as regulated by the strict spec-
ifications of the Olympics or other sports. Surveillance
datasets – e.g., the VIRAT Aerial and CLIF datasets –
are also not appropriate for our evaluation, since they
are recorded from a high altitude where people are
poorly visible. The UCLA Courtyard and Collective Ac-
tivity datasets show group activities which lack temporal
structure that our model is specifically aimed at.

For evaluation, we use five datasets: VIRAT 1.0 & 2.0
[1], UT-Interactions [41], KTH [7], 2011 TRECVID Multi-
media Event Detection [8], and our own new Volleyball
dataset [42].

VIRAT 1.0 & 2.0 includes 11 activity classes: loading
and unloading a vehicle, opening and closing the trunk
of a vehicle, getting into and out of a vehicle, entering
and exiting a facility, running, carrying an object, and
gesturing. VIRAT is suitable for our evaluation, because
its videos show activities with structural variations. As
in [43], we have partitioned the VIRAT footage into
shorter clips. Each clip shows an instance of one of the
11 activities, which may take between 5-10s, as well
as 10 additional seconds of the original longer video.
These additional 10s may occur randomly before and/or
after the target activity instance. In this way, we have
compiled a dataset with 20 VIRAT clips for each activity,
where 50% are used for training, and 50%, for testing.

UT-Interactions consists of 120 video clips, with the
standard split of 20% training and 80% testing video,
where each clip shows an instance from the set of 6 activ-
ity classes: shaking-hands, pointing, hugging, pushing,
kicking, and punching.

KTH consists of 2391 short sequences showing 6 types
of human actions: walking, jogging, running, boxing,
hand waving, and hand clapping. Although our focus
is on complex activities, we use KTH for comparison
against the state of the art [29], [31], [41], [44] under
their setup: videos of 16 subjects are used for training,
and videos of other 9 subjects are used for testing.
This dataset is a sanitized dataset where all competing
approaches have an accuracy of 95% or higher.

TRECVID consists of Internet videos showing 15
events. The videos are split into two sets: DEV-T and
DEV-O. The DEV-T set consists of five events: “Board
trick” (BT), “Feeding an animal” (FA), “Landing a fish”
(LF), “Wedding ceremony” (WC), and “Wood project”
(WP). The DEV-O set consists of 10 events: “Birthday
party” (BP), “Changing a tire” (CT), “Flashmob gather-
ing” (FG), “Getting a vehicle unstuck” (VU), “Grooming
an animal” (GA), “Making a sandwich” (MS), “Parade”
(PA), “Parkour” (PR), “Repairing an appliance” (RA),
and “Sewing project” (SP). For each event, there are
approximately 150 training videos. For testing, there are
10,723 videos in DEV-T, and 32,061 videos in DEV-O
with a total duration of 1200 hours. We consider the two
test sets separately per the evaluation instructions in [8].



IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 9

TRECVID is more suitable for evaluating video retrieval,
since both DEV-T and DEV-O contain additional null
videos that do not show any of the above 15 events.
Our performance on these null videos amounts to chance
classification, which reduces our average classification
accuracy. Nevertheless, we use this dataset for its com-
plexity and comparison with related approaches.

Our Volleyball dataset [42] consists of 240 videos
showing 6 classes of volleyball set types – namely,
setting the ball to the left, right, middle, back right,
back left, and back middle Fig. 7. Volleyball dataset is
suitable for our purposes, since each activity class can be
realized through a wide range of different sequences of
ball passes between the volleyball players. There are 40
videos per class, split into 20 training and 20 test videos.
Each video is about 4-5 seconds long, and shows one
instance of the volleyball set type at resolution 720×480.
The volleyball game is a very dynamic group sport, and
a 4-second video footage may show the entire volleyball
play involving quick player interactions and ball passes.
The videos show a large variability of players’ move-
ments under occlusion. We provide ground-truth anno-
tations in terms of bounding boxes around the volleyball
players engaged in the activity. Our Volleyball dataset is
challenging due to very small inter-class differences.

