
www.elsevier.com/locate/patrec

Pattern Recognition Letters 28 (2007) 631–643
Unifying multi-class AdaBoost algorithms with binary base
learners under the margin framework

Yijun Sun a,*, Sinisa Todorovic b, Jian Li c

a Interdisciplinary Center for Biotechnology Research, P.O. Box 103622, University of Florida, Gainesville, FL 32610, USA
b Beckman Institute, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA

c Department of Electrical and Computer Engineering, P.O. Box 116130, University of Florida, Gainesville, FL 32611, USA

Received 30 January 2006; received in revised form 21 June 2006
Available online 14 December 2006

Communicated by K. Tumer
Abstract

Multi-class AdaBoost algorithms AdaBooost.MO, -ECC and -OC have received a great attention in the literature, but their relation-
ships have not been fully examined to date. In this paper, we present a novel interpretation of the three algorithms, by showing that MO
and ECC perform stage-wise functional gradient descent on a cost function defined over margin values, and that OC is a shrinkage ver-
sion of ECC. This allows us to strictly explain the properties of ECC and OC, empirically observed in prior work. Also, the outlined
interpretation leads us to introduce shrinkage as regularization in MO and ECC, and thus to derive two new algorithms: SMO and
SECC. Experiments on diverse databases are performed. The results demonstrate the effectiveness of the proposed algorithms and val-
idate our theoretical findings.
� 2006 Elsevier B.V. All rights reserved.

Keywords: AdaBoost; Margin theory; Multi-class classification problem
1. Introduction

AdaBoost is a method for improving the accuracy of a
learning algorithm (Freund and Schapire, 1997; Schapire
and Singer, 1999). It repeatedly applies a base learner to
the re-sampled version of training data to produce a collec-
tion of hypothesis functions, which are then combined via a
weighted linear vote to form the final ensemble classifier.
Under a mild assumption that the base learner consistently
outperforms random guessing, AdaBoost can produce a
classifier with arbitrary accurate training performance.

AdaBoost, originally designed for binary problems, can
be extended to solve for multi-class problems. In one of
such approaches, a multi-class problem is first decomposed
into a set of binary ones, and then a binary classifier is used
0167-8655/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.patrec.2006.11.001

* Corresponding author. Tel.: +1 352 273 8065; fax: +1 352 392 0044.
E-mail address: sun@dsp.ufl.edu (Y. Sun).
as the base learner. This approach is important, since the
majority of well-studied classification algorithms are
designed only for binary problems. It is also the main focus
of this paper. Several algorithms have been proposed
within the outlined framework, including AdaBoost.MO
(Schapire and Singer, 1999), -OC (Schapire, 1997) and
-ECC (Guruswami and Sahai, 1999). In these algorithms,
a code matrix is specified such that each row of the code
matrix (i.e., code word) represents a class. The code matrix
in MO is specified before learning; therefore, the underly-
ing dependence between the fixed code matrix and so-con-
structed binary classifiers is not explicitly accounted for, as
discussed in (Allwein et al., 2000). ECC and OC seem to
alleviate this problem by alternatively generating columns
of a code matrix and binary hypothesis functions in a
pre-defined number of iteration steps. Thereby, the under-
lying dependence between the code matrix and binary clas-
sifiers is exploited in a stage-wise manner.

mailto:sun@dsp.ufl.edu


632 Y. Sun et al. / Pattern Recognition Letters 28 (2007) 631–643
MO, ECC, and OC, as the multi-class extensions of
AdaBoost, naturally inherit some of the well-known prop-
erties of AdaBoost, including a good generalization cap-
ability. Extensive theoretical and empirical studies have
been reported in the literature aimed at understanding
the generalization capability of the two-class AdaBoost
(Dietterich, 2000; Grove and Schuurmans, 1998; Quinlan,
1996). One leading explanation is the margin theory (Scha-
pire et al., 1998), stating that AdaBoost can effectively
increase the margin, which in turn is conducive to a good
generalization over unseen test data. It has been proved
that AdaBoost performs a stage-wise functional gradient
descent procedure on the cost function of sample margins
(Mason et al., 2000; Breiman, 1999; Friedman et al.,
2000). However, to the best of our knowledge neither sim-
ilar margin-based analysis, nor empirical comparison of the
multi-class AdaBoost algorithms has to date been reported.

Further, we observe that the behavior of ECC and OC
for various experimental settings, as well as the relationship
between the two algorithms are not fully examined in the
literature. For example, Guruswami and Sahai (1999)
claim that ECC outperforms OC, which, as we show in this
paper, is not true for many settings. Also, it has been
empirically observed that the training error of ECC con-
verges faster to zero than that of OC (Guruswami and
Sahai, 1999), but no mathematical explanation of this phe-
nomenon, as of yet, has been proposed.

In this paper, we investigate the aforementioned missing
links in the theoretical developments and empirical studies
of MO, ECC, and OC. We show that MO and ECC per-
form stage-wise functional gradient descent on a cost func-
tion, defined in the domain of margin values. We further
prove that OC is actually a shrinkage version of ECC. This
theoretical analysis allows us to derive the following
results. First, several properties of ECC and OC are formu-
lated and proved, including (i) the relationship between
their training convergence rates, and (ii) their performances
in noisy regimes. Second, we show how to avoid the redun-
dant calculation of pseudo-loss in OC, and thus to simplify
the algorithm. Third, two new regularized algorithms are
derived, referred to as SMO and SECC, where shrinkage
as regularization is explicitly exploited in MO and ECC,
respectively.

We also report experiments on the algorithms’ behavior
in the presence of mislabeled training data. Mislabeling
noise is critical for many applications, where preparing a
good training data set is a challenging task. Indeed, an
erroneous human supervision in hard-to-classify cases
may lead to training sets with a significant number of mis-
labeled data. The influence of mislabeled training data on
the classification error for two-class AdaBoost was also
investigated in (Dietterich, 2000). However, to our knowl-
edge, no such study has been reported for multi-class Ada-
Boost yet. The experimental results support our theoretical
findings. In a very likely event, when for example 10% of
training patterns are mislabeled, OC outperforms ECC.
Moreover, in the presence of mislabeling noise, SECC con-
verges fastest to the smallest test error, as compared to the
other algorithms.

