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Abstract

This paper addresses the problem of object detection and recognition in complex scenes,
where objects are partially occluded. The approach presented herein is based on the hypoth-
esis that a careful analysis of visible object details at various scales is critical for recognition
in such settings. In general, however, computational complexity becomes prohibitive when
trying to analyze multiple sub-parts of multiple objects inan image. To alleviate this prob-
lem, we propose a generative-model framework – namely, dynamic tree-structure belief
networks (DTSBNs). This framework formulates object detection and recognition as infer-
ence of DTSBN structure and image-class conditional distributions, given an image. The
causal (Markovian) dependencies in DTSBNs allow for designof computationally efficient
inference, as well as for interpretation of the estimated structure as follows: each root repre-
sents a whole distinct object, while children nodes down thesub-tree represent parts of that
object at various scales. Therefore, within the DTSBN framework, the treatment and recog-
nition of object parts requires no additional training, butmerely a particular interpretation
of the tree/subtree structure. This property leads to a strategy for recognition of objects as a
whole through recognition of their visible parts. Our experimental results demonstrate that
this approach remarkably outperforms strategies without explicit analysis of object parts.

Key words: generative models, Bayesian networks, dynamic trees, variational inference,
image segmentation, object recognition
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1 Introduction

This paper addresses the problem of object detection and recognition in complex
scenes, where objects are partially occluded. A number of factors contribute to the
difficulty of this problem including variations in camera quality and position, wide-
ranging illumination conditions, and extreme scene diversity with partial occlusions
[1–5]. A review of the literature offers various approachesthat usually address only
a subset of the outlined problems. For instance, the majority of research efforts is
focused exclusively on either image segmentation (i.e., detection) [6–8], or image
classification (i.e., recognition) [2,4,5] of scenes with occlusions. Moreover, related
work (e.g., [7–9]), usually considers auxiliary information provided, for example,
by image sequences or stereo views of the same scene.

In contrast, we seek a framework that is sufficiently expressive to cope with un-
certainty in images, jointly addresses object detection and recognition in a unified
manner, and represents a viable solution for scenes with occlusions. To this end,
the probabilistic framework proposed formulates the object recognition problem
as inference of structure and conditional distributions ofthe generative statistical
model — more specifically, dynamic tree-structure belief networks (DTSBNs) —
representing a given image.

DTSBNs are directed acyclic graphs, where edges indicate statistical Markov de-
pendencies between nodes, which in turn represent hidden and observable random
variables, as illustrated in Fig. 1a. As with other dynamic trees, the DTSBN is char-
acterized by a joint distribution over image-class labels (associated with each node)
and the structure of the network [10–13]. Consequently, in inference, in addition to
finding posteriors of image-class labels, the network structure is optimized for the
given image. The main differences between the DTSBN and the model investigated
in our prior work [13], referred to as dynamic tree (DT) and depicted in Fig. 1b,
concern the treatment of observable random variables and the inference algorithm.
In DTs [13], observables exist at all hierarchical levels ofthe model; these observ-
ables can change along with the iterative modifications of the model’s structure in
inference. Such model design was found suitable to address the challenges ofun-
supervisedimage segmentation and matching, as reported in [13]. In contrast, for
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Fig. 1. (a) DTSBN; (b) DT as in [13]. The DTSBN consists of a forest of subtrees, each
of which segments the 1-D signal into regions marked by distinct shading; round- and
square-shaped nodes indicate hidden and observable variables; triangles indicate roots.

the supervisedsetting investigated herein, the DTSBN has a fixed set of single-
layer observables extracted only once by the feature extraction module, which pre-
cedes the classifier in the proposed object recognition system. That is, unlike in the
DT, observables in the DTSBN occupy its lowest level only. More importantly, for
learning model parameters on training images, in general, it is assumed that the
underlying image processes are stationary. Consequently,in supervised settings,
observables should not be allowed to change along with dynamic changes of model
structure. As such, the DTSBN can be viewed as a special case of the DT that is
more appropriate for supervised settings. In addition, theproposed architecture al-
lows for fair comparisons of DTSBNs with representatives ofdiscriminative and
descriptive models, as detailed later in this section.

Inference of DTSBNs is handled as a special case of the inference algorithm pro-
posed in our prior work [13], which relaxes the assumptions related to the varia-
tional approximation of Storkey and Williams [12]. After inference, the DTSBN
represents a forest of sub-trees, each of which segments theimage. More precisely,
leaf nodes that are descendants down the subtree of a given root form the image
region characterized by that root, as depicted in Fig. 1. These segmented image re-
gions can be interpreted as distinct object appearances in the image. That is, infer-
ence of DTSBN structure provides a solution to object detection. Then, for recog-
nition of detected objects (i.e., segmented image regions), one possible approach
is to label leaf nodes as one ofM classes, by using the MAP classifier. Finally, a
majority vote over each segmented region can be used to decide on the class of the
object as a whole. Below, this approach is referred to as thewhole-object recogni-
tion strategy.

When objects are partially occluded, however, such an approach may yield poor
results, as demonstrated in the experiments reported in Section 5. Therefore, we
propose a different strategy, where recognition is conducted in two stages through
interpretation ofobject parts. More specifically, this strategy first seeks to identify
visible object details, and then, by using this result, ultimately recognizes the object
as a whole. Below, this strategy is referred to asobject-part recognition.

We hypothesize that such an approach to recognition may be more resilient to oc-
clusion, and therefore more appropriate when considering the recognition of par-
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tially occluded objects. In addition to the percentage of occlusion, which object
parts are occluded is also critical for recognition. Not allcomponents of an object
are equally important for its recognition, especially whenthat object is partially oc-
cluded. Given two similar objects in the image, the visible parts of one object may
mislead the algorithm to recognize it as its counterpart. Therefore, careful consid-
eration should be given to the analysis of detected visible object components. The
main advantage of such analysis is its flexibility to developvarious recognition
strategies that weigh the information obtained from the detected object parts more
judiciously.

Many existing approaches addressing occlusions, however,lack explicit representa-
tion of object components at multiple scales [2,4,5]. A major obstacle in the treat-
ment of image sub-classes is prohibitive computational complexity, which arises
when the initial given set of classes (i.e., objects) is augmented with new classes
of object parts. The problem could be alleviated by using greedy algorithms (e.g.,
[14]), which result, however, in suboptimal solutions. In contrast, by utilizing the
generative property of DTSBNs, physical meaning can be assigned to DTSBN
nodes such that they represent object parts at various scales. Therefore, within the
DTSBN framework, the explicit treatment and recognition ofobject parts repre-
sents merely a particular interpretation of the tree/subtree structure.