Volleyball, TRECVID, VIRAT and UT-Interactions pro-
vide ground-truth foreground annotations, which we use
for evaluation of foreground localization.

8.2 Features
For feature extraction, we use the two-layered Stacked
Convolutional ISA network (SCISA), recently presented
in [36]. We closely follow their setup, since it was
thoroughly evaluated and demonstrated as superior to
alternative methods. Specifically, we represent a video
by a space-time grid of N × N × N points that are
evenly distributed along each of the spatial and time
axes, where N = 64 is default. Then, a space-time patch
of size (16 pixels) × (16 pixels) × (10 frames) centered
at each grid point is input to the SCISA network to
produce a 500-dimensional feature vector. This feature
vector is then mapped to the closest visual word in a 300-
dimensional dictionary. As in [36], we train the SCISA
network on 200K video patches, and learn the dictionary
of visual words on the resulting local features using the
K-means, with K=300.

8.3 Baselines
To evaluate sensitivity to our design choices, we define a
default variant of our approach, SPN+CG, and compare
it to variants SPN+CG+Cubes, SPN+LR, and CG.

SPN+CG uses the counting grid with N × N × N
points, where N = 64. Every grid point is a center of
a hierarchy of windows enclosing (2−mN) × (2−mN) ×
(2−mN) neighboring points, where m = 1, 2, ..., log2

N
4 .

At each grid point, SPN+CG extracts local features using
the SCISA network of [36], and maps them to 300 visual

words. Next, we place space-time windows centered at
every point of the counting grid. The windows enclose
N
2m× N

2m× N
2m neighboring points (except windows on the

video boundary), where m = 2, 3, ..., log2
N
4 . We consider

two strategies for specifying the window size: (a) m is
set to one specific value and applied to all windows;
(b) m is varied in the interval [2, log2

N
4 ] producing a

hierarchy of windows. The SPN network structure is
initialized as described in Sec. 7.3. The video is parti-
tioned into 10 time intervals, which are then represented
by 10 sum nodes at the lowest level in SPN. Each
sum node of the lowest level is connected to all space-
time windows that fall within the corresponding time
interval. We evaluate SPN+CG when the SPN graph
structure is valid, SPN+CG(V), and when the SPN graph
structure is not complete, SPN+CG(I). If the type of
graph structure is not explicitly stated, then we will
assume the valid structure. Finally, SPN+CG is evaluated
when the model parameters are learned under weak su-
pervision, SPN+CG(WS), and supervision, SPN+CG(S).
For simplicity, we use shorthand notation SPN+CG to
denote SPN+CG(WS,V) as our default.

SPN+CG+Cubes changes the feature extraction step,
and uses the cuboid spatiotemporal features of [45],
which were also used in [31], [41]. A comparison of
SPN+CG and SPN+CG+Cubes tests our dependency on
the type of local features used.

SPN+LR replaces the CG model with the widely pop-
ular multinomial logistic regression (LR) for predicting
if a space-time window belongs to foreground of a
given activity class, PXb

(Xb = 1|cb, y) =
exp(βy·cb)∑
y exp(βy·cb) .

SPN+LR uses the same features as our SPN+CG. Note
that learning of SPN+LR requires the supervised setting.
Maximum likelihood (ML) is used to learn the LR pa-
rameters βy in the supervised setting over all space-time
windows {Bb} labeled as belonging to foreground of
class y, y = 1, . . . , A.

CG uses a 3-layered SPN, illustrated in Fig. 4. In CG,
all space-time windows are selected as foreground, i.e.,
∀b, Xb = 1 and Xb = 0, and all windows are connected to
their sum nodes at the upper level with weights set to 1.
There is only one product node connected to the root. CG
is equivalent to the CG model of [3]. CG uses the same
features as our SPN+CG. CG parameters are learned in
the supervised setting. A comparison of SPN+CG and
CG tests the advantages of using a deep model versus
the CG model.

Fig. 4 shows the parse graphs of SPN+CG and CG,
inferred on an example video from the VIRAT dataset.