The remainder of the paper is organized as follows. In
Sections 2 and 3, we briefly review the output-coding
method for solving the multi-class problem and two-class
AdaBoost. Then, in Sections 4 and 5, we show that MO
and ECC perform functional gradient-descent. Further,
in Section 5, we prove that OC is a shrinkage version of
ECC. The experimental validation of our theoretical find-
ings is presented in Section 6. We conclude the paper with
our final remarks in Section 7.

2. Output coding method

In this section, we briefly review the output coding
method for solving multi-class classification problems
(Allwein et al., 2000; Dietterich and Bakiri, 1995). Let
D ¼ fðxn; ynÞg

N
n¼1 2 X�Y denote a training dataset, where

X is the pattern space and Y ¼ f1; . . . ;Cg is the label
space. To decompose the multi-class problem into several
binary ones, a code matrix M 2 {±1}C·L is introduced,
where L is the length of a code word. Here, M(c) denotes
the cth row, that is, a code word for class c, and M(c, l)
denotes an element of the code matrix. Each column of
M defines a binary partition of C classes over data samples
– the partition, on which a binary classifier is trained. After
L training steps, the output coding method produces a final
classifier f(x) = [f1(x), . . . , fL(x)]T, where flðxÞ : x! R.
When presented an unseen sample x, the output coding
method predicts the label y*, such that the code word
M(y*) is the ‘‘closest’’ to f(x), with respect to a specified
decoding strategy. In this paper, we use the loss-based
decoding strategy (Allwein et al., 2000), given by
y� ¼ arg miny2Y

PL
l¼1 expð�Mðy; lÞflðxÞÞ.

3. AdaBoost and LP-based margin optimization

In this section, we briefly review the AdaBoost algo-
rithm, and its relationship with margin optimization. Given
a set of hypothesis functions H ¼ fhðxÞ : x! f�1gg,
AdaBoost finds an ensemble function in the form of
F ðxÞ ¼

P
tathtðxÞ or f ðxÞ ¼ F ðxÞ=

P
tat, where "t, at P 0,

by minimizing the cost function G ¼
PN

n¼1 expð�ynF ðxnÞÞ.
The sample margin is defined as qðxnÞ ¼

D
ynf ðxnÞ, and the

classifier margin, or simply margin, as q ¼D min16n6NqðxnÞ.
Interested readers can refer to Freund and Schapire
(1997) and Sun et al. (in press) for more detailed discussion
on AdaBoost.

It has been empirically observed that AdaBoost can
effectively increase the margin (Schapire et al., 1998). For
this reason, since the invention of AdaBoost, it has been
conjectured that when t!1, AdaBoost solves a linear
programming (LP) problem:

max q;

s:t: qðxnÞP q; n ¼ 1; . . . ;N :
ð1Þ



Y. Sun et al. / Pattern Recognition Letters 28 (2007) 631–643 633
where the margin is directly maximized. In the recent paper
Rudin et al. (2004), however, the equivalence of the two
algorithms has been proven to not always hold. Neverthe-
less, these two algorithms are closely connected in the sense
that both algorithms try to maximize the margin. Through-
out this paper, we will make use of this connection to define
a cost function over the domain of margin values, upon
which the multi-class AdaBoost.MO, ECC and OC algo-
rithms perform stage-wise gradient descent.

4. AdaBoost.MO

In this section, we study AdaBoost.MO. In Fig. 1, we
present the pseudo-code of the algorithm as proposed
in (Schapire and Singer, 1999). Given a code matrix
M 2 {±1}C·L, in each iteration t, t = 1, . . . ,T, a distribu-
tion Dt is generated over pairs of training examples and
columns of the matrix M. A set of base learners
fhðlÞt ðxÞg

L
l¼1 is then trained with respect to the distribution

Dt, based on the binary partition defined by each column
of M. The error �t of fhðlÞt ðxÞg

L
l¼1 is computed as Step (4)

in Fig. 1 and the combination coefficient at is computed
in Step (5) as at ¼ 1

2
ln ð1��t

�t
Þ. Then, the distribution is

updated as Dtþ1ðn; lÞ ¼ Dtðn; lÞ expð�atMðyn; lÞhðlÞt ðxnÞÞ=
Zt, where Zt is a normalization constant such that Dt+1 is
a distribution, i.e.,

PN
n¼1

PL
l¼1Dtþ1ðn; lÞ ¼ 1. The process

continues until the maximum iteration number T is
reached. After T rounds, MO outputs a final classifier
F(x) = [F(1)(x), . . . ,F(L)(x)]T or fðxÞ ¼ FðxÞ=

PT
t¼1at, where

F ðlÞðxÞ ¼
PT

t¼1ath
ðlÞ
t ðxÞ. When presented with an unseen

sample x, MO predicts label y*, whose row M(y*) is the
‘‘closest’’ to F(x), with respect to a specified decoding
strategy.

Now, we seek to define the cost function upon which
MO performs the optimization. Given a fixed code matrix,
one natural idea is to find F(x) such that the minimum
value of the sample margin of each bit position is
maximized:

max q

s:t: qðlÞðxnÞ ¼ Mðyn; lÞ
X

t
ath
ðlÞ
t ðxnÞX
t
at

P q;

n ¼ 1; . . . ;N ; l ¼ 1; . . . ; L:

ð2Þ
Fig. 1. Pseudo-code of AdaBoost.MO, as proposed in (Schapire and
Singer, 1999).
In the light of the connection between AdaBoost and LP,
discussed in Section 3, the cost function that MO optimizes
can be specified as

G ¼
XN

n¼1

XL

l¼1

exp �qðlÞðxnÞ
X

t

at

 !

¼
XN

n¼1

XL

l¼1

expð�F ðlÞðxnÞMðyn; lÞÞ; ð3Þ

which is indeed proved in the following theorem.
Theorem 1. AdaBoost.MO performs a stage-wise functional

gradient descent procedure on the cost function given by Eq.

