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Abstract. This paper presents an approach to object discovery in a give

labeled image set, based on mining repetitive spatial cordigpns of image
contours. Contours that similarly deform from one imagertother are viewed
as collaborating, or, otherwise, conflicting. This is captliby a graph over all
pairs of matching contours, whose maximum a posteriori icaltiring assign-
ment is taken to represent the shapes of discovered ohljéaltscoloring is con-

ducted by our new Coordinate Ascent Swendsen-Wang cut (OQASASW uses
the Metropolis-Hastings (MH) reversible jumps to probstiitally sample graph
edges, and color nodes. CASW extends SW cut by introducimgaarization

in the posterior of multicoloring assignments that presehe MH jumps to ar-
rive at trivial solutions. Also, CASW seeks to learn paraenetof the posterior
via maximizing a lower bound of the MH acceptance rate. Tpéesls up multi-
coloring iterations, and facilitates MH jumps from localmima. On benchmark
datasets, we outperform all existing approaches to unsgigeerobject discovery.

1 Introduction

This paper explores a long-standing question in computgowj that of the role of
shape in representing and recognizing objects from cecttiggories occurring in im-
ages. In psychophysics, it is widely recognized that shapeé of the most categorical
object properties [1]. Nevertheless, most recognitiotesys rather resort to appearance
features (e.g., color, textured patches). Recent work aueslshape with appearance
features [2,3], but the relative significance of each featype, and their optimal fusion
for recognition still remains unclear.

Toward answering this fundamental question, we here fonub® problem of dis-
covering and segmenting instances of frequently occuofiject categories in arbitrary
image sets. For object discovery, we use only the geomatjogpties of contour lay-
outs in the images, deliberately disregarding appearagateres. In this manner, our
objective is to show that shape, on its own, without photoimé&tatures, is expressive
and discriminative enough to provide robust detection agirentation of common
objects (e.qg, faces, bikes, giraffes, etc.) in the midstamkiground clutter. To this end,
we develop an approach to mining repetitive spatial conditjoins of contours across
a given set of unlabeled images. As demonstrated in thisrpapeshape mining in-
deed results in extracting (i.e., simultaneously detgaiind segmenting) semantically
meaningful objects recurring in the image set.

To our knowledge, this paper presents the first approachtraating frequently
occurring object contours from a clutter of image contouitheut any supervision,



in Proc. 11th European Conference on Computer Vision, C@teece, 2010

Fig. 1. Overview: Given a set of unlabeled images (left), we exttiaeir contours (middle left),

and then build a graph of pairs of matching contours. Conpaiins that similarly deform from

one image to another are viewed as collaborating (straigighgedges), or conflicting (zigzag
graph edges), otherwise. Such coupling of contour pairsitées their clustering, conducted
by our new algorithm, called Coordinate Ascent Swendsenghaut (CASW). The resulting

clusters represent shapes of discovered objects (riget giewed in color)

and without any help from appearance features. Existingkwloat uses only shape
cues for recognition in real-world images requires eithenanually specified shape
template [4, 5], or manually segmented training images @onléhe object shape [6].
Also, all previous work on unsupervised object-categoscavery exploits the pho-
tometric properties of segments [7, 8], textured patchgsajed patches along image
contours [10]. In our experiments, we outperform all thgggemrance-based, unsuper-
vised approaches in both object detection and segmentatibenchmark datasets.

Approach: Our approach consists of three major steps, illustratedgni-Step 1.
Given a set of unlabeled images, we detect their contourldyninimum-cover algo-
rithm of [11]. Each contour is characterized as a sequenteai-angle descriptors,
which are beam-angle histograms at points sampled alongathur. Similarity be-
tween two contours is estimated by the standard dynamicwierping (DTW) of the
corresponding sequences of beam-angle descrigbtas.2 builds a weighted graph
of matching contours, aimed at facilitating the separatbbackground from object
shapes in Step 3. We expect that there will be many simildréyped curves, belong-
ing to the background in the images. Since the backgroungstwadefinition, similar
background curves will most likely have different spat@duts across the image set.
In contrast, object contours (e.g., curves delineatingraffgis neck) are more likely
to preserve both shape and layout similarity in the set. dfoee, for object discov-
ery, it is critical that we capture similar configurationsomintours. To this end, in our
graph, nodes correspond to pairs of matching contours, ephgdges capture spatial
layouts of quadruples of contours. All graph edges can bl jpasitive and negative,
where their polarity is probabilistically sampled durinigstering of image contours,
performed in the next step. Positive edges support, andinegages hinder the group-
ing of the corresponding contour pairs within the same elust the contourgointly
undergo similar (different) geometric transformationnfrone image to another. This
provides stronger coupling of nodes than the common caseaphgedges being only
strongly or weakly “positive”, and thus leads to faster cengence to more accurate
object discoveryStep 3 conducts a probabilistic, iterative multicoloring of theagh,
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Contour detectorls BAH BAH-U| [14]]| [15]| [2]
0.234+0.01| 0.21 | 0.18 0.15 0.21]
0.59+0.02| 0.57 | 0.48| 0.48 0.52
0.32+0.03| 0.30 | 0.25 0.18 0.29
0.78+0.03| 0.75 | 0.62| 0.61] 0.72
0.37+0.02| 0.34 | 0.26| 0.20| 0.34]
0.81+0.03| 0.78 | 0.63| 0.61| 0.74]

