From a Set of Shapes to Object Discovery

Nadia Payet and Sinisa Todorovic
Oregon State University,
Kelley Engineering Center, Corvallis, OR 97331, USA
payetn@onid.orst.edu, sinisa@eecs.oregonstate.edu

1 Learning Model Parameters: Derivation of Eq. (6)

As explained in Sec 4 under Learning, we estimate the model parameters by maximizing the acceptance rate of moving from state A to state B, defined as

$$
\alpha(A \rightarrow B)=\min \left(1, \frac{q(B \rightarrow A) p(\mathcal{M}=B \mid G)}{q(A \rightarrow B) p(\mathcal{M}=A \mid G)}\right)
$$

From (5) in the paper, and $\left(1-\rho_{e}^{+}\right) \leq 1$ and $\left(1-\rho_{e}^{-}\right) \leq 1$ by definition, we have:

$$
\begin{aligned}
\frac{q(B \rightarrow A)}{q(A \rightarrow B)} & =\frac{\prod_{e \in \operatorname{Cut}_{B}^{+}}\left(1-\rho_{e}^{+}\right) \prod_{e \in \operatorname{Cut}_{B}^{-}}\left(1-\rho_{e}^{-}\right)}{\prod_{e \in \operatorname{Cut}_{A}^{+}}\left(1-\rho_{e}^{+}\right) \prod_{e \in \operatorname{Cut}_{A}^{-}}\left(1-\rho_{e}^{-}\right)} \\
& \geq \prod_{e \in \operatorname{Cut}_{B}^{+}}\left(1-\rho_{e}^{+}\right) \prod_{e \in \operatorname{Cut}_{B}^{-}}\left(1-\rho_{e}^{-}\right)
\end{aligned}
$$

As explained in the paper, the edges in Cut_{B}^{+}and Cut_{B}^{-}are probabilistically cut. This means that their associated likelihoods ρ_{e}^{+}and ρ_{e}^{-}are relatively small. Therefore, for most edges in Cut_{B}^{+}and Cut_{B}^{-}it holds that the probability of being cut is greater than the probability of being sampled, $1-\rho_{e}^{+} \geq \rho_{e}^{+}$and $1-\rho_{e}^{-} \geq \rho_{e}^{-}$. Therefore, we have

$$
\frac{q(B \rightarrow A)}{q(A \rightarrow B)} \geq \prod_{e \in \mathrm{Cut}_{B}^{+}}\left(1-\rho_{e}^{+}\right) \prod_{e \in \mathrm{Cut}_{B}^{-}}\left(1-\rho_{e}^{-}\right) \geq \prod_{e \in \operatorname{Cut}_{B}^{+}} \rho_{e}^{+} \prod_{e \in \mathrm{Cut}_{B}^{-}} \rho_{e}^{-}
$$

Next, from (2) and (3) in the paper, we have

$$
\begin{aligned}
\frac{p(\mathcal{M}=B \mid G)}{p(\mathcal{M}=A \mid G)}= & \frac{p(\mathcal{M}=B) p(G \mid \mathcal{M}=B)}{p(\mathcal{M}=A) p(G \mid \mathcal{M}=A)} \\
= & \frac{e^{-w_{K} K_{B}} e^{-w_{N} N_{B}} \prod_{e \in \mathbb{E}_{B}^{+}} \rho_{e}^{+} \prod_{e \in \mathbb{E}_{B}^{-}} \rho_{e}^{-} \prod_{e \in \mathbb{E}_{B}^{0}}\left(1-\rho_{e}^{+}\right) \mathbb{1}_{l_{i} \neq l_{j}} \cdot\left(1-\rho_{e}^{-}\right) \mathbb{1}_{l_{i}=l_{j}}}{e^{-w_{K} K_{A}} e^{-w_{N} N_{A}} \prod_{e \in \mathbb{E}_{A}^{+}} \rho_{e}^{+} \prod_{e \in \mathbb{E}_{A}^{-}} \rho_{e}^{-} \prod_{e \in \mathbb{E}_{A}^{0}}\left(1-\rho_{e}^{+}\right) \mathbb{1}_{l_{i} \neq l_{j}} \cdot\left(1-\rho_{e}^{-}\right) \mathbb{1}_{l_{i}=l_{j}}}, \\
& \geq \frac{e^{-w_{K} K_{B}} e^{-w_{N} N_{B}} \prod_{e \in \mathbb{E}_{B}^{+}} \rho_{e}^{+} \prod_{e \in \mathbb{E}_{B}^{-}} \rho_{e}^{-}}{e^{-w_{K} K_{A}} e^{-w_{N} N_{A}} \prod_{e \in \mathbb{E}_{A}^{+}} \rho_{e}^{+} \prod_{e \in \mathbb{E}_{A}^{-}} \rho_{e}^{-}} \prod_{e \in \mathbb{E}_{B}^{0}}\left(1-\rho_{e}^{+}\right) \mathbb{1}_{l_{i} \neq l_{j}} \cdot\left(1-\rho_{e}^{-}\right) \mathbb{1}_{l_{i}=l_{j}} .
\end{aligned}
$$

