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Abstract. This paper addresses the problem of recognizing and localizing coher-
ent activities of a group of people, called collective activities, in video. Related
work has argued the benefits of capturing long-range and higher-order dependen-
cies among video features for robust recognition. To this end, we formulate a
new deep model, called Hierarchical Random Field (HiRF). HiRF models only
hierarchical dependencies between model variables. This effectively amounts to
modeling higher-order temporal dependencies of video features. We specify an
efficient inference of HiRF that iterates in each step linear programming for es-
timating latent variables. Learning of HiRF parameters is specified within the
max-margin framework. Our evaluation on the benchmark New Collective Ac-
tivity and Collective Activity datasets, demonstrates that HiRF yields superior
recognition and localization as compared to the state of the art.

Keywords: Activity recognition, hierarchical graphical models

1 Introduction

This paper presents a new deep model for representing and recognizing collective ac-
tivities in videos. A collective activity is characterized by coherent behavior of a group
of people both in time and space. Coherence, for example, can be a result of all indi-
viduals in the group simultaneously performing the same action (e.g., joint jogging), or
coordinated space-time interactions among people in the group (e.g., people assembling
by approaching one another, or standing and periodically moving in a line). In addition
to localizing time intervals where collective activities occur, we are also interested in
localizing individuals that participate in the activities. While prior work has addressed
recognition of collective activities, their localization has received scant attention.

Localizing collective activities in videos is challenging. It requires reasoning across
a wide range of spatiotemporal scales about individual actions and trajectories, along
with people interactions within various groupings. Moreover, as a group of people typi-
cally occupy a relatively large percentage of the field of view, capturing their collective
activity often requires the camera to move, so recognition and localization have to be
performed under camera motion.
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Fig. 1. Hierarchical Random Field (HiRF) for detecting and localizing collective activities. (Top)
HiRF encodes the following variables: activity label y; latent temporal-connectivity variables
h2; latent frame-wise connectivity variables h1; and observable video features x, namely, noisy
person detections. (Bottom) Our results on the New Collective Activity Dataset [6] for the activity
“Talking”. HiRF identifies relevant actors per frame (green), and groups person detections into
temporal segments (blue) relevant for recognizing “Talking”. Detections estimated as background
are marked gray, and latent groupings of background video parts are marked with dashed lines.

Initial work focused on designing a heuristic descriptor of the entire video aimed
at capturing coherence of a group’s behavior over relatively large spatiotemporal ex-
tents [7, 8, 20]. Recent work specified a variety of graphical models for modeling col-
lective activities. For example, Hierarchical Conditional Random Field (HCRF) used
in [17] is capable of encoding only short-term dependencies of video features, and thus
may poorly discriminate between distinct activities with similar short-term but different
long-range properties (e.g., group assembling vs. group walking). More advanced ap-
proaches seek to integrate people tracking with reasoning about people actions using hi-
erarchical models [22], AND-OR graphs [2], factor graphs [6, 13], or flow models [14].
However, as the complexity of these models increases, finding efficient and sufficiently
accurate approximations of their intractable inference becomes more challenging.

In this paper, we advance existing work by specifying a new graphical model of
collective activities, called Hierarchical Random Field (HiRF). HiRF is aimed at ef-
ficiently capturing long-range and higher-order spatiotemporal dependencies of video
features, which have been shown by prior work as critical for characterizing collective
activities. HiRF aggregates input features into mid-level video representations, which
in turn enable robust recognition and localization. This is because the multiscale aggre-
gation identifies groupings of foreground features, and discards features estimated as
belonging to background clutter. In this way, HiRF localizes foreground in the video.

Similar to models used by recent work [2, 6, 13, 14], HiRF also seeks to capture
long-range temporal dependencies of visual cues. However, the key difference is that
HiRF avoids the standard strategy to establish lateral temporal connections between
model variables. Instead, HiRF encodes temporal dependencies among video features
through strictly hierarchical (“vertical”) connections via two hierarchical levels of latent
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variables, as illustrated in Fig. 1. At the leaf level, HiRF is grounded onto video features,
extracted by applying a person detector in each frame. The next level of HiRF consists
of latent variables, which serve to spatially group foreground video features into sub-
activities relevant for recognition. Since this feature grouping is latent, the identified
latent subactivities may not have any semantic meaning. The next higher level of HiRF
also consists of latent variables. They are aimed at identifying long-range temporal de-
pendencies among latent subactivities. The result of this long-range feature grouping is
used for inferring the activity class at the root node of HiRF.