Canny

[l

gPb+[11]

Table 1. Contour matching on the ETHZ image dataset [3]. Top
Fig.2. BAH is a weighted is Precision, bottom is Recall. The rightmost column shows
histogram of beam anglesmatching results of Oriented Chamfer Distance [2], and rothe
0;; at contour pointsP;, columns show DTW results. Descriptors (left to right): oukHB
=1,2,... unweighted BAH, Shape Context [14], and SIFT [15].

by our new algorithm, called Coordinate-Ascent Swendsemy{(CASW) cut. In each
iteration, CASW cut probabilistically samples graph edgesl then assigns colors to
the resulting groups of connected nodes. The assignmenéceaepted by the standard
Metropolis-Hastings (MH) mechanism. To enable MH jumps éttdr solutions with
higher posterior distributions, we estimate parametetseposterior by maximizing a
lower bound of the MH acceptance rate. After convergeneetéBulting clusters rep-
resent shapes of objects discovered, and simultaneougtyeseed, in the image set.

Contributions: Related to ours is the image matching approach of [12]. Thdg b
a similar graph of contours extracted from only two imagesl #hen conduct multi-
coloring by the standard SW cut [12, 13]. They pre-speciéygblarity of graph edges,
which remains fixed during multicoloring. Also, they hanidkpparameters of the pos-
terior governing multicoloring assignments. In contrast,graph is designed to accom-
modate transitive matches of many images, and we allow @utgedges to probabilis-
tically change their polarity, in every MH iteration. We iatluce a new regularization
term in the posterior, which provides a better control of phebabilistic sampling of
graph edges during MH jumps. Finally, we seekaarn parameters of our posterior via
maximizing a lower bound of the MH acceptance rate. Our erparts show that this
learning speeds up MH iterations, and allows jumps to smhstivith higher posteriors.

Sec. 2 specifies our new shape descriptor. Sec. 3 describehmild the graph
from all pairs of image contours. Sec. 4 presents our new CABWor multicoloring
of the graph. Sec. 5-6 present experimental evaluationpandoncluding remarks.

2 Image Representation Using Shapes and Shape Description

This section presents Step 1 of our approach. In each imagextract relatively long,
open contours using the minimum-cover algorithm of [11jened to as gPb+ [11].
Similarity between two contours is estimated by aligningiitisequences of points by
the standard Dynamic Time Warping (DTW). Each contour p@rgharacterized by
our new descriptor, called weighted Beam Angle HistograAHB BAH is a weighted
version of the standard unweighted BAH, aimed at mitigatiireguncertainty in contour
extraction. BAH down-weights the interaction of distanagh parts, as they are more
likely to belong to different objects in the scene.
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The beam angle9),;, at contour points?;, ¢ = 1,2,..., are subtended by lines
(Pi—;, P;) and (P;, P1;), as illustrated in Fig. 2P,_; and P;;; are two neighbor-
ing points equally distant by points along the contour frorf;, j = 1,2,.... BAH
is a weighted histogram, where the weight of angleis computed asxp(—«j),
j=1,2,... (k = 0.01). BAH is invariant to translation, in-plane rotation, archke.
Experimentally, we find that BAH with 12 bins gives optimabistable results.

Table 1 compares BAH with other popular shape descriptoth®@task of contour
matching. We match contours from all pairs of images belogtp the same class in the
ETHZ dataset [3], and select the top 5% best matches. Trutvesgfalse positives)
are pixels of the matched contour that fall in (outside of) leunding box of the target
object. The ground truth is determined from pixels of th&éahset of detected contours
that fall inside the bounding box. For matching, we use DTWj ®riented Chamfer
Distance [2]. Tab. 1 shows that our BAH descriptor gives thst performance with all
contour detectors, and the highest accuracy with gPb+ fI&¢p, DTW with our BAH
outperforms Oriented Chamfer Distance.