As explained in the paper, the edges in \mathbb{E}_{B}^{0} are probabilistically cut. This means that their associated likelihoods ρ_{e}^{+}and ρ_{e}^{-}are relatively small. Therefore, for most edges in \mathbb{E}_{B}^{0} it holds that $1-\rho_{e}^{+} \geq \rho_{e}^{+}$and $1-\rho_{e}^{-} \geq \rho_{e}^{-}$. Therefore, we have

$$
\begin{aligned}
\frac{p(\mathcal{M}=B \mid G)}{p(\mathcal{M}=A \mid G)} \geq & \frac{e^{-w_{K} K_{B}} e^{-w_{N} N_{B}} \prod_{e \in \mathbb{E}_{B}^{+}} \rho_{e}^{+} \prod_{e \in \mathbb{E}_{B}^{-}} \rho_{e}^{-}}{e^{-w_{K} K_{A}} e^{-w_{N} N_{A}} \prod_{e \in \mathbb{E}_{A}^{+}} \rho_{e}^{+} \prod_{e \in \mathbb{E}_{A}^{-}} \rho_{e}^{-}} \prod_{e \in \mathbb{E}_{B}^{0}} \rho_{e}^{+} \mathbb{1}_{l_{i} \neq l_{j}} \cdot \rho_{e}^{-} \mathbb{1}_{l_{i}=l_{j}}, \\
& =\frac{e^{-w_{K} K_{B}} e^{-w_{N} N_{B}} \prod_{e \in \mathbb{E}_{B}^{+}} \rho_{e}^{+} \prod_{e \in \mathbb{E}_{B}^{-}} \rho_{e}^{-}}{e^{-w_{K} K_{A}} e^{-w_{N} N_{A}} \prod_{e \in \mathbb{E}_{A}^{+}} \rho_{e}^{+} \prod_{e \in \mathbb{E}_{A}^{-}} \rho_{e}^{-}} \prod_{e \in \mathbb{E}_{B}^{0-}} \rho_{e}^{+} \prod_{e \in \mathbb{E}_{B}^{0+}} \rho_{e}^{-} .
\end{aligned}
$$

From the above steps we obtain

$$
\frac{q(B \rightarrow A)}{q(A \rightarrow B)} \frac{p(\mathcal{M}=B \mid G)}{p(\mathcal{M}=A \mid G)} \geq \frac{e^{-w_{K} K_{B}} e^{-w_{N} N_{B}} \prod_{e \in \mathbb{E}_{B}^{+}} \rho_{e}^{+} \prod_{e \in \operatorname{Cut}_{B}^{+}} \rho_{e}^{+} \prod_{e \in \mathbb{E}_{B}^{0-}} \rho_{e}^{+} \prod_{e \in \mathbb{E}_{B}^{-}} \rho_{e}^{-} \prod_{e \in \operatorname{Cut}_{B}^{-}} \rho_{e}^{-} \prod_{e \in \mathbb{E}_{B}^{0+}} \rho_{e}^{-}}{e^{-w_{K} K_{A}} e^{-w_{N} N_{A}} \prod_{e \in \mathbb{E}_{A}^{+}} \rho_{e}^{+} \prod_{e \in \mathbb{E}_{A}^{-}} \rho_{e}^{-}}
$$