(3).
Proof. The proof is provided in the Appendix. h
5. AdaBoost.ECC and AdaBoost.OC

In this section, we investigate ECC (Schapire, 1997) and
OC (Guruswami and Sahai, 1999), whose pseudo-codes are
given in Figs. 2 and 3, respectively. Our goal is to unify
both algorithms under the framework of margin theory,
and to establish the relationship between the two
algorithms.

We begin by defining the sample margin, q(xn), as

qðxnÞ ¼D min
fc2C;c6¼yng

DðMðcÞ; fðxnÞÞ � DðMðynÞ; fðxnÞÞ; ð4Þ

where D(Æ) is a distance measure. Maximization of q(xn) in
Eq. (4) can be interpreted as finding f(xn) close to the code
word of the true label, while at the same time distant from
the code word of the most confused class. By specifying
DðMðcÞ; fðxÞÞ ¼D kMðcÞ � fTðxÞk2, from Eq. (4) we derive

qðxnÞ ¼ 2MðynÞfðxnÞ � max
fc2C;c6¼yng

f2MðcÞfðxnÞg: ð5Þ

Maximization of q(xn) can be formulated as an optimiza-
tion problem:
Fig. 2. Pseudo-code of AdaBoost.ECC, as proposed in (Guruswami and
Sahai, 1999).



Fig. 3. Pseudo-code of AdaBoost.OC, as proposed in (Schapire, 1997).

634 Y. Sun et al. / Pattern Recognition Letters 28 (2007) 631–643
max q;

s:t: MðynÞfðxnÞ� max
fc2C;c6¼yng

fMðcÞfðxnÞgP q; n¼ 1; . . . ;N :

ð6Þ
We are particularly interested in finding f(x) of the form
f(x) = [a1h1(x), . . . ,aThT(x)]T, where

PT
t¼1at ¼ 1; at P 0.

From Eq. (6), we derive

max q

s:t:
XT

t¼1

atðMðyn; tÞ �Mðc; tÞÞhtðxnÞP q

n ¼ 1; . . . ;N ; c ¼ 1; . . . ;C; c 6¼ yn;XT

t¼1

at ¼ 1; a P 0:

ð7Þ

From the discussion on LP and AdaBoost in Section 3,
it appears reasonable to define a new cost function, opti-
mized by a multi-class AdaBoost algorithm:

G ¼D
XN

n¼1

XC

fc¼1;c6¼yng
expð�ðMðynÞ �MðcÞÞFðxnÞÞ

¼
XN

n¼1

XC

fc¼1;c6¼yng
exp �

XT

t¼1

atðMðyn; tÞ �Mðc; tÞÞhtðxnÞ
 !

:

ð8Þ

The following theorem shows that AdaBoost.ECC opti-
mizes the above cost function.

Theorem 2. AdaBoost.ECC performs a stage-wise func-

tional gradient descent procedure on the cost function given

by Eq. (8).
Proof. Fig. 2 presents the pseudo-code of ECC (Guru-
swami and Sahai, 1999). By comparing the expressions
for (i) the data-sampling distribution dt (Step (5)), and (ii)
the weights at (Step (8)), with those obtained from minimi-
zation of G in Eq. (8), we prove the theorem. For the
moment, we assume that the code matrix M is given, the
generation of which is discussed later. After (t � 1)
iteration steps, ECC produces Ft�1(xn) = [a1h1(xn), . . . ,
at�1ht�1(xn),0, . . . , 0]T. In the tth iteration step, the goal
of the algorithm is to compute the tth entry of
Ft(xn) = [a1h1(xn), . . . ,at�1ht�1(xn),atht(xn), 0, . . . , 0]T.

From Eq. (8), the negative functional derivative of G

with respect to Ft�1(x), at x = xn, is computed as
�rFt�1

Gjx¼xn
¼
PC
fc¼1;c 6¼yngðMðynÞ �MðcÞÞGt�1ðnÞ, where

Gt�1ðn; cÞ ¼D expð�ðMðynÞ �MðcÞÞFt�1ðxnÞÞ. To find the
optimal hypothesis function ht in the next training step,
we resort to Friedman’s optimization approach (Friedman,
2001). It is straightforward to show that ht should be
selected from H, by maximizing its correlation with the tth
component of �rFt�1

G as ht ¼ arg maxh2H
PN

n¼1PC
fc¼1;c 6¼ynghðxnÞðMðyn; tÞ �Mðc; tÞÞGt�1ðn; cÞ. To facilitate

the computation of ht, we introduce the following terms:

V tðnÞ ¼D
XC

fc¼1;c 6¼yng
jMðyn; tÞ �Mðc; tÞjGt�1ðn; cÞ;

V t ¼D
XN

n¼1

V tðnÞ;

dtðnÞ ¼
D V tðnÞ=V t:

ð9Þ

Note that Vt differs from Ut, defined in Step (4) in Fig. 2,
by a constant 2NðC � 1Þ

Qt�1
i¼1Zi, where Zi is a normaliza-

tion constant defined in Step (9) in Fig. 2. Also, note that
(M(yn, t) �M(c, t)) either equals zero or has the same sign
as M(yn, t). It follows that

ht ¼ arg max
h2H

XN

n¼1

V tðnÞsignðMðyn; tÞÞhðxnÞ; ð10Þ

¼ arg max
h2H

V t

XN

n¼1

dtðnÞMðyn; tÞhðxnÞ; ð11Þ

¼ arg max
h2H

U t

XN

n¼1

dtðnÞMðyn; tÞhðxnÞ; ð12Þ

¼ arg min
h2H

XN

n¼1

IðMðyn; tÞ 6¼ hðxnÞÞdtðnÞ; ð13Þ

¼ arg min
h2H

e; ð14Þ

where e is the weighted error of h. Once ht is found,
at can be computed by a line search as

at ¼ arg min
aP0

Gt

¼ arg min
aP0

XN

n¼1

XC

c¼1
c 6¼yn

Gt�1ðn; cÞ exp½�aðMðyn; tÞ

�Mðc; tÞÞhtðxnÞ�: ð15Þ

In our case, where the hypotheses ht are specified as binary
classifiers, at can be solved analytically. Taking the deriva-
tive of Gt with respect to at gives