3 Constructing the Graph of Pairs of Image Contours

This section presents Step 2 which constructs a weightggzhgfa= (V, E, p), from
contours extracted from the image set. Node§ oépresent candidate matches of con-
tours,(u, u’)€V, whereu andw’ belong to differentimages. Similarity of two contours
is estimated by DTW. We keep only the best 5% of contour matekanodes of:.

Edges ofG, e = ((u, ), (v,v")) € E, capture spatial relations of corresponding
image contours. If contoursandwv in image 1, and their matche$ andv’ in image 2
have similar spatial layout, then they are less likely t@hglto the background clutter.
All such contour pairs will have a high probability to becopusitively coupled inG.
Otherwise, matchegs:, u’) and(v, v") will have a high probability to become negatively
coupled inG, so that CASW could place them in different clusters. Thisbabilis-
tic coupling of nodes inG is encoded by edge weights,, defined as the likelihood
pd o< exp(—wy d.), given the positive polarity of, andp, o« exp(—wj (1-4.)), given
the negative polarity of. wgr andw; are the parameters of the exponential distribution,
andé. € [0, 1] measures a difference in spatial layouts@ndv in image 1, and their
matches:’ andv’ in image 2. We specify, for the following two cases. In Cases 1 and
2, there are at least two contours that lie in the same imalgis.allows establishing
geometric transforms betweéfu, v’), (v,v’)). Note that this would be impossible, in
a more general case, wheie, v’), (v,v")) come from four distinct images.

Case 1: (u,u’) and(v,v") come fromtwo images, where: andv are in image 1,
andu’ andv’ are in image 2, as illustrated in Fig. 3a. We estimata terms of affine
homographies between the matching contours, denotéfi,as and H,,,,. Note that
if u,v in image 1 preserve that same spatial layout in image 2, Bhen=H.,, H.. .
Since the estimation df,,, between arbitrary, non-similar contourg&ndv in image 1
is difficult, we use the following strategy. From the DTW aligent of points along
andv’, we estimate their affine homography,,,. Similarly, forv andv’, we estimate
H,, . Then, we project.’ to image 1, as/’=H,,,-u’, and, similarly, project’ to im-
age 1 a3 =H,, v (Fig. 3aright). Next, in image 1, we measure distances hketwe
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Image 2 Image 1 Image 3

Fig. 3. (a) Case 1: Estimating,, . ..,y When contours, andv are in image 1, and their matches
v’ andv’ are in image 2. We use the affine-homography projection’adind v’ to image 1,
v’ = H,,u andv” = H,, /v, and compute as the average distance betweeandv’’, and
v andv”. As can be seen, paifs, s') and (v,v’) do not have similar layouts in image 1 and
image 2. (b) Case 2: Estimatidg, ., .-y whenu andv are in image 1, and their matches
andv’ are in image 2 and image 3. We use multiple affine-homograpbiggtions ofu’ andv’

to image 1 via auxiliary, context contoussandt’ in a vicinity of »” andv’.

corresponding points af and«”, where the point correspondence is obtained from
DTW of u and«’. Similarly, we measure distances between correspondimgspof v
andv”. 4, is defined as the average point distance betweamdv”, andv andv”.

Case 2: (u,u’) and(v,v") come fromthree images, where, andv belong to im-
age 1./ isinimage 2, and’ is in image 3. In this case, we can neither ugg, to
projectu’ from image 2 to image 1, ndt,,, to projecty’ from image 3 to image 1.
Instead, we resort to context provided by auxiliary congatiin a vicinity of «/, and
auxiliary contours’ in a vicinity of v’. For every neighbos’ of «’ in image 2, we
find its best DTW matclz in image 1, and compute homograpHy,-. Similarly, for
every neighbot’ of v in image 3, we find its best DTW matehn image 1, and com-
pute homographyd;;.. Then, we use all these homographies to projé¢o image 1,
multiple times, as//=H,¢ ', and, similarly, project” to image 1, multiple times, as
vy =Hpv'. Next, as in Case 1, we measure distances between corrésgmachts of
all w andu” pairs, and alb andv;’ pairs.d. is defined as the average point distance.