8.4 Quantitative Results

Evaluation Metrics include: video classification accu-
racy, and recall and precision of localizing foreground.
A true positive is declared if the intersection of ground-
truth and detected foreground is not smaller than 50%
of their union.
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(a) SPN+CG (b) CG

Fig. 4. Our inference on an example video from the VIRAT dataset: (a)
A part of the parse graph using SPN+CG and the inferred foreground
(green). (b) CG is equivalent to the counting grid model of [3] which
selects all space-time windows as foreground.

Sensitivity to model parameters. Tab. 1 shows sen-
sitivity of SPN+CG to a specific choice of the number
of: (a) SPN levels, (b) counting grid points, and (c) grid
points enclosed by each space-time window. As can be
seen, we are relatively insensitive to (a)–(c) over a certain
range of their values. As the SPN height and width
increase, the results improve. However, SPN heights
above 24 levels, and widths above 10 nodes lead to
over fitting. For all our experiments, presented below,
we choose the smallest SPN height of 8 levels and width
of 10 nodes at non-terminal levels, which give equally
good performance as more complex models.

Sensitivity to Number of Training Data. Fig. 5 shows
how the number of training examples affects our av-
erage classification accuracy on the Volleyball dataset.
We examined both learning settings: SPN+CG(WS,V)
and SPN+CG(S,V). As can be seen, our performance im-
proves in both settings as the number of training exam-
ples increases, and becomes saturated when the number
of examples goes above 20. Interestingly, difference in
the performance of SPN+CG(WS,V) and SPN+CG(S,V)
is relatively small for 20 training examples. This suggests
that our approach is able to robustly learn volleyball
activity classes from a relatively small number of exam-
ples. We observed similar behavior of SPN+CG(WS,V)
and SPN+CG(S,V) on the other datasets. For the other
datasets, we did not observe overfitting, i.e., decreasing
performance for larger numbers of training examples.

Supervision vs. Weak Supervision. Tab. 2 shows
that SPN+CG(S) outperforms SPN+CG(WS) in terms of
average classification accuracy. This is expected, since
SPN+CG(S) has access to additional ground-truth an-
notations in training. But the differences in their per-
formance range between 1.6% and 3.1% on the KTH,
UT-Interactions, VIRAT, and Volleyball datasets. This
demonstrates that SPN+CG(WS) successfully relaxes the
requirement for expensive manual annotations of fore-
ground in videos. Confusion matrices of SPN+CG(WS)
and SPN+CG(S) on the four datasets are shown in Fig. 6.

Fig. 5. Average classification accuracy of SPN+CG(WS,V) and
SPN+CG(S,V) on the Volleyball dataset as a function of the number of
training examples.

Tab. 3 presents recall and precision of SPN+CG(WS)
and SPN+CG(S) on the UT-Interactions, VIRAT, and
Volleyball datasets. Both approaches achieve the highest
F-measure when they use a hierarchy of space-time win-
dows with sizes defined by varying m={2, 3, 4}. As ex-
pected, SPN+CG(WS) yields worse foreground localiza-
tion. In some error cases we observed that SPN+CG(WS)
identified informative parts of background, providing
contextual cues for recognition, as foreground. Consid-
ering that SPN+CG(WS) is trained without any access
to foreground annotations, its localization performance
is quite good in comparison to that of SPN+CG(S).

Comparisons. Tab. 2 shows that SPN+CG outper-
forms the baselines SPN+CG+Cubes(S), SPN+LR, and
CG. In particular, on the Volleyball dataset, accuracy of
SPN+CG(S) and SPN+CG(WS) is larger by 12.5% and
10.8% than that of CG, respectively, which quantifies the
advantages of grounding SPN onto the counting grid
model of [3], even when our deep model is trained under
weak supervision. As can be seen, replacing the counting
grid model with logistic regression in SPN+LR decreases
performance. Also, using the cuboid spatiotemporal fea-
tures in SPN+CG+Cubes(S) is inferior to our weakly
supervised SPN+CG(WS).