Table 1
The number of samples in each database

Database Training Cross-validation Test

Cars 865 (50%) 286 (15%) 577 (35%)
Images 210 (9%) 210 (9%) 1890 (82%)
Letters 8039 (40%) 3976 (20%) 7985 (40%)
PenDigits 5621 (75%) 1873 (25%) 3498
USPS 6931 (95%) 360 (5%) 2007

Y. Sun et al. / Pattern Recognition Letters 28 (2007) 631–643 635
� oGt

oat
¼ V t

XN

n¼1

dtðnÞMðyn; tÞhtðxnÞ expð�2atMðyn; tÞhtðxnÞÞ

¼ V t

XN

n¼1

IðMðyn; tÞ ¼ htðxnÞÞdtðnÞe�2at

 

�
XN

n¼1

IðMðyn; tÞ 6¼ htðxnÞÞdtðnÞe2at

!
; ð16Þ

where we used the definitions from Eq. (9), and the fact
that (M(yn, t) �M(c, t)) takes values in the set {0, 2,�2},
and that (M(yn, t) �M(c, t)) has the same sign as M(yn, t).
From Eqs. (13) and (14), and oGt/oat = 0, we obtain
at ¼ 1

4
ln½ð1� etÞ=et�, which is equal to the expression given

in Step (8), Fig. 2.
Finally we check the update rule for data distribution dt.

By unravelling Dt(n,c) in Step (9) of the pseudo-code of
ECC (see Fig. 2), we derive Dtðn; cÞ ¼ Gt�1ðn; cÞ=N
ðC � 1Þ

Qt�1
i¼1Zi, for c 5 yn, and Dt(n,c) = 0, for c = yn. By

plugging this result into Steps (4) and (5) of the pseudo-
code of ECC, it is straightforward to show that the
expressions for d(t) in Step (5) and Eq. (9) are the same.
This completes the proof.

Now, we discuss how to generate the columns of the code
matrix, denoted as M.t. Simultaneous optimization of both
0 100 200 300 400 500
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1
Cars: Test Error with Label Noise 0%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

0 100 200 300 400 500
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25
Cars: Test Error with Label Noise 20%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

Fig. 4. Classification errors on the test data of Cars. In some plots, the erro
respectively. For SECC and SMO, the optimal number of training steps T* is
M.t and ht is known be an NP-hard problem (Crammer and
Singer, 2000). In both OC and ECC, this problem is
alleviated by conducting a two-stage optimization. That is,
M.t is first generated by maximizing Ut, given in Step (4) in
Fig. 2, and then ht is trained based on the binary partition
defined by M.t. In (Schapire, 1997; Guruswami and Sahai,
1999), this procedure is justified by showing that maximiz-
ing Ut decreases the upper bound of the training error.
Maximizing Ut is a special case of the ‘‘Max-Cut’’ problem,
which is known to be NP-complete. For computing the
approximate solution of the optimal M.t, in our experiments
we use the same approach as that used in (Schapire, 1997).

We point out that the proof of Theorem 2 provides for
yet another interpretation of the outlined procedure.
Ideally, in the tth iteration step we want to find M.t and
0 100 200 300 400 500
0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16
Cars: Test Error with Label Noise 10%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

0 100 200 300 400 500
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36
Cars: Test Error with Label Noise 30%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

r curves of SECC and SMO overlap those of ECC and MO (i.e., g = 1),
found by cross-validation and indicated in the figures.



636 Y. Sun et al. / Pattern Recognition Letters 28 (2007) 631–643
ht simultaneously to maximize their correlation, which
however is NP-hard. Therefore, we resort to the two-stage
optimization. It is evident from Eq. (12) that M.t should be
generated such that Ut is maximized. h
5.1. Relationship between AdaBoost.OC and AdaBoost.ECC

ECC is derived from OC on the algorithm level, as dis-
cussed in (Guruswami and Sahai, 1999). However, their
relationship is not fully and strictly examined in the litera-
ture, which is addressed in the following theorem.

Theorem 3. AdaBoost.OC is a shrinkage version of

AdaBoost.ECC.
Proof. We compare the expressions for computing the
weights, and for updating the data-sampling distribution,
to establish the relationship between OC and ECC. Let
us first take a look at the pseudo-code of OC given in
Fig. 3. In Step (7), a pseudo-hypothesis function is con-
structed as ~htðxÞ ¼ fc 2 Y : htðxÞ ¼ Mðc; tÞg. Using ~htðxÞ,
a pseudo-loss, ~et, is computed in Step (8) as ~et ¼
1
2

PN
n¼1

PC
c¼1Dtðn; cÞðIðyn 62 ~htðxnÞÞ þ Iðc 2 ~htðxnÞÞÞ, where

Dt(n,c) is updated in Step (9). Note that:
0 100 200 300 400 500
0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06
ImageSeg: Test Error with Label Noise 0%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

0 100 200 300 400 500
0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2
ImageSeg: Test Error with Label Noise 20%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

Fig. 5. Classification errors o
Iðyn 62 ~htðxnÞÞ þ Iðc 2 ~htðxnÞÞ

¼ 1

2
ðMðc; tÞ �Mðyn; tÞÞhtðxnÞ þ 1: ð17Þ
It follows that

~et ¼
1

4

XN

n¼1

XC

c¼1
Dtðn; cÞðMðc; tÞ �Mðyn; tÞÞhtðxnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

r

þ 1

2

¼ 1

4
r þ 1

2
) r ¼ 4 ~et �

1

2

� �
: ð18Þ
Now, let us take a look at the pseudo-code of ECC given in
Fig. 2. The training error, et, is computed in Step (7) as

et ¼
XN

n¼1

IðMðyn; tÞ 6¼ htðxnÞÞdtðnÞ

¼ 1

2
� 1

2

XN

n¼1

dtðnÞMðyn; tÞhtðxnÞ: ð19Þ
From Step (5) in Fig. 2 and the fact that I(M(yn, t) 5

M(c, t))M(yn,t) = (M(yn, t) �M(c, t))/2, we have
0 100 200 300 400 500

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12
ImageSeg: Test Error with Label Noise 10%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

0 100 200 300 400 500

0.18

0.2

0.22

0.24

0.26

0.28

0.3
ImageSeg: Test Error with Label Noise 30%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

n the test data of Images.