4 Coordinate-Ascent Swendsen-Wang Cut

This section presents Step 3. Given the gréph- (V, E, p), specified in the previ-
ous section, our goal is to perform multicoloring@f which will partition G into two

subgraphs. One subgraph will represent a composite cloktevdes, consisting of a
number of connected components (CCPs), receiving distiolctrs, as illustrated in
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Fig. 4. This composite cluster contains contours of thealisced object categories.
Nodes outside of the composite cluster are interpretedeaddlckground. All edges
e € E can be negative and positive. A negative edge indicategtikatodes are con-
flicting, and thus should not be assigned the same color. Aiymedge indicates that
the nodes are collaborative, and thus should be favoredttingesame color. If nodes
are connected by positive edges, they form a CCP, and retteivaame color (Fig. 4).
A CCP cannot contain a negative edge. CCPs connected byiveegdtjes form a com-
posite cluster. The amount of conflict and collaboratiomieein two nodes is defined
by the likelihoodp, defined in Sec. 3.

For multicoloring ofGG, we formulate a new Coordinate Ascent Swendsen-Wang cut
(CASW) that uses the iterative Metropolis-Hastings alipon. CASW iterates the fol-
lowing three steps: (1) Sample a composite cluster f€arby probabilistically cutting
and sampling positive and negative edges between nod&sTiis results in splitting
and merging nodes into a new configuration of CCPs. (2) Asséyn colors to the re-
sulting CCPs within the selected composite cluster, andthisévetropolis-Hastings
(MH) algorithm to estimate whether to accept this new malticing assignment aof,
or to keep the previous state. (3) If the new state is acceptetb step (1); otherwise,
it the algorithm converged, re-estimate parameters of dfis pontrolling the MH iter-
ations, and go to step (1), until the pdf re-estimation dagsffect convergence.

CASW is characterized by large MH moves, involving manyrsiig-coupled graph
nodes. This typically helps avoid local minima, and allowstfconvergence, unlike
other related MCMC methods. In comparison with [12], oulethkey contributions
include: (a) the on-line learning of parameters of pdf'sgming MH jumps; (b) en-
forcing stronger node coupling by allowing the polarity afges to be dynamically
estimated during the MH iterations; and (c) regularizing gosterior of multicolor-
ing assignments to help MH jumps escape from trivial sohgidn the following, we
present our Bayesian formulation of CASW, inference, aadiieg.

Bayesian Formulation: Multi-coloring of G amounts to associating labélsto
nodes inV, i=1,...,|V|, wherel; € {0,1,..., K}. K denotes the total number of
target objects, which is a priori unknown, afl§ + 1)th label is the background. The
multicoloring solution can be formalized ast=(k, {l;};—1,...v|). To find M, we
maximize the posterior distributigi M|G), as

M* = argmf\:}lxp(/\/HG) = argmf\:}lxp(/\/l)p(@/\/l). (1)

Let N denote the number of nodes that are labeled as backgipuad0. Also, let
binary functionsl;,.;, and1;,—,;, indicate whether node labelsand!; are different,
and the same. Then, we define the pfioi) and likelihoodp(G| M) as

p(M) o e emen 2)
p(G|M) Hee]E+ pj HeE]E* Pe Hee]EO(l - pj)]llﬁﬁlj (1— p;)]lli:lj , )
wherep(M) penalizes largd&l’ andN. wx andwy are the parameters of the exponen-
tial distribution. E* andE~ denote positive and negative edges present in the composite

cluster, andt® denotes edges that are probabilistically cut (i.e., naggamein the solu-
tion). Ourp(G| M), defined in (3), differs from the likelihood defined in [12f [12],
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p(GIM=A)=(p; pg )(1—pg)
P(GIM=B)=(p; pg )(1—pg)

a(Vee|A)=(1—p7)(1 — pg )(1—p3 )

(1—p)1—p5)A=pd)
a(Vee|B)=(1—p)(1 = p3 )(1=p3 )

o)A —p5)(1=p5)

(a) Stated (b) StateB (c) Probabilities for this example

Fig.4. (a) In stateA, probabilistically sampled positive (straight bold) aretjative (zigzag bold)
edges define composite clustér={CCP3, CC P4, CCP5} (cut edges are dashed). The cutis
a set of edges (red) that have not been probabilisticallypgsinwhich would otherwise connect
Vcc to external CCPs. (b) The coloring of CCPs withih. is randomly changed, resulting in
new stateB. This also changes the type of edgesp:, ps, ps, Since the positive (negative) edge
may link only two CCPs with the same (different) label(s).Rcobabilities in stated and B.

nodes can be connected by only one type of edges. They met-a¢hreshold on edge
weights, which splits the edges into positive and negadind,thus define the likelihood
asp(GIM) o [1.cg+ pd [locr- po - Since we allow both types of edges to connect ev-
ery pair of nodes, where the right edge type gets probabdist sampled in every MH
iteration, we enforce a stronger coupling of nodes. As shiow®ec. 5, this advanced
feature of our approach yields faster convergence andrhbatistering performance.
This is because our formulation maximizes the likelihgdd|M) when every two
nodes with the same label are (i) connected by a strong pesitige ¢ € E*, andp;
large), or (ii) remain unconnected, but the likelihood ttiegse nodes should not have
the same label is very love (e E°, andp_ small). Similarly, our likelihoodh(G| M)

is maximized when every two nodes with different labels §redqnnected by a strong
negative edgee(€ E~, andp_ large), or (ii) remain unconnected, but the likelihood
that these nodes should have the same label is verydawK", andp} small).