To fully specify the object-part recognition strategy, it is necessary to define a cri-
terion, which balances the complexity of interpreting all detected object sub-parts
(i.e., DTSBN nodes) versus the reduced accuracy when analyzing only a subset
of nodes. The considerations of such a criterion lie beyond the scope of this pa-
per. Even a simple two-stage procedure, however, shows remarkable improvements
over the whole-object recognition approach. After inference of DTSBN structure
for a given image, this procedure first selects the set of immediate children under
each root. These selected nodes are then treated as new rootsof subtrees, which,
in turn, segment the image into smaller image regions, that is, object parts. MAP
classification and majority voting follow for selected image regions, thereby iden-
tifying object parts. Finally, in the second stage of our recognition strategy, these
results are fused by yet another majority vote over the labels of those object parts
that descend from a unique root. The block-diagram of the object-part recognition
strategy is shown in Fig. 2.

The set of experiments in this paper show that scenes with partially occluded
objects require a careful interpretation of visible objectdetails. In exploiting the
DTSBN’s capability to explicitly represent object parts atmultiple scales, signifi-
cantly better recognition performance is achieved when compared with strategies
where object components are not explicitly analyzed. This suggests that such analy-
sis should be an integral part of object recognition systemsfor scenes with partially
occluded objects.

Ultimately, what allows us to overcome obstacles in analyzing scenes with occlu-
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Fig. 2. Object-part recognition strategy: after inferenceof DTSBN structure, select the
roots’ children as new roots, and classify image regions underneath them; shading indicates
four distinct subtrees under four selected children nodes;triangles indicate roots.

sions in a computationally efficient and intuitively appealing manner is the pro-
posed generative-model framework. This framework provides an explicit represen-
tation of objects and their sub-parts at various scales, which, in turn, constitutes the
key factor for improved interpretation of scenes with partially occluded objects, as
demonstrated in Section 5. Thus, our choice of a generative model is directly driven
by our image interpretation strategy and goals, and appearsbetter suited than alter-
native statistical approaches, such as descriptive, or discriminative models [15,16].
Descriptive models lack the necessary structure, while discriminative approaches
directly model conditional distributions of hidden variables given observables, and
thereby loose the convenience of assigning physical meaning to the statistical pa-
rameters of the model.

This paper is organized as follows. Section 2 first defines DTSBNs while Section 3
discusses their probabilistic inference. Then, Section 4 explains how to learn the
parameters of the joint prior distribution for DTSBNs. Next, Section 5 first re-
ports experimental results on DTSBN-based unsupervised image segmentation, and
then proceeds to results on supervised image classificationfor scenes with partially
occluded objects. Performance of DTSBNs is also contrastedwith Markov Ran-
dom Fields (MRFs) [17], Discriminative Random Fields (DRFs) [18], and fixed-
structure TSBNs [19]. This comparison demonstrates that DTSBNs, trained using
SVA, outperform all these alternative modeling paradigms.Furthermore, in exper-
iments with occlusions, recognition strategies conditioned on correct identification
of object parts significantly improve overall recognition performance.

2 DTSBNs

DTSBNs can be viewed as generalized tree-structured beliefnetworks (TSBNs),2

which have been applied extensively in the image processingand computer vision

2 In this paper, the terms quad-trees and TSBNs are used interchangeably to denote the
same model; this convention departs somewhat from the literature, where the term TSBN
has been associated with more general tree structures.

5



literature [19–25]. For example, TSBNs have been applied tomultiscale document
segmentation [21], simultaneous image denoising and segmentation [24], and med-
ical applications [25]. There are several variants of very efficient inference algo-
rithms for TSBNs [19, 22]; in this paper, our inference algorithm for DTSBNs is
compared to the most prominent of these – namely, Pearl’sλ-π message passing
scheme, also known as belief propagation [26].

Despite the powerful expressiveness of TSBNs and the efficiency of their inference
algorithms, TSBN-based segmentation/classification suffers from boundary arti-
facts. Due to the fixed structure of TSBNs, dependencies between TSBN nodes may
be inadequately modeled, causing blocky discontinuities.In the literature, several
approaches have been proposed to address this problem, including overlapping tree
models with distinct nodes corresponding to overlapping parts in the image [27],
random cascades on trees of multiresolution coefficients [28], and two-dimensional
hierarchical models with nodes mutually dependent both at any particular layer
through a Markov-mesh and across resolutions [29]. In theseapproaches, the de-
scriptive component of the models is improved at some increased computational
cost, leading to superior segmentation results when compared to standard TSBNs.
However, these approaches do not alleviate the main cause ofblocky discontinu-
ities – that is, the fixed-tree structure of TSBNs. This problem is more explicitly
addressed in research concerning dynamic/irregular tree structures. Thus, for ex-
ample, Montanvert et al. [30] have explored irregular multiscale tessellation that
adapts to image content. Also, Williams’ group of researchers have introduced sev-
eral variants of dynamic and position-encoding dynamic trees [10–12]. Finally, we
have previously investigated dynamic trees in unsupervised settings, concluding
that the model’s random structure is critical to the superior segmentation perfor-
mance of dynamic trees over TSBNs [13].

2.1 Definition of DTSBN

DTSBNs are most closely related to position-encoding dynamic trees [12], where
observables are fixed and present only at the lowest model level. By contrast with
DTSBNs, the dynamic trees in our previous work [13] comprisetwo disjoint sets
of random variables, one of which represents multi-layeredobservable data at all
model levels that change as a function of the dynamic model’sstructure. In our
brief definition of DTSBNs below, differences between priormodels and DTSBNs
are highlighted where appropriate.

A DTSBN is a directed, acyclic graph with nodes in setV , organized in hierarchical
levels,V ℓ, ℓ={0, 1, ..., L−1}, whereV 0 denotes the leaf level. The number of nodes
is identical to that of the quad-tree, such that|V ℓ|=|V ℓ−1|/4=...=|V 0|/4ℓ. Each
node is characterized by a set of random variables, the first of which are network
connectivity indicators.
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Any node at levelℓ can be a root, or connect only to the nodes at the nextℓ+1
level. A node at levelℓ can have only one parent; however, all the nodes atℓ+1
are candidates to become the parent of that node. The event that two nodesi and
j are connected is represented by an indicator random variable z(ij). The set of
z(ij)’s over all nodes forms a random matrixZ, which is further augmented with
an additional zero (“root”) column, where entriesz(i0) are equal to 1 ifi is a root
node. The distribution over connectivity is defined as

P (Z) ,
∏

i,j∈V [ γ(ij) ]z(ij) , (1)

whereγ(ij) is the probability ofi being the child ofj.