We specify an efficient bottom-up/top-down inference of HiRF. In particular, our in-
ference is iterative, where each step solves a linear program (LP) for estimating one set
of latent variables at a time. This is more efficient than the common quadratic program-
ing used for inference of existing graphical models with lateral connections. Learning
of HiRF parameters is specified within the max-margin framework.

HiRF does not require explicit encoding of higher-order potentials as the factor
graphs of [6, 13]. Yet, our evaluation on the benchmark New Collective Activity dataset
[6] demonstrates that HiRF yields superior recognition accuracy by 4.3% relative to the
factor graph of [6], and outperforms the approaches of [13] and [6] by 20% and 12%
on the Collective Activity dataset [7]. To the best of our knowledge, we present the
first evaluation of localizing people that participate in collective activities on the New
Collective Activity dataset.

In the following, Sec. 2 reviews related work; Sec. 3 formulates HiRF; Sec. 4 spec-
ifies inference; Sec. 5 explains learning; and Sec. 6 presents our results.

2 Related Work

There is a large volume of literature on capturing spatiotemporal dependencies among
visual cues for activity recognition [1, 25, 5]. Representative models include Dynamic
Bayesian Networks [28, 27], Hidden Conditional Random Fields (HCRFs) [24, 17], hi-
erarchical graphical models[17, 16, 15, 22], AND-OR graphs [21, 2], and Logic Net-
works [19, 4]. In these models, higher-order dependencies are typically captured by
latent variables. This generally leads to NP-hard inference. Intractable inference is usu-
ally addressed in a heuristic manner by, for example, restricting the connectivity of
variables in the model to a tree [24]. Our HiRF is not restricted to have a tree structure,
while its strictly hierarchical connectivity enables efficient inference and learning.

HiRF is also related to Shape Boltzmann Machines [10] used for object segmen-
tation in images. They locally constrain the allowed extent of dependencies between
their model variables so as to respect image segmentation. We also locally constrain
the connectivity between our latent variables over certain temporal windows along the
video, in order to identify latent subactivities relevant for recognition of the collective
activity. HiRF is also related to Conditional Random Fields of [18, 12] which encode
higher-order potentials of image features using Restricted Boltzmann Machines. Sim-
ilarly, HiRF uses a hierarchy of latent variables to identify latent groupings of video
features, which amounts to encoding their higher-order dependencies in time and space.



4 Mohamed R. Amer, Peng Lei, Sinisa Todorovic

Fig. 2. Closely related existing models: (a) HCRF [23, 24] contains a hidden layer h1 that is
temporally connected with lateral edges, while every hidden node h1

i is connected to only one
observable node xi. (b) F-HCRF [17] extends HCRF such that every hidden node h1

i is connected
to many observable nodes x, capturing long-range temporal dependencies.

3 The Model

This section, first, introduces some notation and definitions which will be used for spec-
ifying our HiRF model, then reviews closely related models used for representing col-
lective activities, and finally defines HiRF.

HiRF is a graphical model defined over a graph, G = (V, E). Nodes V represent:
observable video features x = {xi : xi ∈ Rd}, integer latent variables h = {hi :
hi ∈ H}, and a class label y ∈ Y . Edges E encode dependencies between the nodes in
V . HiRF is characterized by a posterior distribution, P (y,h|x;w), wherew are model
parameters. The posterior distribution has the Gibbs form: P (·) = exp(−E(·))/Z,
where E(·) is the energy, and Z is the partition function.

In the following, we explain our novelty by defining E(·) for a progression of
closely related models, shown in Fig. 2.