Inference: We here explain the aforementioned iterative steps (1) a&haf{ our
CASW cut. Fig. 4 shows an illustrative example. In step (tiges ofG are proba-
bilistically sampled. If two nodes have the same label rtpesitive edge is sampled,
with likelihood p. Otherwise, if the nodes have different labels, their negatdge
is sampled, with likelihoog_ . This re-connects all nodes into new connected compo-
nents (CCPs). The negative edges that are sampled will co@@&Ps into a number
of composite clusters, denoted by.. This configuration is referred to state In step
(2), we choose at random one composite clusfer,and probabilistically reassign new
colors to the CCPs withii,., resulting in a new statB. Note that all nodes within one
CCP receive the same label, which allows large moves in taekepace.

The CASW accepts the new stafeas follows. Letq(A — B) be the proposal
probability for moving from stated to B, and letq(B — A) denote the reverse. The
acceptance ratey( A— B), of the move fromA to B is defined as

oD A= B0))

(A= Bp(M=AG) )

a(A — B) = min (1

7
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Note that complexity of each move is relatively low, sincmting% involves

only those edges that are probabilistically cut arolipdin statesA and B — not all

edges. Also pM=BI9) accounts only for the recolored CCPslin. — not the entire

p(M=A[G)
graphG. Below, we denveq(f_’gg and ﬁ((ﬂjihg)), and present a toy example (Fig. 4).

q(A — B) is defined as a product of two probabilities: (i) the probigbdf gener-
ating V.. in stateA, ¢(V..|A); and (ii) the probability of recoloring the CCPs within
V.. in state B, whereV,. is obtained in state Ag(B(V..)|Ve., A). Thus, we have

q(B—A)

4(Vee| B)g(A(Ve) | Vee, B) 2(A(Vee)|Vee,B)
TASB) = gV e (B v - The ratiog m<57<7 can be canceled out, because

the CCPs withinl. are assigned colors under the uniform distribution. Let*Ccmd
Cut; (Cutf; and Cuf) denote positive and negative edges which are probabﬂlgti
“cut” aroundV,. in stateA (stateB). Since the probabilities of cutting the positive and
negative edges afé —pr) and(1—p_ ), we have

Q(B—>A) _ Q(‘/cclB) o HeECutE(l_p:) Heecutg(l_pe_)

= = — . (5)
9(A=B)  q(VeelA)  Tleeccus 1-p8) Teccu; (1-pe)
—A) (1- —Py )(1 pz )(1— pG)
For the exaATpLe shownjl\: F;gu;e; v;e comp%ét%j (1 o (=) (=)
Also, p(M A“g)) = gM .A))Z;((G||M A% can be efficiently computeg(M = B) can

be directly computed from the new coloring in staﬁeand% depends only

on those edges that have changed their polarity. For the gieashown in Fig.4, we

(M=B|G) _p&
computeﬁw pz

Whena(A — B) has a low value, and new stafe cannot be accepted by MH,
CD-SW remains in statd. In the next iteration, CD-SW either probabilistically sets
a differentV,., or proposes a different coloring scheme for the s&e

L earning: Our Bayesian model is characterized by a number of parastat we
seek to learn from data. We specify that learning occurs &radstill moment when
MH stops accepting new states (we wait for 100 iteratiomsjh&t moment, the previ-
ous stated is likely to have the largest pdf in this part of the searchcep®y learning
new model parameters, our goal is to allow for larger MH mowesl thus facilitate
exploring other parts of the search space characterize@bghposterior distributions
p(M|G). Since the moves are controlled byA— B), given by (4), we learn the pa-
rameters by maximizing a lower bound@fA— B). If this learning still does not result
in accepting new states, we conclude that the algorithm iagecged.