Next, the position of each nodei, ri, is random and takes continuous values in the
image plane. The distribution ofri is conditioned on the position of its parentrj

using the normal distribution

P (ri|rj, z(ij)=1) ,
exp(−1

2
(ri−rj)

T Σ−1
ij (ri−rj))

2π|Σij|
1

2

(2)

whereΣij is a diagonal matrix with elementsσ(x)
ij andσ

(y)
ij , which represent the

order of magnitude of object size along ”x” and ”y” image coordinates, respectively.
In this fashion, the model explicitly expresses geometric component-subcomponent
relationships through multiple scales in the image. The joint probability ofR ,

{ri|∀i∈V }, is given by

P (R|Z) ,
∏

i,j∈V [P (ri|rj, z(ij)) ]z(ij) (3)

At the leaf level,V 0, node positions are fixed to pixel locations. Therefore,P (Z, R′|R0)
is used as the prior over positions and connectivity, whereR0 , {ri|∀i∈V 0}, and
R′ , {ri|∀i∈V \V 0}.

Further, each nodei is associated with an image-class labelxi, and an image-class
indicator random variablex(ik), such thatx(ik)=1 if xi=k, wherek∈M , andM
represents the set of image classes, which is assumed finite.The image classk of
nodei is conditioned on image classl of its parentj and is given by conditional
probability tablesP kl

ij . Thus, the joint probability ofX,{x(ik)|i∈V, k∈M} is con-
ditioned on network connectivity and given by

P (X|Z) ,
∏

i,j∈V

∏
k,l∈M

[
P kl

ij

]x(ik)x(jl)z(ij)
. (4)

Finally, leaf nodes are characterized by observable randomvectorsyi, whereY ,

{yi|∀i∈V 0}. Observablesyi represent image-feature vectors comprising image
texture and color cues in the neighborhood of nodei∈V 0. The observablesyi are
assumed to be conditionally independent given the correspondingx(ik):

P (Y |X, R0) ,
∏

i∈V 0

∏
k∈M P (yi|x(ik))x(ik), (5)
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whereP (yi|x(ik)=1) is a mixture of Gaussians:

P (yi|x(ik)=1) ,
∑Gk

g=1 πk(g)N(yi; νk(g), Ξk(g)) , (6)

The Gaussian-mixture parameters can be grouped in the following set:

θ , {(Gk, πk(g), νk(g), Ξk(g)) | ∀k ∈ M} .

For largeGk, a Gaussian-mixture density can approximate any probability density
[31].

The DTSBN can be viewed a special case of the dynamic tree investigated in our
earlier paper [13], where observables at all levels depend on node positions as

P (Y |X, R0, ρ′) =
∏

i∈V

∏
k∈M

[
P (yρ(i)|xk

i , ρ(i))
]xk

i , and whereρ(i) is a suitably
defined function ofi’s random position. Settingρ(i) = i for all i’s that belong to
ℓ = 0 level leads to the formulation for DTSBNs.

Speaking in generative terms, for a given set ofV nodes, firstP (Z) is defined
using Eq. (1) andP (R|Z) using Eq. (3) to give usP (Z, R). Leaf level node po-
sitions are then fixed to pixel locations to obtainP (Z, R′|R0). Combining Eq. (4)
with P (Z, R′|R0) results inP (Z, X, R′|R0)=P (X|Z)P (Z, R′|R0). Finally, from
Eq. (5), it follows that a DT is fully specified by the joint prior

P (Z, X, R′, Y |R0) = P (Y |X, R0)P (X|Z)P (Z, R′|R0) . (7)

All the parameters of the joint prior can be grouped in the following set:

Θ , {γ(ij), Σij , P
kl
ij , θ}, ∀i, j ∈ V, ∀k, l ∈ M.

3 Probabilistic Inference

One of the principal challenges in applying the DTSBN to image interpretation
is the derivation of efficient algorithms for its inference,that is, for computing
posterior probabilities ofZ, X, andR′ given Y andR0. As for many complex-
structure models, the exact inference for DTSBNs is intractable, which makes us
consider inference approximation methods. In variationalapproximation, averag-
ing phenomena in the model are exploited, such that a given set of variables is as-
sumed approximately independent of the rest of the network.The idea is to approx-
imate the true intractable distributionP (Z, X, R′|Y, R0), by a simpler distribution
Q(Z, X, R′|Y, R0). In our discussion below, the conditioning onY andR0 is omit-
ted to simplify notation. The approaches proposed in prior work range from a fac-
torized approximating distribution over hidden variablesQ(Z, X) = Q(Z)Q(X)
– the method known as mean field variational approximation (MFVA) [10] – to
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more structured solutionsQ(Z, X, R′) = Q(Z)Q(X|Z)Q(R′), where dependen-
cies among hidden variables are enforced [12].

In variational approximation, the goal is to findQ(Z, X, R′) closest toP (Z, X, R′|Y, R0).
This is achieved by minimizingfree energy[32], J(Q, P ), specified as

J(Q, P ),KL(Q‖P )− log P (Y |R0)− log P (R0),

=
∫

R′

dR′
∑

Z,X

Q(Z, X, R′) log
Q(Z, X, R′)

P (Z, X, R, Y )
, (8)

whereKL(Q‖P ) denotes Kullback-Leibler (KL) divergence betweenQ(Z, X, R′)
andP (Z, X, R′|Y, R0) [33], defined as

KL (Q‖P ) ,

∫

R′

dR′
∑

Z,X

Q(Z, X, R′) log
Q(Z, X, R′)

P (Z, X, R′|Y, R0)
. (9)

From Eq. (8), it follows that minimizingJ(Q, P ) amounts to minimizing KL diver-
gence. As a direct corollary of Jensen’s inequality [33],KL(Q‖P ) is non-negative
for any two distributionsQ andP , andKL(Q‖P )=0 if and only if Q=P . Conse-
quently, minimizing free energyJ(Q‖P ) with respect toQ(Z, X, R′) guarantees a
unique global solution toQ(Z, X, R′).