Y. Sun et al. / Pattern Recognition Letters 28 (2007) 631–643 637
et ¼
1

2
� 1

4U t

XN

n¼1

XC

c¼1

Dtðn; cÞðMðyn; tÞ

�Mðc; tÞÞhtðxnÞ ¼
1

2
þ 1

4Ut
r: ð20Þ

By plugging Eq. (18) into Eq. (20), we get:

et ¼
1

2
þ 1

U t
~et �

1

2

� �
: ð21Þ

From Eq. (21), we observe that et 6
1
2

if and only if ~et 6
1
2
,

which means that both algorithms provide the same condi-
tions for the regular operation of AdaBoost. That is, when
et 6

1
2

both at P 0 and ~at P 0. Furthermore, note that
Ut 2 [0, 1], as defined in Step (4) in Fig. 2. From Eq. (21),
we have that, for ~et 6

1
2
,

et � ~et ¼ 1� 1

Ut

� �
1

2
� ~et

� �
6 0 ) et 6 ~et: ð22Þ

Finally, from Eq. (22), and Steps (8) and (9) in Figs. 2 and
3, respectively, we derive

~at ¼ gtat; ð23Þ

where gt 2 [0,1]. Eq. (23) asserts that in each iteration step
t, AdaBoost.OC takes a smaller step size than Ada-
50 100 150 200 250 300 350 400 450 500

0.1

0.15

0.2

0.25

0.3

0.35
Letters: Test Error with Label Noise 0%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

0 100 200 300 400 500
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Letters: Test Error with Label Noise 20%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

Fig. 6. Classification errors o
Boost.ECC in the search for ht over the functional space
H.

Finally, by using Eq. (17), it is straightforward to show
that the updating rules of the data-sampling distributions
of the two algorithms, i.e., Step (5) in Figs. 2 and 3, are the
same. In conclusion, AdaBoost.OC is a shrinkage version
of AdaBoost.ECC. h
5.2. Discussion

The following remarks are immediate from Theorems
1–3:

• It is possible to reduce the computational complexity of
OC, by eliminating Steps (7) and (8) in Fig. 3. Instead, ~et

can be directly calculated from Eq. (21), given et. Here,
the simplification stems from the fact that et is easier to
compute, as in Eq. (13).

• In (Guruswami and Sahai, 1999), the authors prove that
ECC has a better upper bound of the training error than
OC. They also experimentally observe that the training
error of ECC converges faster than that of OC. How-
ever, the fact that the training-error upper bound of
one algorithm is better than that of the other cannot
0 100 200 300 400 500

0.15

0.2

0.25

0.3

0.35

0.4
Letters: Test Error with Label Noise 10%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

0 100 200 300 400 500
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Letters: Test Error with Label Noise 30%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

n the test data of Letters.



638 Y. Sun et al. / Pattern Recognition Letters 28 (2007) 631–643
explain the empirical evidence related to the conver-
gence rate. Theorem 3 provides for the strict proof of
the observed phenomenon.

• Shrinkage can be considered a regularization method,
which has been reported to significantly improve classi-
fication performance in the case of noise corrupted data
(Friedman, 2001). Introducing shrinkage in the steepest
decent minimization of ECC is analogous to specifying a
learning rate in neural networks. Consequently, based
on the analysis in Theorem 3, one can expect that in
noise-corrupted-data cases, OC should perform better
than ECC. This provides a guideline for selecting the
appropriate algorithm between the two.

• Theorems 1 and 2 give rise to a host of novel algorithms
that can be constructed by introducing the shrinkage
term, g 2 (0,1], into the original multi-class algorithms.
Thereby, we design SMO and SECC, respectively. The
pseudo-codes of SMO and MO are identical, except
for Step (5), where at should be computed as
at ¼ g 1

2
ln½ð1� etÞ=et�. Similarly, the pseudo-codes of

SECC and ECC are identical, except for Step (8),
where at should be computed as at ¼ g 1

4
ln½ð1� etÞ=et�.

• From Theorems 1–3, it follows that MO, SMO, ECC,
SECC and OC perform stage-wise functional gradient
descent on a cost function expressed in terms of margin
0 100 200 300 400 500

0.15

0.2

0.25

0.3

PenDigits: Test Error with Label Noise 0%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

0 100 200 300 400 500
0.15

0.2

0.25

0.3

0.35

0.4
PenDigits: Test Error with Label Noise 20%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

Fig. 7. Classification errors on
values, i.e., that they increase the classifier margin over a
given number of training iterations. Therefore, the mar-
gin-based theoretical analysis of two-class AdaBoost
by Schapire et al. (1998) can be directly applied to the
multi-class AdaBoost to explain their good generaliza-
tion capability. This property is also demonstrated
experimentally in the following section.

In the following section, we present experiments with
MO, SMO, ECC, SECC, and OC, which support our the-
oretical findings.

6. Experiments

In our experiments, we choose C4.5 as a base learner.
C4.5 is a decision-tree classifier with a long record of
successful implementation in many classification systems
(Quinlan, 1993). Although, in general, C4.5 can be
employed to classify multiple classes, in our experiments,
we use it as a binary classifier.

We test AdaBoost.MO, SMO, ECC, SECC, and OC
on five databases, four of which are publicly available at
the UCI Benchmark Repository (Blake and Merz, 1998).
These are (1) Car Evaluation Database (or short Cars),
(2) Image Segmentation Database (Images), (3) Letter Rec-
0 100 200 300 400 500

0.15

0.2

0.25

0.3

PenDigits: Test Error with Label Noise 10%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

0 100 200 300 400 500

0.2

0.25

0.3

0.35

0.4

0.45

0.5
PenDigits: Test Error with Label Noise 30%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

the test data of PenDigits.