From (3) and (4), and the definitions of edge likelihopfisandy_ givenin Sec. 3,
we derive a lower bound dbg(a(A — B)) as

log(a(A — B)) 2 ¢'w , (6)
wherew = [wg, wy, wy, wg}T, andeg = [¢1, ¢o, b3, ¢4]" is the vector of observed
features, defined ag; = Ka—Kp, ¢2 = ]YA_NBy ¢3 = ZeeE; Oe— Zeefag Oes
and¢s = 3 cp; (1=0e)— X ceg (1-0e). E}, denotes all edges in stafé whose
likelihood isp+, Ef; = Ef;, U Cut; UE% ", andE; denotes all edges in staiewhose
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likelihood is p—, ng = E; UCutz U E%’L. From (6), we formulate learning as the
following linear program

max ¢'w, st |w|s=1, (7)
w

which has a closed-form solution [1G}; = mqm, where(¢); = max(0, ¢).

5 Results

Given a set of images, we perform object discovery in twoestags in [9, 10, 17]. We
first coarsely cluster images based on their contours uskf\ cut, and then again
use CASW to cluster contours from only those images thatrigeto the same coarse
cluster. The first stage serves to discover different olgattgories in the image set,
whereas the second, fine-resolution stage serves to sepajatt contours from back-
ground clutter, and also extract characteristic parts of giscovered object category.

We use the following benchmark datasets: Caltech-101 BE8HZ [3], LabelMe
[19], and Weizmann Horses [20]. In the experiments on Chiexl, we use all Cal-
tech images showing the same categories as those usedivi®jation on ETHZ and
Weizmann Horses uses the entire datasets. For LabelMe, epetke 15 first images
retrieved by keywordsar side, car rear, face, airplane andmotorbike. ETHZ and La-
belMe increase complexity over Caltech-101, since theages contain multiple object
instances, which may: (a) appear at different resolutifinshave low contrasts with
textured background, and (c) be partially occluded. ThezWahn Horses are suitable
to evaluate performance on articulated, non-rigid objects

We study two settings S1 and S2. In S1, we use only ETHZ to géadhne input
image set. The set consists of positive and negative exampleere positive images
show a unique category, and negative ones show objects fltenaategoriesin ETHZ.
In S2, the image set contains examples of all object categdrom the considered
dataset. S1 is used for evaluating particular contribstiohour approach, and S2 is
used for evaluating our overall performance.

In the first stage of object discovery, CASW finds clustersydges. This is evalu-
ated bypurity. Purity measures the extent to which a cluster containsésafja single
dominant object category. When running CASW in the secoagleston each of these
image clusters, we udgounding Box Hit Rate (BBHR) to verify whether contours de-
tected by CASW fall within the true foreground regions. Theund truth is defined as
all pixels of the extracted image contours that fall in theifding boxes or segments
of target objects. A contour detected by CASW is counted &5 Whenever the con-
tour covers 50% or more of the ground-truth pixels. Since igeatd contours that are
less than 50 pixels, this means that at least 25 ground-pixéis need to be detected
within the bounding box. Our accuracy in the second clustestage depends on the
initial set of pairs of matching contours (i.e., nodes ofpdré&’) input to CASW. This
is evaluated by plotting the ROC curve, parameterized byestiold on the minimum
DTW similarity between pairs of matching contours which im@uded inG.

Evaluation in S1: We present three experiments in &Experiment 1 in S1: We
evaluate the merit of: (a) using pairs of contours as nodé&s aind (b) accounting for
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Fig.5. Evaluation in S1 on the ETHZ dataset. (a): We evaluate fivéndisformulations of
object discovery, explained in the text, by computing Fa#ssitive Rate (FPR) at Bounding
Box Hit Rate BBHR=0.5. Our approack+CASW gives the best performance. (B)recision
and Recall as a function of the number of positive examples in the inmege set. Perfor-
mance increases with more positive examples, until aboytto2@tive images. (c): Evolution of
log(p(M)p(G|M) estimated by our CASW (magenta), and standard SW [12] (ayaa)! pos-
itive examples of clas&iraffes, and the same number of negative examples from ETHZ.

86, +PageRank

spatial configuration of contours as edge weight&pfgainst the more common use
of individual contours as graph nodes, and contour siniésras edge weights. To this
end, we build three weighted graptis, G2 and G35 of contours extracted only from
all positive examples of a single object category in the ETddTaset (i.e., the set of
negative examples is empty). Nodesof are individual contours, edges connect can-
didate matchegu, u'), and edge weights,,, represent the DTW similarity of contours
wandu’. In G2 andG3, nodes are instead pairs of contotisy’). In G4, each edge
((u,u’), (v,v")) receives weights.,., +s..)/2. In G5, edges can only be positive and
receive weightg, defined in Sec. 3. For all three graphs, we apply the starRiEydR-
ank algorithm, also used in [9, 10, 17], to identify the madevant contours, which are
then interpreted as object contours. False Positive R&R) ks computed for BBHR
= 0.5, and averaged across all categories in the ETHZ dataiset5(a) shows that
GotPageRank decreases the FPRFo#PageRank by 3.2%. Howevér, +PageRank
still yields a relatively high value of FPR, which suggekbtattaccounting only for shape
similarity and ignoring the spatial layout of contours may be sufficient to handle the
very difficult problem of object discovery. Usin@gs+PageRank significantly decreases
FPR, which motivates our approach. We also run our CASW oplgés, and on
G, specified in Sec. 3. In comparison witly+CASW, our approaclkr+CASW addi-
tionally allows the negative polarity of graph edges. Figr)Shows thatz3+CASW
outperformg=3+PageRank, and th&t+CASW gives the best results.