Tab. 2 also shows a comparison with prior work: (i)
SVM of a Bag-of-Word of SCISA features [36]; (ii) SVM
of space-time grids of local features [29]; (iii) SVM with a
kernel that accounts for spatiotemporal matches of inter-
est points [41]; (iv) pLSA and LDA models [31]; (v) Con-
volutional neural networks [37]; and (vi) Action-bank
[44]. Interestingly, even without deep learning of local
features, SPN+CG+Cubes outperforms the approaches
of [29], [31], [36], [37], [41]. The comparison with the
action-bank of [44] is unfair to us, hence our lower
performance, since the approach of [44] uses a higher
level of supervision in training for expressing human
activities in terms of simpler actions. Unlike [44], we
do not have access to annotations of simpler actions in
training.

Valid vs. Invalid Graph Structure. Tab. 4 shows
the average classification accuracy, precision and recall
of SPN+CG(S,V) and SPN+CG(S,I) on the VIRAT, UT-
Interactions, and Volleyball datasets. As can be seen,
SPN+CG(S,I) is worse for each evaluation metric. One
reason is that the graph connectivity of SPN+CG(S,I)
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SPN height
Dataset 4 8 16 24 32 64
VIRAT 75.4±1.2 76.2±3.1 76.3±2.1 76.2±1.2 74.6±2.4 70.9±2.6

Volleyball 67.5±2.8 69.8±1.6 69.1±1.3 68±3.1 65±2.3 62.5±2.6

SPN width
Dataset 5 10 20 40
VIRAT 68.4±3.7 76.2±3.1 72.7±1.2 70.1±3.8

Volleyball 62.5±2.4 69.8±1.6 66.3±2.8 64.1±2.2

# of pts in the counting grid is N ×N ×N
Dataset N = 16 N = 32 N = 64 N = 128
VIRAT 63.6±1.4 71.9±3.4 76.2±3.1 74.72±1.5

Volleyball 60.1±1.1 63.6±2.4 69.8±1.6 66.3±2.1

Window size (64 · 2−m)× (64 · 2−m)× (64 · 2−m) grid pts
Dataset m = 2 m = 3 m = 4 m = 2, 3, 4
VIRAT 68.1±3.4 72.72±2.3 74.5±3.7 76.2±3.1

Volleyball 52.5±1.8 61.1±1.4 63.3±2.1 69.8±1.6
TABLE 1

Average classification accuracy in [%] of SPN+CG(WS,V) on the VIRAT and Volleyball datasets using different SPN heights, SPN widths of
non-terminal levels, numbers of points in the counting grid, and different sizes of space-time windows. Note that m=2, 3, 4 denotes that we use a

hierarchy of space-time windows.

Dataset SPN+CG(S) SPN+CG(WS) SPN+CG+Cubes(S) SPN+LR CG [44] [36] [37] [29] [41] [31]
KTH 96.8±1 95.2±2.9 94.8±1.6 94.0±1.1 91±1.2 98.2 93.9 90.2 91.8 91.1 83.3

Dataset SPN+CG(S) SPN+CG(WS) SPN+CG+Cubes(S) SPN+LR CG [36] [14] [41]
UT 85.5±1.2 82.4±1.3 81.1±1.1 80.3±1.3 75.2±2.3 76.0 75.7 70.8

Dataset SPN+CG(S) SPN+CG(WS) SPN+CG+Cubes(S) SPN+LR CG [36]
VIRAT 78.04±1.2 76.2±1.1 74.1±1.2 72.5±2 70.7±2.2 68.1

Volleyball 71.5±2.1 69.8±2.6 66.5±1.9 65.0±1.3 59.0±2.4 56.6
TABLE 2

Average classification accuracy in [%] on the KTH, UT-Interactions, VIRAT, and Volleyball datasets.