In this paper, inference of DTSBNs is carried out through ourstructured variational
approximation (SVA) algorithm [13], in which the approximating variational dis-
tribution is specified as

Q(Z, X, R′) , Q(Z)Q(X|Z)Q(R′|Z) . (10)

This formulation enforces that both state-indicator variablesX and position vari-
ablesR′ be statistically dependent on the tree connectivityZ, unlike theQ function
proposed by Storkey and Williams [12] that has a simpler formQ(Z, X, R′) =
Q(Z)Q(X|Z)Q(R′). Moreover, the approximating distributions are defined as

Q(Z) ,
∏

i,j∈V [ξ(ij)]z(ij) , (11)

Q(X|Z),
∏

i,j∈V

∏
k,l∈M

[
Qkl

ij

]x(ik)x(jl)z(ij)
, (12)

Q(R′|Z),
∏

i,j∈V ′ [Q(ri|z(ij))]z(ij) , (13)

Q(ri|z(ij)=1),
1

2π|Ωij|
1

2

exp
(
−1

2
(ri−µij)

T Ω−1
ij (ri−µij)

)
, (14)

whereξ(ij) corresponds toγ(ij), Qkl
ij is analogous toP kl

ij , andV ′,V \V 0. Note
that covariancesΩij and mean valuesµij form the set of Gaussian parameters for a
given nodei over its candidate parentsj∈V . Thus, the sampling ofri is determined
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by the pair(µij, Ωij), provided there is a connection betweeni andj. In our imple-
mentation, theΩ’s are diagonal, since the the node positions along the “x” and “y”
image axes are assumed uncorrelated. The diagonal elementsof Ωij are denoted as
ω

(x)
ij andω

(y)
ij .

From the derivation steps reported in [13], it is straightforward to obtain the infer-
ence equations for DTSBNs, by taking into account the constraint that observables
in the DTSBN cannot be modified in inference, and that they exist only at theℓ = 0
level. For completeness, Fig. 3 summarizes the final derivation results, where the
sign∝ is used to denote that the right-hand side should be normalized, such that the
term on the left-hand side represents a probability. Note that the upward-downward
propagation, specified by Steps (2.2) and (2.3) in Fig. 3, is similar to belief propa-
gation for TSBNs [19,22,26]. In the special case, whenξ(ij)=1 only for one parent
j, that is, the set of candidate parents is reduced to only one node, the algorithm
reduces to the standardλ-π rules of Pearl’s message passing scheme for TSBNs.
Also, in Step (2.6) in Fig. 3,Aij represents the influence of observablesY on the
connectivity distribution, andBij represents the contribution of the geometric prop-
erties of the network to the connectivity distribution.

In [13], convergence of SVA was compared with the following inference algo-
rithms: Gibbs sampling [34], mean-field variational approximation proposed in
[10], and structured variational approximation discussedin [12]. The reported em-
pirical results demonstrate that Gibbs sampling becomes unfeasible as image size
grows, and that the mean-field variational approximation exhibits very poor perfor-
mance. In summary, SVA converges to the largest likelihoods, in the fewest number
of iterations, an order of magnitude faster than the second-place structured varia-
tional approximation proposed by Storkey and Williams [12].

3.1 Inference Algorithm

For the given set of parametersΘ that fully specify the joint prior of the DTSBN,
the Bayesian formulation of the inference problem amounts to minimizing the ex-
pectation of a cost functionC:

(Ẑ, X̂, R̂′) = arg min
Z,X,R′

E{C((Z, X, R′), (Z∗, X∗, R′∗))|Y, R0, Θ}, (15)

whereC(·) penalizes the difference between the estimated,(Z, X, R′), and the true
configuration(Z∗, X∗, R′∗). As in [13], the following cost function is used:

C((Z, X, R′), (Z∗, X∗, R′∗)) ,
∑

i,j∈V [1−δ(z(ij)−z∗(ij))]

+
∑

i∈V

∑
k∈M [1−δ(x(ik)−x∗(ik))]

+
∑

i∈V ′ [1−δ(ri−r
∗
i )] ,

(16)
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where∗ stands for true values, andδ(·) is the Kronecker delta function. By using the
variational distribution instead of true posterior,P (Z, X, R′|Y, R0) ≈ Q(Z)Q(X|Z)Q(R|Z),
it follows from Eqs. (15) and (16) that:

Ẑ = arg minZ

∑
Z Q(Z)

∑
i,j∈V [1−δ(z(ij)−z∗(ij))], (17)

X̂ = arg minX

∑
Z,X Q(X, Z)

∑
i∈V

∑
k∈M [1−δ(x(ik)−x∗(ik))], (18)

R̂′ = arg minR′

∫
R′ dR′ ∑

Z Q(R, Z)
∑

i∈V ′[1−δ(ri−r
∗
i )]. (19)

Furthermore, the minimization in Eq. (17) is equivalent to finding parents:

(∀ℓ)(∀i∈V ℓ)(Zi 6=0) ĵ=arg maxj∈{0,V ℓ+1} ξ(ij), (20)

whereξ(ij) is computed as in Step (2.6) in Fig. 3. Here,Zi denotesi-th column of
Z, andZi 6=0 indicates that there is at least one non-zero element in columnZi (i.e.,
i has children). The global solution to Eq. (20) is intractable leading us to resort
to a stage-wise optimization in which the consecutive selection of parents is made
in a bottom-up pass. Thus, starting from the leaf levelℓ={0, 1, ..., L−1}, optimal
parents atV ℓ+1 are selected as:

(∀i∈V ℓ)(Ẑi 6=0) ĵ= arg maxj∈{0,V ℓ+1} ξ(ij), (21)

whereẐi denotesi-th column of estimated̂Z, andẐi 6=0 indicates thati has already
been selected as the optimal parent when optimizing the previous levelV ℓ.

Next, from Eq. (18), the Bayesian estimation of image-classlabels reads

(∀i∈V ) x̂i = arg maxk∈M

∑
Z Q(x(ik)=1|Z)Q(Z) = arg maxk∈M mk

i . (22)

where the approximate posterior probabilitymk
i that nodei is assigned to image

classk is computed as in Step (2.3) in Fig. 3.

Finally, from Eq. (19), the Bayesian estimation of node positions is conducted as

(∀ℓ>0)(∀i∈V ℓ) r̂i = arg maxri

∑
Z Q(ri|Z)Q(Z) =

∑
j∈V ℓ+1 µijξ(ij), (23)

whereµij is computed as in Step (2.4.2) in Fig. 3.

Our inference algorithm for DTSBNs is summarized in Fig. 3.