Y. Sun et al. / Pattern Recognition Letters 28 (2007) 631–643 639
ognition Database (Letters), and (4) Pen-Based Recogni-
tion of Handwritten Digits (PenDigits). The fifth database
is USPS Dataset of Handwritten Characters (USPS)
(LeCun et al., 1989). We divide each database into training,
test, and validation sets. For Cars, Images, and Letters, all
available data samples are grouped in a single file per each
database. Here, training, test, and validation sets are
formed by random selection of samples from that single
file, such that a certain percentage of samples per class is
present in each of the three datasets, as detailed in Table
1. For PenDigits and USPS, the training and test datasets
are already given. Here, the test datasets are kept intact,
while new training and validation sets are formed from
the original training data, as reported in Table 1. For
USPS database, to reduce the run-time of our experiments,
we projected each sample using principal component
analysis onto a lower-dimensional feature space (256
features! 54 features) at the price of 10% of the represen-
tation error.

To conduct experiments with mislabeling, noise is intro-
duced only to the training and validation sets, while the test
set is kept intact. The level of noise represents a percentage
of randomly selected training data (or validation data),
whose class labels are changed. The performance of the five
0 100 200 300 400 500
0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11
USPS: Test Error with Label Noise 0%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

50 100 150 200 250 300 350 400 450 500

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

USPS: Test Error with Label Noise 20%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

Fig. 8. Classification errors o
algorithms is evaluated for several different noise levels,
ranging from 0% to 30%.

For MO and SMO, we choose ‘‘one against all’’ coding
method, because of its simplicity, considering that there is
no decisive answer as to which output code is the best
(Allwein et al., 2000). Throughout, for SMO and SECC,
the optimal shrinkage parameter g*, and the optimal num-
ber of training steps T* are found by cross-validation. We
find T* by sliding in 10-step increments a 20-step-wide aver-
aging window over the test-error results on validation data.
The sliding of the window is stopped at the training step
T* = t, when the increase in the average test error over
the previously recorded value in step (t � 10) is detected.
Further, we choose g* for which the classification error
on the validation data at the T*th step is minimum.

In all experiments, the maximum number of training
steps is preset to T = 500 for ECC, SECC, and OC. As typ-
ically done in many approaches (Schapire and Singer, 1999;
Schapire, 1997), we preset the number of training steps
to obtain a reasonable comparison of the performance of
the algorithms balanced against the required processing
time. Although the algorithms may not reach the minimum
possible test error in the specified number of iteration steps,
this minimum error becomes irrelevant in real applications
50 100 150 200 250 300 350 400 450 500
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14
USPS: Test Error with Label Noise 10%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

0 100 200 300 400 500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
USPS: Test Error with Label Noise 30%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC
AdaBoost.SMO
AdaBoost.MO

n the test data of USPS.



640 Y. Sun et al. / Pattern Recognition Letters 28 (2007) 631–643
when the processing time exceeds several hours on 2.4GHZ
1GB RAM PC, which is the case when T = 500. To obtain
comparable results (in terms of the computation) for MO
and SMO, where we use ‘‘one against all’’ coding strategy,
the maximum number of training steps is computed as
T = 500/(# of classes), which is different for each database.
Thus, for Cars T = 125, for Images T = 72, for Letters

T = 20, for PenDigits T = 50, and for USPS T = 50. Note
that the outlined numbers of iteration steps take approxi-
mately the same processing time as T = 500 for ECC,
SECC, and OC. The classification error both on the test
and validation sets is averaged over 10 runs for each
database.

Figs. 4–8 show classification error on the test data. In
Figs. 9 and 10 we plot the training errors for Images and
Letters as two typical examples of the algorithms’ train-
ing-error convergence rates. The optimal g* values for
SECC and SMO, are presented in Table 2. In Table 3,
we also list the classification error on the test data at the
optimal step T*, indicated in the parentheses if different
from the maximum preset number of iteration steps T.

Fig. 11 illustrates the classifier margin on Letters over a
range of mislabeling noise levels for the five algorithms.
These results experimentally validate Theorems 1–3 that
4 6 8 10 12 14 16
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
ImageSeg: Training Error with Label Noise 0%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC

10
1

10
20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
ImageSeg: Training Error with Label Noise 20%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC

Fig. 9. Classification errors on
the algorithms increase the margin as the number of itera-
tions becomes larger, which is conducive to a good gener-
alization capability.

From the results we observe the following. First, the
training error of ECC converges faster to zero than that
of OC and SECC, which is in agreement with Theorem 3.
Also, the training convergence rate of SECC is the slowest,
which becomes very pronounced for high-level noise set-
tings, where typically a small value of the shrinkage param-
eter g* is used, as detailed in Table 2.

Second, in the absence of mislabeling noise, we observe
that ECC performs similarly to OC with respect to the test
error. However, with the increase of noise level, OC outper-
forms ECC, as predicted in Section 5.2. Moreover, SECC
performs better than both OC and ECC at all noise levels
above zero. For example, for Letters, in a likely event,
when 10% of training patterns are mislabeled, SECC
improves the classification performance of ECC by about
50% (28.2% vs. 13.4%).

Third, regularization of MO and ECC, by introducing
the shrinkage parameter g, improves their performance;
however, it may also lead to overfitting (see Figs. 4 and
5). It is possible to estimate the optimal number of training
steps to avoid overfitting through cross-validation. Overall,
10
1

10
20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
ImageSeg: Training Error with Label Noise 10%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC

10
1

10
20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
ImageSeg: Training Error with Label Noise 30%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC

the training data of Images.



10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Letters: Training Error with Label Noise 0%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC

10
1

10
2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Letters: Training Error with Label Noise 10%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC

10
1

10
2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Letters: Training Error with Label Noise 20%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC

10
1

10
2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Letters: Training Error with Label Noise 30%

Number of Iterations

C
la

ss
ifi

ca
tio

n 
E

rr
or

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.OC

Fig. 10. Classification error on the training data of Letters.