Experiment 2 in S1: We test performance in object detection as a function of the
number of positive examples in the input image set. The tataiber of imaged/ =
32 is set to the number of images of the “smallest” class in thélET™ataset. In
Fig.5(b), we plot the ROC curves when the number of positiveges increases, while
the number of negative ones proportionally decreases. psatad, performance im-
proves with the increase of positive examples, until reagla certain number (on av-
erage about 20 for the ETHZ dataset).

Experiment 3in SL: Finally, we test our learning of pdf parameters. Fig.5(@ve
the evolution oflog(p(M)p(G|M)) in the first stage of object discovery in the image
set consisting of all positive examples of cl@&saffes, and the same number of neg-
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Caltech categorig©ur method| [10] | [9] | [17] ETHZ categories  [Our method| [10]
A.CEM 98.62+0.51 [98.0398.5588.82 A,B,G,M,S (bbox) | 96.16+0.41{95.85
A,C,FEMW 97.574+0.46 |96.92/97.30 N/A A,B,G,M,S (expanded)| 87.354-0.37 | 76.47
A,C.FEM\W,K |97.134+0.42|96.1595.42 N/A A,B,G,M,S (entire imagg)85.49+0.33 | N/A

Table 2. Mean purity of category discovery for Caltech-101 (A:Aapks, C: Cars, F: Faces, M:
Motorbikes, W: Watches, K: Ketches), and ETHZ dataset (Ail&fgos, B: Bottles, G: Giraffes,
M: Mugs, S: Swans).

o CASW [ [9] [[10]
0.11£0.01[0.21]0.17
0.12+0.01 |0.30[0.15
0.06-:0.003/0.190.08
0.04:£0.002|0.11/0.07
0.02::0.003|0.08/0.03

“/ALL CLASSES =i™ FACES

ggggg

SZIXT>

n o 02 04 06
BEHR BBHR

CASW [ 9] [[10]
0.15£0.02 [N/A[0.18
0.18£0.01 |N/A [0.20

: A
; B
G| 0.1640.01 [0.320.18
£ E M| 0.23+0.04 |N/A|0.27]
. . $0.094:0.002|N/A |0.11]

04 06 [ 1 02 04 06
BEHR BEHR

| GIRAFFES =ows I MUGS o

Fig. 6. Bounding Box Hit Rates (BBHR) vs False Positive Rates (FPR). Top is Caltech-101,
bottom is ETHZ. Left column is our CASW on all classes, anddtedand right columns show
a comparison with [9, 10] on a specific class (lower curvesbatter). The tables show FPR
at BBHR=0.5. Caltech-101: A: Airplanes, F: Faces, K: Kethd: Motorbikes, W: Watches.
ETHZ: A: Applelogs, B: Bottles, G: Giraffes, M: Mugs, S: Svgrfbest viewed in color)

ative examples showing other object categories from the Zdibtaset. We compare
our CASW with the standard SW of [12], where the pdf paransedee not learned, but
pre-specified. Since these parameters are unknown, to ¢erbpth the ground-truth
value and the value produced by [12]lof(p(M)p(G|M)), we use the pdf parame-
ters learned by our approach after CASW converged. As CASSa make progress
through iterative clustering of the images, Fig. 5(c) shtives CASW yields a steeper
increase ifog(p(M)p(G|M)) to higher values, closer to the ground-truth. Notice that
CASW avoids local minima and converges after only few ifers.