Figure 3: SVA Inference Algorithm for DTSBNs

(1) Initialization: Assume thatV , L, M , Θ, Nε, ε, andεµ are given. Initializet=0,
∀i, j∈V , ∀k, l∈M , ξ(ij; t=0)=γ(ij), Qkl

ij (t=0)=P kl
ij . Set∀i, j∈V , µij(t=0)

to node locations in the corresponding quad-tree. Set diagonal elements of
Ωij(t=0) to be equal to the area of corresponding dyadic squares in thequad-
tree.
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(2) REPEAT Outer Loop
(2.1) t = t + 1;
(2.2) Compute in bottom-up pass forℓ=0, 1, ..., L−1, ∀i, j∈V ℓ, ∀k, l∈M

λk
i (t)=






P (yi|x(ik)) , i ∈ V 0,
∏

c∈V

[∑
a∈M P ak

ci λak
ci (t)

]ξ(ci;t−1)
, i ∈ V ′,

and

Qkl
ij (t) ∝ P kl

ij λk
i (t),

(2.3) Compute in top-down pass the approximate posterior probabilitymk
i that

nodei is labeled as image classk, givenY andR0, for ℓ=L−1, L−2, ..., 0,
∀i∈V ℓ, ∀k∈M ,

mk
i (t) =

∑
j∈V ξ(ij; t − 1)

∑
l∈M Qkl

ij (t)m
l
j(t),

(2.4) REPEAT Inner Loop
(2.4.1) tin = tin + 1;
(2.4.2) Compute∀i, j∈V ′,

µij(tin) =




∑

p∈V ′

ξ(jp; t−1)Σ−1
ij +

∑

c∈V ′

ξ(ci; t−1)Σ−1
ci




−1

·



∑

p∈V ′

ξ(jp; t−1)Σ−1
ij µjp(tin−1)+

∑

c∈V ′

ξ(ci; t−1)Σ−1
ci µci(tin−1)



 ,

1

ω
(x)
ij (tin)

=
1

σ
(x)
ij



1+
∑

p∈V ′

ξ(jp; t−1)

[
Tr{Σ−1

ij Ωjp(tin−1)}
Tr{Σ−1

ij Ωij(tin−1)}

] 1

2





+
∑

c∈V ′

ξ(ci; t−1)
1

σ
(x)
ci



1+

[
Tr{Σ−1

ci Ωci(tin−1)}
Tr{Σ−1

ci Ωij(tin−1)}

] 1

2



 ,

wherec andp denote children and grandparents of nodei, respec-
tively. Similarly, compute∀i, j∈V ′, ω

(y)
ij (tin).

(2.5) UNTIL |µij(tin)−µij(tin−1)|/µij(tin−1) < εµ;
(2.6) ForΩij = Ωij(tin), µij = µij(tin), andMijp = (µij−µjp)(µij−µjp)

T

compute∀i, j∈V ′,

ξ(ij)(t) ∝ γ(ij) exp (Aij(t) − Bij(t−1)) ,

where

Aij(t) =
∑

k,l∈M

Qkl
ij (t)m

l
j(t) log(

∑

a∈M

P al
ij λa

i (t)),
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Bij(t−1) =
1

2
log

|Σij |
|Ωij |

+
1

2
Tr{Σ−1

ij Ωij}

+
∑

p∈V ′

ξ(jp; t−1)Tr{Σ−1
ij Ωij}

1

2 Tr{Σ−1
ij Ωjp}

1

2

+
1

2

∑

p∈V ′

ξ(jp; t−1)Tr{Σ−1
ij (Ωjp+Mijp)}

+
1

2

∑

c∈V ′

ξ(ci; t−1)Tr{Σ−1
ci (Ωij+Mcij)}

+
∑

c∈V ′

ξ(ci; t−1)Tr{Σ−1
ci Ωci}

1

2 Tr{Σ−1
ci Ωij}

1

2 ,

wherec andp denote children and grandparents of nodei, respectively.
(3) UNTIL |Q(Z, X, R′; t)−Q(Z, X, R′; t−1)|/Q(Z, X, R′; t−1)<ε for Nε con-

secutive iteration steps ;
(4) Compute in bottom-up pass forℓ=0, 1, ..., L−1

(∀i∈V ℓ)(Ẑi 6=0) ĵ=arg maxj∈{0,V ℓ+1} ξ(ij; t);
(5) Compute(∀i∈V ) x̂i = arg maxk∈M mk

i (t);
(6) Compute(∀ℓ>0)(∀i∈V ℓ) r̂i =

∑
j∈V ℓ+1 µij(t)ξ(ij; t);

Fig. 3. The SVA inference algorithm [13] adapted to account for fixed single-layer observ-
ables in DTSBNs ;t andtin are counters in the outer and inner loops, respectively;Nε, ε,
andεµ control the convergence criteria for the two loops.

3.2 Implementation Issues

As discussed in [13], for SVA inference, it is necessary to undertake additional
computation steps to prevent numerical underflow. Here, themost problematic is
computation ofQkl

ij in Step (2.2) in Fig. 3. Fortunately, if theλ’s are appropriately
scaled, then the computation ofQkl

ij does not change when the scaledλ̃ values are
used. Thus, if theλ’s are scaled as

λ̃k
i ,

λk
i∑

a∈M λa
i

, ∀i∈ V , ∀k∈M , (24)

then, it follows that

Qkl
ij =

P kl
ij λk

i∑
a∈M P al

ij λa
i

=
P kl

ij λ̃k
i

∑
a∈M P al

ij λ̃a
i

. (25)

Next, note thatεµ controls the convergence criterion of the inner loop in Fig.3,
whereµij andΩij are computed. Whenεµ=0.01, the average number of iteration
steps,tin, in the inner loop, ranges from 3 to 5 depending on the image size, where
the latter corresponds to256×256 images.
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Finally, although SVA guarantees a global unique solution to Q(Z, X, R′), setting
an inappropriate value ofε that controls the convergence criterion of the outer loop
in Fig. 3 may lead to sub-optimal solutions. Therefore, the additional convergence-
control parameterNε needs to be specified as well. In our experiments the two
convergence parameters are set asNε=10 andε=0.01.

4 Learning

In order to perform the SVA inference, it is first necessary tolearn the parameters of
the joint prior,Θ={γ(ij), Σij , P

kl
ij , θ}, ∀i, j∈V , ∀k, l∈M , on a given set of train-

ing images. Below, we first explain how to computeγ(ij) andθ, and then discuss
learningΣij andP kl

ij .

The connectivity probabilitiesγ(ij) are set to be uniform overi’s candidate parents
∀j∈{0, V ℓ+1}, whereγ(i0) is the probability thati is a root. This allows DTSBNs
to form arbitrary structures adapted to the given image in inference. In other words,
the uniformγ’s do not favor any particular component-subcomponent structure of
objects in the image by DTSBNs. Next, the parameters of a Gaussian-mixture den-
sity θ can be learned by the EM algorithm on a given set of training images [31].