Table 3
Classification errors (%) on the test data

Database Noise (%) ECC SECC MO SMO OC

Letters 0 9.3 8.0 9.5 9.5 8.3
10 28.2 13.4 20.6 18.5 19.8
20 35.6 16.9 27.2 23.4 24.9
30 41.9 23.3 34.5 29.0 31.5

USPS 0 6.3 6.2 7.2 7.0 6.5
10 7.3 6.6 8.1 8.0 6.9
20 9.7 7.5 9.6 9.1 7.9
30 12.4 8.7 13.0 11.4 9.1

Cars 0 5.5 5.5 7.1 7.1 7.3
10 12.5 12.5 12.7 12.7 13.3
20 20.8 17.0 (70) 20.1 18.3 (160) 20.0

Table 2
Optimal g* values

Database AdaBoost.SECC AdaBoost.SMO
Noise level Noise level

0% 10% 20% 30% 0% 10% 20% 30%

Cars 1 1 0.05 0.05 1 1 0.05 0.05
Images 0.5 0.05 0.05 0.05 0.8 0.05 0.05 0.05
Letters 0.2 0.05 0.05 0.05 1 0.5 0.35 0.2
PenDigits 1 0.5 0.5 0.2 1 1 0.8 0.8
USPS 0.5 0.35 0.05 0.05 0.65 0.65 0.65 0.05

Y. Sun et al. / Pattern Recognition Letters 28 (2007) 631–643 641
SECC outperforms other four algorithms with significant
improvements for all databases and all noise levels.
30 30.2 22.9 (90) 27.6 24.1 (80) 28.3

Images 0 4.5 4.2 4.7 4.6 4.5
10 8.6 7.6 (70) 8.9 8.9 (210) 8.4
20 15.1 11.5 (160) 15.1 13.7 (280) 14.0
30 22.5 18.2 (150) 22.5 19.3 (210) 22.9

PenDigits 0 12.9 12.9 14.9 14.9 13.9
10 15.2 14.7 16.3 16.3 14.8
20 17.7 16.3 19.1 18.8 17.1
30 21.7 19.2 23.1 21.3 19.4

The best results are marked in bold face.
7. Conclusion

In this paper, we have unified AdaBoost.MO, ECC, and
OC under the framework of margin theory. We have
shown that MO and ECC perform stage-wise functional
gradient descent on a cost function defined over margin
values, and that OC is a shrinkage version of ECC.
Based on these analyses, we have formulated and explained



20 50 100 200 300 400 500
–1

–0.8

–0.6

–0.4

–0.2

0

Letters: Margin for 10% of Mislabeled Data

Number of Iteration Steps

M
ar

gi
n

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.SMO
AdaBoost.MO
OC

20 50 100 200 300 400 500
–1

–0.8

–0.6

–0.4

–0.2

0

Letters: Margin for 20% of Mislabeled Data

Number of Iteration Steps

M
ar

gi
n

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.SMO
AdaBoost.MO
OC

20 50 100 200 300 400 500
–1

–0.8

–0.6

–0.4

–0.2

0

Letters: Margin for 30% of Mislabeled Data

Number of Iteration Steps

M
ar

gi
n

AdaBoost.SECC
AdaBoost.ECC
AdaBoost.SMO
AdaBoost.MO
OC

Fig. 11. Margin of the five algorithms on Letters.

642 Y. Sun et al. / Pattern Recognition Letters 28 (2007) 631–643
several properties of ECC and OC, and derived the shrink-
age versions of MO and ECC, referred to as SMO and
SECC.

We have also conducted empirical studies to compare
five multi-class AdaBoost algorithms. The experimental
results showed: (1) ECC is faster than OC, while SECC is
the slowest with respect to the convergence rate of the
training error; (2) in the absence of mislabeling noise,
ECC performs similarly to OC. However, for noise levels
above zero, OC outperforms ECC, which is supported by
our theoretical studies; (3) regularization of MO and
ECC, by introducing the shrinkage parameter, improves
significantly their performance in the presence of mislabel-
ing noise. Overall, SECC performs significantly better than
other four algorithms for all databases and all noise levels.

Appendix. Proof of Theorem 1

By comparing the steps in the algorithm of MO – in par-
ticular, the optimization of the hypothesis functions in Step
(3) of Fig. 1, and the computation of weights at in Step (5) –
with the corresponding expressions obtained from the min-
imization of G, we prove the theorem.

In the (t � 1)th iteration, MO produces Ft�1ðxÞ ¼
½F ð1Þt�1ðxÞ; . . . ; F ðLÞt�1ðxÞ�

T. In the tth iteration, the algorithm
updates Ft�1(x) as

FtðxÞ ¼ Ft�1ðxÞ þ at½hð1Þt ðxÞ; . . . ; hðLÞt ðxÞ�
T

¼ Ft�1ðxÞ þ atht: ð24Þ

From Eq. (3), the gradient of G with respect to Ft�1, at

x = xn, reads �rFt�1
Gjx¼xn

¼ ½Mðyn; 1Þe�F ð1Þ
t�1
ðxnÞMðyn;1Þ; . . . ;

Mðyn; LÞe�F ðLÞ
t�1
ðxnÞMðyn;LÞ�. Similar to Friedman’s approach

(Friedman, 2001), we find ht as

ht ¼ arg min
fh2H;bg

XN

n¼1

k�rFt�1
Gjx¼xn

�bðhðxnÞÞTk2

¼ argmax
h2H

XL

l¼1

XN

n¼1

expð�Mðyn;lÞF
ðlÞ
t�1ðxnÞÞMðyn;lÞhðlÞðxnÞ;

ð25Þ

where b is a nuisance parameter, and h 2H denotes that
"l, hðlÞ 2H. The right-hand side of Eq. (25) can be conve-
niently expressed in terms of data distribution D, computed
in Step (6) in Fig. 1. First, by unravelling Step (6), we
obtain

Dtðn; lÞ ¼
expð�Mðyn; lÞF

ðlÞ
t�1ðxnÞÞXL

i¼1

XN

j¼1
expð�Mðyj; lÞF

ðiÞ
t�1ðxjÞÞ

: ð26Þ

Then, by plugging Eq. (26) into Eq. (25), we get

ht ¼ argmax
h2H

XL

l¼1

XN

n¼1

Dtðn;lÞMðyn;lÞhðlÞðxnÞ

¼ argmin
h2H

XL

l¼1

XN

i¼1

Dtði;lÞ
 !XN

n¼1

Dtðn;lÞXN

i¼1
Dtði;lÞ

IðMðyn;lÞ 6¼ hðlÞðxnÞÞ:

ð27Þ
From Eq. (27), it follows that each hðlÞt should be selected
from H, such that the training error of the binary problem
defined by the lth column is minimized. This is equivalent
to Step (3) in Fig. 1.