Window size = (2−m64)× (2−m64)× (2−m64) grid points
m = 2 m = 3 m = 4 m={2, 3, 4}

Dataset SPN+CG(S) SPN+CG(WS) SPN+CG(S) SPN+CG(WS) SPN+CG(S) SPN+CG(WS) SPN+CG(S) SPN+CG(WS)
VIRAT .97 (.29) .97 (.18) .93 (.37) .90 (.38) .76 (.54) .73 (.48) .72 (.70) .69 (.64)

UT .98 (.21) .96 (.15) .89 (.26) .88 (.27) .75 (.50) .72 (.46) .70 (.66) .62 (.55)
Volleyball .79 (.28) .78 (.21) .72 (.27) .69 (.24) .56 (.27) .52 (.28) .55 (.51) .52 (.41)

TABLE 3
Recall and precision (given in the parentheses) for different sizes of space-time windows.

Classification accuracy Precision Recall
Dataset SPN+CG(S,V) SPN+CG(S,I) SPN+CG(S,V) SPN+CG(S,I) SPN+CG(S,V) SPN+CG(S,I)
VIRAT 78.04±1.2 74.8±2.9 .70 .62 .72 .67

UT 85.5±1.2 81.6±3.8 .66 .60 .70 .66
Volleyball 71.5±2.1 68.3±3.2 .51 .43 .55 .50

TABLE 4
Average classification accuracy, recall, and precision for valid (V) and invalid (I) architectures using SPN+CG(S) with space-time windows of sizes

m={2, 3, 4}

is manually specified, and violates the completeness
constraint. Interestingly, the difference in classification
accuracy of the models with valid and invalid graph
structures is smaller than the differences in their recall
and precision.

Detection of Complex Events. Tab. 5 shows the av-
erage precision of SPN+CG in detecting the complex
events of TRECVID, and our comparison with the fol-
lowing state-of-the-art approaches. [47] uses the max-
margin framework to discover and learn the sequences
of latent parts of the complex events. [48] hierarchically
combines video features using an AND-OR graph struc-
ture, where nodes in the graph represent combinations of
different sets of features. [49] fuses multiple features, and
learns multi-level relevance labels of training videos. [46]

uses linear dynamical system models for capturing the
dynamics of time series of windowed mid-level concept
detectors. As can be seen, SPN+CG yields the largest
mean average precision and thus outperforms the state
of the art in detecting complex events “in the wild”.
Running time. Without feature extraction, using our
MATLAB implementation, inference of SPN+CG on the
4sec Volleyball videos takes on average 11s; and to learn
SPN+CG using 20 training Volleyball videos it takes
about 700sec. on a 2.66GHz, 3.49GB RAM PC.

8.5 Qualitative Results

Fig. 7 illustrates foreground localization of SPN+CG on
a few frames from example videos of the Volleyball,
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Event Chance [46] [47] [48] SPN+CG
BT 1.18 33 15.44 22.87 29.02
FA 1.06 12 3.55 7.75 16.82
LF 0.89 27 14.02 30.31 27.98

WC 0.86 31 15.09 38.12 47.24
WP 0.93 22 8.17 21.50 32.58

Mean AP 0.98 24 11.25 24.11 40.32

Event Chance [49] [47] [48] SPN+CG
BP .54 16.2 4.38 15.97 17.02
CT .35 25.2 0.92 31.92 26.12
FG .42 54.2 15.29 44.11 60.04
VU .26 28.2 2.04 16.32 13.88
GA .25 9.2 0.74 11.00 14.34
MS .43 10.2 0.84 14.29 18.08
PA .58 28.7 4.03 18.53 19.88
PR .32 31.2 3.04 26.10 29.82
RA .27 29.3 10.88 27.03 34.76
SP .26 18.3 5.48 12.49 19.24

Mean AP .37 25.07 4.77 21.78 25.22
TABLE 5

Average precision (AP) in [%] for detection on TRECVID. (Left) DEV-T: “Board trick” (BT), “Feeding an animal” (FA), “Landing a fish” (LF),
“Wedding ceremony” (WC), “Wood project” (WP). (Right) DEV-O: “Birthday party” (BP), “Changing a tire” (CT), “Flashmob gathering” (FG),

“Getting a vehicle unstuck” (VU), “Grooming an animal” (GA), “Making a sandwich” (MS), “Parade” (PA), “Parkour” (PR), “Repairing an appliance”
(RA), and “Sewing project” (SP). The column “Chance” indicates the proportion in [%] of the corresponding event class in the test set.