ParametersΣij andP kl
ij , on the other hand, require a more involved learning pro-

cedure, since they characterize nodes at higher levels, where the ground truth is
not readily available. These parameters can be learned on training images, by using
standard maximum likelihood (ML) optimization. Usually, in ML optimization, it
is assumed that forN independently generated training images with observables
{Y n}, n=1, ..., N , corresponding configurations of latent variables – in our case
{(Zn, Xn, R′n)} – are given. However, for multiscale generative models, in gen-
eral, neither the true image-class labels for nodes at higher levels nor their dynamic
connections are given. Therefore, “true” configurations{(Ẑn, X̂n, R̂′n)} must be
estimated.

This is achieved through an iterative learning procedure, where in stept it is first
assume thatΘ(t)={γ(ij), Σij(t), P

kl
ij (t), θ} is given,3 and then conduct inference

for each training imagen=1, ..., N

(Ẑn, X̂n, R̂′n) = arg min
Z,X,R′

E{C((Z, X, R′), (Z∗, X∗, R′∗))|Y n, R0, Θ(t)}, (26)

as explained in Section 3. Once the estimates{(Ẑn, X̂n, R̂′n)}, n=1, ..., N , are
found, ML optimization is applied to computeΘ(t+1). Here, the iterations are run
until |P kl

ij (t+1) − P kl
ij (t)|/P kl

ij (t) < 0.01.

3 Note that parametersγ(ij) andθ are fixed to already learned values.
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In particular, for the estimated̂zn
ij andr̂

n
i parameters of each training imagen, the

ML solution toΣij , ∀ℓ, ∀(i, j) ∈ V ℓ×V ℓ+1, is given by

Σ̂ij =
1

N

N∑

n=1

∑

{
(i,j)∈V ℓ×V ℓ+1

ẑn
ij

=1

}
(r̂n

i − r̂
n
j )(r̂n

i − r̂
n
j )T , (27)

where the off-diagonal elements are set to zero, sinceΣij is assumed to be a diago-
nal matrix. In order not to overfit the model, note that theΣ̂ij covariances are equal
for all nodesi at the same level.

Further, to learn conditional probability tablesP kl
ij , the following variational log-

likelihood is defined:

L (Y |P kl
ij ) ,−

∫

R′

dR′
∑

Z,X

Q(Z, X, R′) log
Q(Z, X, R′)

P (Z, X, R, Y |P kl
ij )

,

=−KL(Q‖P ) + log P (Y |R0, P kl
ij ) + log P (R0) , (28)

whereKL(Q‖P ) is given by Eq. (9). Since for anyQ andP distributionsKL(Q‖P ) ≥
0, it follows that the log-likelihoodlog P (Y |R0, P kl

ij ) is lower bounded byL (Y |P kl
ij )

minus the additive constantlog P (R0). Consequently, maximizingL (Y |P kl
ij ) with

respect toP kl
ij increases the lower bound tolog P (Y |R0, P kl

ij ). Thus, for a given set

of training imagesn = 1, ..., N , optimalP̂ kl
ij can be computed as

P̂ kl
ij = arg maxP kl

ij

∑N
n=1 L (Y n|P kl

ij ) ,

subject to
∑

k∈M P kl
ij = 1 .

(29)

Substituting into Eq. (28) for all the terms, then finding∂L (Y |P kl
ij )/∂P kl

ij , and fi-
nally accounting for the Lagrange multiplier, yields the solution to Eq. 29,∀(i, j) ∈
V ℓ×{0, V ℓ+1}, ∀k, l∈M :

P̂ kl
ij ∝

N∑

n=1

∑

(i,j)∈V ℓ×{0,V ℓ+1}

ξn(ij)Qkl;n
ij ml;n

j , (30)

wheren in the superscript ofξ(ij), Qkl
ij , andml

j denotes that these variational pa-
rameters are optimized for then-th image by using the inference algorithm in Fig. 3.

The learning of DTSBN parameters is summarized in Fig. 4.
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Learning Algorithm

(1) t = 0; initialize Θ(0)={γ(ij), Σij(0), P kl
ij (0), θ};

(2) REPEAT
(2.1) t = t + 1;
(2.2) Estimate forn = 1, ..., N :

(Ẑn, X̂n, R̂′n) = arg min
Z,X,R′

E{C(·)|Y n, R0, Θ(t−1)},

by using the inference algorithm in Fig. 3;
(2.3) ComputeΣij(t) given by Eq. (27);
(2.4) ComputeP kl

ij (t) given by Eq. (30);
(3) UNTIL |P kl

ij (t)−P kl
ij (t−1)|/P kl

ij (t−1) < 0.01

Fig. 4. Algorithm for learning the DTSBN parameters.

5 Experiments and Discussion

This Section reports the performance of DTSBNs in supervised settings. Since im-
age segmentation is an integral part of our object-recognition systems, we also
briefly review the segmentation performance of DTSBNs, extensively discussed
in [13].

Experiments are conducted on 360 color images of size256×256, examples of
which are shown in Figs. 5, 7, and 11. This dataset is the augmented version of
Dataset IV in [13]. Images in the dataset contain partially occluded objects from
a set of 23 classes, where 21 classes are items (e.g., toys, books, cans, etc.) that
are similar in appearance, as depicted in Fig. 6, and the remaining 2 classes are
two types of background. Here, the image classes are carefully selected to test if
DTSBNs are expressive enough to capture very small variations in appearances of
some classes (e.g., two different “Fluke” voltage-measuring instruments), challeng-
ing even for a human eye, as well as to encode large differences among some other
classes (e.g., complexly shaped robotsvs. books). Moreover, the dataset is care-
fully designed to contain complex scenes with occlusions, where the most “rec-
ognizable” parts of the objects in the scene are hidden. For instance, in Fig. 11,
two “Fluke” voltage-measuring instruments, then, two bluebooks, and two cans,
occlude each other, such that a careful analysis of their visible parts is required for
successful recognition. Ground truth for each image is determined through hand-
labeling of pixels. The dataset is divided into training andtest sets by random se-
lection of images, such that 2/3 are used for training (i.e.,learningΘ parameters)
and 1/3 for testing (i.e., image segmentation and classification).