Let $\tilde{\mathbb{E}}_{B}^{+}$denote all edges in the above equation whose likelihood is $\rho+, \tilde{\mathbb{E}}_{B}^{+}=\mathbb{E}_{B}^{+} \cup$ $\mathrm{Cut}_{B}^{+} \cup \mathbb{E}_{B}^{0-}$. Also, let $\tilde{\mathbb{E}}_{B}^{-}$denote all edges in the above equation whose likelihood is $\rho-, \tilde{\mathbb{E}}_{B}^{-}=\mathbb{E}_{B}^{-} \cup \operatorname{Cut}_{B}^{-} \cup \mathbb{E}_{B}^{0+}$. Then, we derive

$$
\begin{aligned}
\frac{q(B \rightarrow A)}{q(A \rightarrow B)} \frac{p(\mathcal{M}=B \mid G)}{p(\mathcal{M}=A \mid G)} \geq & \frac{e^{-w_{K} K_{B}} e^{-w_{N} N_{B}} \prod_{e \in \tilde{\mathbb{E}}_{B}^{+}} \rho_{e}^{+} \prod_{e \in \tilde{\mathbb{E}}_{B}^{-}} \rho_{e}^{-}}{e^{-w_{K} K_{A}} e^{-w_{N} N_{A}} \prod_{e \in \mathbb{E}_{A}^{+}} \rho_{e}^{+} \prod_{e \in \mathbb{E}_{A}^{-}} \rho_{e}^{-}}, \\
& =\frac{e^{-w_{K} K_{B}} e^{-w_{N} N_{B}} \prod_{e \in \tilde{\mathbb{E}}_{B}^{+}} e^{-w_{\delta}^{+} \delta_{e}} \prod_{e \in \tilde{\mathbb{E}}_{B}^{-}} e^{-w_{\delta}^{-}\left(1-\delta_{e}\right)}}{e^{-w_{K} K_{A}} e^{-w_{N} N_{A}} \prod_{e \in \mathbb{E}_{A}^{+}} e^{-w_{\delta}^{+} \delta_{e}} \prod_{e \in \mathbb{E}_{A}^{-}} e^{-w_{\delta}^{-}\left(1-\delta_{e}\right)}}
\end{aligned}
$$

By taking the logarithm of the above equation, we derive

$$
\begin{aligned}
\log \left(\frac{q(B \rightarrow A)}{q(A \rightarrow B)} \frac{P(\mathcal{M}=\mathcal{B} \mid G)}{P(\mathcal{M}=\mathcal{A} \mid G)}\right) \geq & w_{K}\left(K_{A}-K_{B}\right)+w_{N}\left(N_{A}-N_{B}\right) \\
& +\sum_{e \in \mathbb{E}_{A}^{+}} w_{\delta}^{+} \delta_{e}-\sum_{e \in \tilde{\mathbb{E}}_{B}^{+}} w_{\delta}^{+} \delta_{e} \\
& +\sum_{e \in \mathbb{E}_{A}^{-}} w_{\delta}^{-}\left(1-\delta_{e}\right)-\sum_{e \in \tilde{\mathbb{E}}_{B}^{-}} w_{\delta}^{-}\left(1-\delta_{e}\right), \\
= & \phi^{\mathrm{T}} \boldsymbol{w},
\end{aligned}
$$

where $\boldsymbol{w}=\left[w_{K}, w_{N}, w_{\delta}^{+}, w_{\delta}^{-}\right]^{T}$ and $\boldsymbol{\phi}=\left[\begin{array}{c}K_{A}-K_{B} \\ N_{A}-N_{B} \\ \sum_{e \in \mathbb{E}_{A}^{+}} \delta_{e}-\sum_{e \in \tilde{\mathbb{E}}_{B}^{+}} \delta_{e} \\ \sum_{e \in \mathbb{E}_{A}^{+}}\left(1-\delta_{e}\right)-\sum_{e \in \tilde{\mathbb{E}}_{B}^{+}}\left(1-\delta_{e}\right)\end{array}\right]$
This is equivalent to Eq. (6) in the paper, which concludes the proof.

