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1 Learning Model Parameters: Derivation of Eq. (6)

As explained in Sec 4 under Learning, we estimate the model parameters by maximizing
the acceptance rate of moving from state A to state B, defined as
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From (5) in the paper, and (1 — p) < 1 and (1 — p, ) < 1 by definition, we have:
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As explained in the paper, the edges in Cutg and Cuty are probabilistically cut. This
means that their associated likelihoods p} and p_ are relatively small. Therefore, for
most edges in Cutg and Cutj it holds that the probability of being cut is greater than
the probability of being sampled, 1 — p > pF and 1 — p_ > p_ . Therefore, we have
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Next, from (2) and (3) in the paper, we have
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As explained in the paper, the edges in E} are probabilistically cut. This means that
their associated likelihoods p and p_ are relatively small. Therefore, for most edges
in EY it holds that 1 — p > pF and 1 — po > p_ . Therefore, we have
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From the above steps we obtain
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Let ng denote all edges in the above equation whose likelihood is p+, ]Eg = IEE U

CutJBC U E%‘. Also, let EE denote all edges in the above equation whose likelihood is
p—, Ep = E5 U Cuty UEY". Then, we derive
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By taking the logarithm of the above equation, we derive
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This is equivalent to Eq. (6) in the paper, which concludes the proof.