In our experiments, observablesY include both color and texture cues. Texture is
computed as the difference-of-Gaussian function convolved with the image:

D(x, y, k, σ), (G(x, y, kσ)−G(x, y, σ))∗I(x, y), (31)
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G(x, y, σ), exp(−(x2 + y2)/2σ2)/2πσ2, (32)

wherex andy represent pixel coordinates, andI(x, y) is the intensity image.D
provides a close approximation to the scale-normalized Laplacian of Gaussian,
σ2∇2G, which has been shown to produce the most stable image features across
scales when compared to a range of other possible image functions, such as the gra-
dient or the Hessian [35].D(x, y, k, σ) is computed for three variance scale factors
k=

√
2, 2,

√
8 andσ = 2 pixels. Color is represented by the generalized RGB color

space,r=R/(R+G+B), andg=G/(R+G+B), which effectively normalizes vari-
ations in brightness. Eachr andg color value is normalized over the image to have
zero mean and unit variance. Thus, theyi’s are 5-dimensional vectors.

5.1 Image Segmentation

The image-segmentation results presented in Fig. 5, as wellas the results in [13],
demonstrate that DTSBNs, inferred with SVA, are able to correctly assign one sub-
tree per “object” in an image. Here, a cluster of pixels descending from a root
corresponds to the whole object, and clusters descending from higher level nodes
underneath the root correspond to object parts. Note from Fig. 5 that DTSBNs pre-
serve tree structure for objects across images subject to translation, rotation and
scaling. Moreover, note that the marked regions of pixels with the same parent
at level 4 for the largest-object scale correspond to the regions of pixels with the
same parent at level 3 for the medium-object scale; similarly, the level-4 clustering
for the medium-object scale corresponds to the level-3 clustering for the smallest-
object scale. In other words, as the object transitions through scales, the tree struc-
ture changes by eliminating the lowest-level layer, while the higher-level structure
remains intact.

As discussed in [13], the estimated positions of roots in Fig. 5 are very close to the
center of mass of whole objects. Moreover, the estimated positions of higher-level
nodes (e.g., nodes at levelsℓ=3 andℓ=4) are very close to the center of mass of
object-parts they represent. This can be measured by computing the error of node
positionsr = [r(x) r(y)] as a distance from the actual center of mass (CM) of hand-

labeled ”meaningful” object parts:derr =
√

(r(x)−r(CMx))2+(r(y)−r(CMy))2. For the
dataset used in this paper, the averaged error isderr=11.4, which represents only
4% of the image size. Therefore, our claim that nodes at different levels of DTSBN
structure represent object-parts at various scales is supported by experimental evi-
dence that the nodes segment the image into “meaningful” object sub-components
and position themselves at the center of mass of these sub-parts.
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Fig. 5. DTSBN-based image segmentation: invariance acrosstranslation, rotation and scal-
ing. (top row)256 × 256 images; (middle row) pixel clusters with the same parent at level
3; (bottom row) pixel clusters with the same parent at level4; points mark the position of
parent nodes.

Fig. 6. 21 image classes in our dataset.

5.2 Image Classification

We first compare classification performance of DTSBNs, learned by SVA, with that
of the following statistical models: (1) MRFs presented in [17], (2) DRFs proposed
in [18], and (3) TSBNs discussed in [21, 22]. These models arerepresentatives of
descriptive, discriminative and fixed-structure generative models, respectively.

For MRFs, it is assumed that the label fieldP (X) is a homogeneous and isotropic
MRF, given by the generalized Ising model with only pairwisenonzero potentials
[17]. The likelihoodsP (yi|xi) are assumed conditionally independent given the
labels. Thus, the posterior energy function is given by
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U(X|Y )=
∑

i∈V 0 log P (yi|xi)+
∑

i∈V 0

∑
j∈Ni

V2(xi, xj), (33)

V2(xi, xj)=






βMRF , if xi = xj ,

−βMRF , if xi 6= xj .
(34)

whereNi denotes the neighborhood ofi, P (yi|xi) is a G-component mixture of
Gaussians given by Eq. (5), andV2 is the interaction parameter. Details on learning
the model parameters as well as on inference for a given imagecan be found in [17].
Next, the posterior energy function of the DRF is given by

U(X|Y ) =
∑

i∈V 0

Ai(xi, Y )+
∑

i∈V 0

∑

j∈Ni

Iij(xi, xj, Y ) (35)

whereAi= log σ(xiW
T
yi) andIij=βDRF (Kxixj+(1−K)(2σ(xixjV

T
yi)−1)) are

the unary and pairwise potentials, respectively. Since theabove formulation deals
only with binary classification (i.e.xi ∈ {−1, 1}), when estimating parameters
{W, V, βDRF , K} for a given object, that object is treated as a positive example,
while all other objects are treated as negative examples (“one against all” strategy).
For details on how to learn the model parameters, and how to conduct inference
for a given image, see [18]. Finally, TSBNs or quad-trees aredefined to have the
same number of nodesV and levelsL as DTSBNs. In our experiments, learning
of TSBN parameters and inference are performed with the algorithms discussed in
depth in [22].

After inference of MRF, DRF, TSBN, and DTSBN on a given image,for each
model, pixel labeling is conducted through MAP classification. Fig. 7 illustrates an
example of pixel labeling for one image in our dataset. Sincethe ground truth for
each test image is available, it is possible to estimate bothpixel-labeling error and
object-recognition error. Here, a hand-labeled image region is said to be correctly
recognized as an object if the majority of MAP-classified pixel labels in the region
are equal to the true labeling of that object. For estimatingthe object-recognition
error, the following instances are counted as error: (1) merging two distinct objects
into one, and (2) swapping the identity of objects. The object-recognition error over
all objects in 120 test images is summarized in Fig. 8. The bars in Fig. 8 represent
the overall recognition error, while the black portion of each bar indicates the ratio
of swapped-identity errors. For instance, for DTSBNs the overall recognition error
is 9.6%, of which 37% of instances were caused by swapped-identity errors. Fig. 9
shows average pixel-labeling error.

For the two-class recognition problem, ROC (receiver operating characteristic)
curves are another method of visualizing performance. A typical two-class example
is shown in Fig. 7, where pixels labeled as “toy-snail” are considered true positives,
while pixels labeled as “book” are considered true negatives. Fig. 10 plots ROC
curves for MRF, DRF, TSBN and DTSBN based decision boundaries. From Fig. 10,
note that the DTSBN-based image classification is the most accurate, since its ROC
curve is the closest to the left-hand and top borders of the ROC space, as compared
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Fig. 7. MAP pixel labeling using different statistical models.2 1 . 2 %6 7 % 1 2 . 5 %8 3 % 1 4 . 8 %7 2 % 9 . 6 %3 7 %M R F D R F T S B N D T S B N
Fig. 8. Object recognition error.1 5 . 8 % 1 2 . 3 % 1 6 . 1 % 9 . 9 %

M R F D R F T S B N D T S B N
Fig. 9. Pixel labeling error.

to the ROC curves of the other models.