Evaluation in S2: We evaluate the first and second stages of object discovery in
S2.First Stagein S2: We build a graph whose nodes represent entire images. Edges b
tween images in the graph are characterized by weights adkdis an average of DTW
similarities of contour matches from the corresponding paimages. A similar char-
acterization of graph edges is used in [9, 10]. For objeatadiery, we apply CASW to
the graph, resulting in image clusters. Each cluster igtéikeonsist of images showing
a unique object category. Unlike [9, 10], we do not have ta#péhe number of cate-
gories present in the image set, as an input parameter,isisGtomatically inferred
by CASW. Evaluation is done on Caltech-101 and the ETHZ éatdsble 2 shows
that our mean purity is superior to that of [9, 10, 17]. On €eti-101, CASW succes-
sively finds K = 4,5, 6 clusters of images, as we gradually increase the true number
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of categories from 4 to 6. This demonstrates that we are atdetbmatically find the
number of categories present, with no supervision. On ETESW again correctly
finds K = 5 categories. As in [10], we evaluate purity when similarigteen the im-

ages (i.e., weights of edges in the graph) is estimated lmasedntours falling within:

(a) the bounding boxes of target objects, (b) twice the sfzéh@ original bounding

boxes (called expanded in Table 2), and (c) the entire imagyeE&£THZ, CASW does
not suffer a major performance degradation when moving fiteerbounding boxes, to
the challenging case of using all contours from the entirages. Overall, our purity
rates are high, which enables accurate clustering of comtnuihe second stage.

Second Stage in S2: We use contours from all images grouped within one clus-
ter in the first stage to build our gragh, and then conduct CASW. This is repeated
for all image clusters. The clustering of contours by CASWoants to foreground
detection, since the identified contour clusters are takeegdresent parts of the discov-
ered object category. We evaluate BBHR and FPR on CaltegthHDHZ, LabelMe,
and Weizmann Horses. Fig.6 shows that our BBHR and FPR valgekigher than
those of [9, 10] on the Caltech and ETHZ. CASW finls= 1 for Airplanes, Cars
Rear, Faces, Ketches, Watchesin Caltech-101Apples, Bottles, Mugsin ETHZ, andCar
rear, Face, Airplanein LabelMe. These objects do not have articulated partstioae
independently, hence, only one contour cluster is foundti@nother hand, it finds
K = 2 for Giraffes, Svansin ETHZ, Cars side, Motorbikes in Caltech and LabelMe,
and K = 3 for Weizmann Horses. In Fig.7, we highlight contours frorfiedent clus-
ters with distinct colors. Fig.7 demonstrates that CASWaisable not only to discover
foreground objects, but also to detect their charactenistits, e.g., wheels and roof for
Cars side, wheels and seat fdviotorbikes, head and legs faBiraffes, etc. The plotin
Fig.7 evaluates our object detection on LabelMe and Weimt#orses. Detection ac-
curacy is estimated as the standard ratio of intersectienwvion of ground-truth and
detection bounding boxeéB B, N BBy)/(BB, U BBg), whereBBy is the small-
est bounding box that encloses detected contours in theeinfdge average detection
accuracy for each category is: [Face(F): 0.52, Airplane(5, Motorbike(M): 0.42,
Car Rear(C): 0.34], whereas [10] achieves only [(F): 0.49; 0.43, (M): 0.38, (C):
0.31]. For Weizmann Horses, we obtdtrecision and Recall of 84.9%+0.68% and
82.4%+0.51%, whereas [8] achieves or#y.5% and78.6%.

Remark: The probability of contour patterns that repeat in the baolkgd in-
creases with the number ofimages. On large datasets, CAB#listo extract clusters
of those background patterns. However, the number of cosiauhese clusters is rel-
atively small, as compared to clusters that contain truedlgjontours, because the fre-
quency of such patterns is, by definition, smaller than thigreground objects. There-
fore, these spurious clusters can be easily identified,r@edareted as background. For
example, in setting S1, when the input image set consistslgfamsitive, 100 images
of Weizmann Horses, we obtaili = 3 very large clusters (Fig.7), and 9 additional
clusters with only 5 to 10 background contours.

Implementation. The C-implementation of our CASW runs in less than 2 minutes
on any dataset of less than 100 images, on a 2.40GHz PC wBGB.&RAM.
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6 Conclusion

We have shown that shape alone is sufficiently discrimieaivd expressive to provide
robust and efficient object discovery in unlabeled imagéthout using any photomet-
ric features. This is done by clustering image contours dh@setheir intrinsic geo-
metric properties, and spatial layouts. We have also madgibotions to the popular
research topic in vision, that of probabilistic multicalgg of a graph, including: (a) the
on-line learning of pdf parameters governing multicolgrassignments; (b) enforcing
stronger positive and negative coupling nodes in the graplallowing the polarity of
graph edges to dynamically vary during the Metropolis-Hhest (MH) jumps; and (c)
regularizing the posterior of multicoloring assignmewtsélp MH jumps escape from
trivial solutions. These extensions lead to faster corereeg to higher values of the
graph'’s posterior distribution than the well-known SW cut.
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