After ht is found, at can be computed by minimizing
the cost function in Eq. (3). From Eqs. (3) and (24), the
derivative of Gt with respect to at is oGt=oat ¼ �

PL
l¼1PN

n¼1 expð�ðF ðlÞt�1ðxnÞ þ ath
ðlÞ
t ðxnÞÞMðyn; lÞÞhðlÞt ðxnÞMðyn; lÞ.

From oGt/oat = 0 and Eq. (26), we haveXL

l¼1

XN

n¼1

Dtðn; lÞ expð�ath
ðlÞ
t ðxnÞMðyn; lÞÞhðlÞt ðxnÞMðyn; lÞ ¼ 0:

ð28Þ
It follows thatXL

l¼1

XN

n¼1

Dtðn;lÞe�at IðhðlÞt ðxnÞ

¼Mðyn;lÞÞ�
XL

l¼1

XN

n¼1

Dtðn;lÞeat IðhðlÞt ðxnÞ 6¼Mðyn;lÞÞ¼ 0;

which yields at ¼ 1
2

ln½ð1� etÞ=et�, where et is defined in Step
(4) in Fig. 1. Thus, by minimizing the cost function Gt with
respect to at, we obtain the same expression as the one in
Step (5). This completes the proof.

References

Allwein, E.L., Schapire, R.E., Singer, Y., 2000. Reducing multiclass to
binary: a unifying approach for margin classifiers. J. Mach. Learn.
Res. 1, 113–141.



Y. Sun et al. / Pattern Recognition Letters 28 (2007) 631–643 643
Blake, C., Merz, C., 1998. UCI repository of machine learning databases.
Breiman, L., 1999. Prediction games and arcing algorithms. Neural

Comput. 11 (7), 1493–1517.
Crammer, K., Singer, Y., 2000. On the learnability and design of output

codes for multiclass problems. In: Proc. 13th Annual Conf.
Computational Learning Theory. Stanford University, CA, USA,
pp. 35–46.

Dietterich, T.G., 2000. An experimental comparison of three methods for
constructing ensembles of decision trees: bagging, boosting, and
randomization. Mach. Learn. 40 (2), 139–157.

Dietterich, T.G., Bakiri, G., 1995. Solving multiclass learning problems
via error-correcting output codes. J. Artificial Intell. Res. 2,
263–286.

Freund, Y., Schapire, R.E., 1997. A decision-theoretic generalization of
on-line learning and an application to boosting. J. Comput. Syst. Sci.
55 (1), 119–139.

Friedman, J., 2001. Greedy function approximation: a gradient boosting
machine. Ann. Statist. 29 (5), 1189–1232.

Friedman, J., Hastie, T., Tibshirani, R., 2000. Additive logistic regression:
a statistical view of boosting. Ann. Statist. 28 (2), 337–407.

Grove, A.J., Schuurmans, D., 1998. Boosting in the limit: maximizing the
margin of learned ensembles. In: Proc. 15th Natl. Conf. on Artificial
Intelligence, Madison, WI, USA, pp. 692–699.

Guruswami, V., Sahai, A., 1999. Multiclass learning, boosting, and error-
correcting codes. In: Proc. 12th Annual Conf. Computational Learn-
ing Theory, Santa Cruz, California, pp. 145–155.
LeCun, Y., Boser, B., Denker, J.S., Hendersen, D., Howard, R., Hubbard,
W., Jackel, L.D., 1989. Backpropagation applied to handwritten zip
code recognition. Neural Comput. 1 (4), 541–551.

Mason, L., Bartlett, J., Baxter, P., Frean, M., 2000. Functional gradient
techniques for combining hypotheses. In: Scholkopf, B., Smola, A.,
Bartlett, P., Schuurmans, D. (Eds.), Advances in Large Margin
Classifiers. MIT Press, Cambridge, MA, USA, pp. 221–247.

Quinlan, J.R., 1993. C4.5: Programs for Machine Learning. Morgan
Kaufmann.

Quinlan, J., 1996. Bagging, boosting, and C4.5. In: Proc. 13th Natl. Conf.
Artificial Intelligence and 8th Innovative Applications of Artificial
Intelligence Conf., Portland, OR, USA, pp. 725–730.

Rudin, C., Daubechies, I., Schapire, R.E., 2004. The dynamics of
AdaBoost: cyclic behavior and convergence of margins. J. Mach.
Learn. Res. 5, 1557–1595.

Schapire, R.E., 1997. Using output codes to boost multiclass learning
problems. In: Proc. 14th Intl. Conf. Machine Learning. Nashville, TN,
USA, pp. 313–321.

Schapire, R., Singer, Y., 1999. Improved boosting algorithms using
confidence-rated predictions. Mach. Learn. 37 (3), 297–336.

Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S., 1998. Boosting the
margin: a new explanation for the effectiveness of voting methods.
Ann. Statist. 26 (5), 1651–1686.

Sun, Y., Todorovic, S., Li, J. Reducing the overfitting of AdaBoost by
controlling its data distribution skewness. Int. J. Pattern Recog.
Artificial Intell., in press.


	Unifying multi-class AdaBoost algorithms with binary base learners under the margin framework
	Introduction
	Output coding method
	AdaBoost and LP-based margin optimization
	AdaBoost.MO
	AdaBoost.ECC and AdaBoost.OC
	Relationship between AdaBoost.OC and AdaBoost.ECC
	Discussion

	Experiments
	Conclusion
	Proof of Theorem 1
	References