From the results reported in Figs. 8 and 9, as well as form Fig.10, note that
DTSBNs outperform the other three models. However, recognition performance
of all the models suffers substantially when an image contains occlusions. While
for some applications the literature reports vision systems with impressively small
classification errors (e.g., 2.5% hand-written digit recognition error [36]), in the
case of complex scenes this error is much higher [1–5]. To some extent, our results
could have been improved with more discriminative image features and/or more
sophisticated classification algorithms than majority rule. However, none of these
will alleviate the fundamental problem of “traditional” recognition approaches: the

20



Fig. 10. ROC curves for the image in Fig. 7a with DTSBNs, TSBNs, DRFs and MRFs.

lack of explicit analysis of visible object parts. Thus, thepoor classification perfor-
mance of MRF, DRF, and TSBN, reported in Figs. 8 and 9, can be interpreted as
follows. Accounting for only pairwise potentials between adjacent nodes in MRF
and DRF is not sufficient to analyze complex configurations ofobjects in the scene.
Also, the analysis of fixed-size pixel neighborhoods at various scales in TSBN
leads to “blocky” estimates, and consequently to poor classification performance.
Therefore, we hypothesize that the main reason why DTSBNs outperform the other
models is their capability to represent object details at various scales, which in turn
provides for explicit analysis of visible object parts. In other words,recognition of
object partsis critical and should condition recognition of the object as a whole,
in the face of the occlusion problem. Thus, instead of applying more sophisticated
image-feature-extraction tools and better classificationprocedures than majority
vote, a more radical change to our recognition strategy is introduced below.

5.3 Object-part Recognition Strategy

Recall from Section 5.1 that DTSBNs are capable of capturingstructures at various
scales, such that DTSBN root nodes represent the center of mass of distinct objects,
while children nodes down the subtrees represent object parts. As such, DTSBNs
provide a natural and seamless framework for identifying candidate image regions
as object parts, requiring no additional training for such identification. This conve-
nient property of DTSBNs leads us to an object-part recognition strategy, where, in
contrast to the whole-object recognition strategy, presented in the previous section,
recognition is conducted in two stages. Thus, after inference of DTSBN structure
for a given image, recognition now begins by treating children nodes of roots as
new roots, each of which segments the image into smaller regions corresponding
to object parts. Then, labels are assigned to all pixels thatare descendants of these
new roots, through MAP classification. Majority voting follows to identify the se-
lected image regions under the new roots. Note that the treatment of subtrees under
children nodes, here, is exactly the same as subtrees under the roots in the whole-
object recognition strategy. Hence, the pixel majority vote identifies the selected
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Fig. 11. Comparison of two recognition strategies: (top) challenging images of size
256 × 256 containing objects that are very similar in appearance; (middle) classification
using the whole-object recognition strategy; (bottom) classification using the part-object
recognition strategy; each recognized object in the image is marked with a different color.

image regions as object parts. Finally, in the second stage of our recognition strat-
egy, another round of majority voting is conducted at the original roots over the
labels of identified object parts that descend from a unique root. Therefore, in the
second stage, object-part majority voting leads to ultimate recognition of an object
as a whole. The block-diagram of the object-part recognition strategy is shown in
Fig. 2.

Fig. 11 presents classification results using the whole-object and object-part recog-
nition strategies on three images from our dataset containing objects that are very
similar in appearance. In the leftmost example, both strategies fail to make a distinc-
tion between the two different “Fluke” voltage-measuring instruments (see Fig. 6),
since the part that differentiates one object most from another is occluded, mak-
ing it a difficult case for recognition even for a human interpreter. In the other two
images, note that the object-part recognition strategy is more successful than the
whole-object approach. The recognition error averaged over all objects in 120 test
images is only 5.8%, an improvement of nearly 40% over the reported error of 9.6%
in the previous section.

These results support our hypothesis that for successful recognition of partially
occluded objects it is critical to analyze visible object details at various scales.
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6 Conclusions

This paper addresses the problem of detecting and recognizing partially occluded
objects in complex scenes. We have shown that a careful analysis of visible fine-
scale object details can be critical for recognition accuracy in such scenes, lead-
ing to the development of two object-recognition strategies. DTSBNs facilitate the
analysis of multiple sub-parts of multiple objects in an image, and, as such, offer
an intuitively appealing framework for recognition in occluded scenes.

The proposed generative model DTSBN can be viewed as a special case of the DT
model introduced in [13]. Unlike the DT, the DTSBN is applicable in supervised
settings, since its single-layer observables are not allowed to change in inference
along with dynamic changes of model structure. The difference in observable infor-
mation between DTs and DTSBNs renders a direct comparison between DTSBNs
and DTs beyond the scope of this paper. However, it is worth noting that image seg-
mentation performance of the DT with observables present only at the lowest level
is surprisingly just slightly worse than the performance ofthe DT with multi-layer
observables present at all model levels, as reported in [13].

For inference of DTSBNs we have used our SVA algorithm, whichrelaxes poorly
justified independence assumptions of Storkey and Williams[12], and converges
to larger likelihoods an order of magnitude faster than competing algorithms [13].
For learning the parameters of the joint prior distributionof the DTSBN, we have
derived the training algorithm based on standard maximum likelihood (ML) opti-
mization.

Experiments within the proposed framework have illustrated the capability of DTSBNs
to capture important component-subcomponent structures in images. For both DTSBN-
based recognition strategies (whole-object and object-part), our results demonstrate
better performance of the DTSBN generative framework compared with represen-
tatives of descriptive, discriminative, and fixed-structure statistical models. Fur-
thermore, the object-part recognition strategy, which explicitly represents object
components at various scales, decreases recognition erroran additional 40% over
the same dataset, when compared to the “traditional” whole-object approach.

The results presented in this paper support our hypothesis that for successful recog-
nition of partially occluded objects it is critical to analyze visible object details at
various scales. Ultimately, what allows us to overcome the computational complex-
ity issues for such an approach to recognition is the proposed generative-model
framework. Both the computationally efficient SVA inference algorithm and the
object-part recognition strategy arise from the causal, Markov property of DTSBNs.
Consequently, we anticipate our future research efforts toimprove upon available
recognition approaches by utilizing the causality of the generative-model paradigm.
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