(a) VIRAT

(b) Volleyball (c) UT interactions

Fig. 6. Confusion matrices of SPN+CG(WS) and SPN+CG(S) on
VIRAT, Volleyball, and UT-interactions.

VIRAT, and UT-Interaction datasets. In particular, the
Volleyball video shows the activity “setting-the-ball-to-
the-left”, the VIRAT video shows the activity “loading-
a-vehicle”, and the UT-Interactions video shows the
activity “hugging”. As can be seen, SPN+CG correctly
estimated foreground (green windows) in the three
videos. Note that in the UT-Interactions video SPN+CG
correctly localized “hugging” which simultaneously co-
occurs next to the activity “pointing”. In the supplemen-
tal material, we present two successful example videos
from the volleyball dataset. The first video shows the
activity “set-to-back-left”, and the second video shows
the activity “set-to-front-left”.

Fig. 8 shows an example video sequence from the
UT-Interaction dataset where SPN+CG correctly detected
that the video shows the activity “hugging”, but also
wrongly estimated that the space-time window occupied
by the activity “shaking hands” belongs to the fore-
ground of “hugging”. SPN+CG got confused because
“shaking hands” is very similar to “hugging”, and the
two activities happen at the same time, near each other.
Selecting a smaller size of space-time windows would
address this failure example.

Additional examples of our results are presented in
the supplemental material.

9 CONCLUSION

We have addressed video classification and localization
of activities with stochastic structure. We have speci-
fied a new joint model of sum-product network (SPN)
and counting grid (CG) for representing such activities.
SPN+CG represents a hierarchical mixture of distribu-
tions of counts of visual words, which are detected on
a regular space-time grid in the video. New inference
and learning algorithms of SPN+CG under both weak
supervision and supervision have been formulated. Our
inference algorithm has linear complexity in the number
of nodes in SPN+CG, when the graph connectivity of
SPN+CG is valid. The validity constraint can be ensured
by construction.
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Due to the valid graph structure, SPN+CG enables
exact (i.e., tractable) and thus efficient activity recog-
nition and localization. Our experiments demonstrate
that performance of SPN+CG is relatively insensitive
over a range of values of model parameters: number
of levels, number of nodes in non-terminal levels, num-
ber of points in the counting grid, and size of space-
time windows. While the weakly supervised SPN+CG
yields suboptimal performance relative to the supervised
SPN+CG, the former does not need expensive manual
annotations of foreground in training videos. The weakly
supervised SPN+CG outperforms the state of the art in
terms of classification accuracy, and recall and precision
of activity detection on the four benchmark datasets:
KTH, VIRAT, UT-Interactions, TRECVID MED 2011. We
have also compiled a new, challenging dataset of six
types of volleyball plays with variable spatiotemporal
structures, and small inter-class differences.
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(a) Volleyball Dataset (Set-to-the-left)

(b) Virat Dataset (loading of a vehicle)

(c)UT-Interaction (Hugging)

Fig. 7. Foreground localization of SPN+CG on example vides from: (a) the Volleyball dataset showing the activity “setting the ball to the left”; (b) the
VIRAT dataset showing the activity “loading a vehicle”; and (c) the UT-Interaction dataset showing the activity “hugging”. The estimated foreground
space-time windows are marked green. SPN+CG correctly localized “hugging” which simultaneously co-occurs next to the activity “pointing”. We
visualize only a subset of points of the counting grid, for clarity.

Fig. 8. An example from the UT-Interaction dataset where SPN+CG correctly detected that the video shows the activity “hugging”, but also
wrongly estimated that the space-time window occupied by the activity “shaking hands” belongs to the foreground of “hugging”. SPN+CG got
confused because “shaking hands” co-occurs very close to the relatively similar activity “hugging”.
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