3.1 Review of Hidden Conditional Random Field

HCRF [23, 24] extends the expressiveness of standard CRF by introducing a single
layer of hidden variables h1 between x and y, where each hi is connected to a single
xi. Each hi may take a value from a set of integers, called “topics”. In this way, video
features can be grouped into latent “topics”, and thus capture their dependencies. The
energy of HCRF is defined as

EHCRF(y,h|x)=−
[∑

i

w0·φ0(y, h1i ) +
∑
i

w1·φ1(h1i ,xi) +
∑
i,j

w2·φ2(y, h1i , h
1
j )
]
,

(1)
where “·” denotes scalar multiplication of two vectors; φ(y,h,x) = (φ0,φ1,φ2) are
feature vectors with all elements equal to zero except for a single segment of non-zero
elements indexed by the states of latent variables; and w = (w0,w1,w2) are model
parameters.

The one-to-one connectivity between h1 and x in HCRF, however, poorly cap-
tures long-range dependancies. To overcome this issue, HCRF has been extended to
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Fig. 3. Variants of HiRF. (a) HiRF introduces an additional hidden layer h2 to HCRF and removes
all lateral connections between the hidden nodes; (b) F-HiRF extends HiRF by establishing the
full connectivity between nodes of the hidden layer h1 and the leaf nodes x; and (c) FTC-HiRF
extends F-HiRF by introducing temporal constraints on the connectivity of hidden nodes h1 to
the leaf nodes for reasoning about subactivities of the collective activity.

the feature-level HCRF (F-HCRF) [17] by establishing a full connectivity between the
hidden nodes and observable nodes. The energy of F-HCRF is defined as

EF-HCRF(y,h|x)=−
[∑

i

w0·φ0(y, h1i )+
∑
i,j

w1·φ1(h1i ,xj)+
∑
i,j

w2·φ2(y, h1i , h
1
j )
]
.

(2)

3.2 Formulation of HiRF

In this section, we formulate HiRF by: (1) Adding another layer of hidden variables
to HCRF and F-HCRF reviewed in Sec. 3.1; (2) Removing the lateral temporal con-
nections between all hidden variables; and (3) Enforcing local constraints on tempo-
ral connections between the hidden variables. The extensions (1) and (2) are aimed
at more efficiently capturing higher-order and long-range temporal dependencies of
video features. The extension (3) is aimed at automatically capturing domain knowl-
edge that complex collective activities are typically temporally structured into subac-
tivities, which bound the extent of long-range temporal dependencies of video features.
Since these subactivities may not have a particular semantic meaning, but may be rel-
evant for recognition, we use (3) to model subactivities as latent groupings of the first
layer of hidden variables h1, as further explained below.

We first define two variants of our model — namely, HiRF which extends HCRF,
and F-HiRF which extends F-HCRF by introducing a new layer of hidden variables,
h2, between h1 and y, as illustrated in Fig. 3. Their energy functions are defined as

EHiRF(y,h|x)=−
[∑

i

w0·φ0(y, h2i ) +
∑
i

w1·φ1(h1i ,xi) +
∑
i,j

w2·φ2(h1i , h
2
j )
]
,

EF-HiRF(y,h|x)=−
[∑

i

w0·φ0(y, h2i ) +
∑
i,j

w1·φ1(h1i ,xj) +
∑
i,j

w2·φ2(h1i , h
2
j )
]
,

(3)
where we use the same notation for feature vectors, φ(y,h,x) = (φ0,φ1,φ2), and
model parameters, w = (w0,w1,w2), as defined for (1) and (2).
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In (3), y encodes the activity class label, and latent integer variables h2 and h2 are
aimed at identifying and grouping foreground video features relevant for recognizing
the activity. Specifically, every node h2i may take binary values, h2i ∈ {0, 1}, indicating
figure-ground assignment of video features. Every node h1i may take integer values,
h1i ∈ H = {0, . . . , |H|}, indicating latent groupings of video features into “topics”.

As shown in Fig. 3, both HiRF and F-HiRF have only hierarchical edges between
variables. The newly introduced hidden layer h2 serves to replace the lateral connec-
tions of HCRF and F-HCRF. At the same time, h2 enables long-range temporal con-
nectivity between the hidden nodes without introducing higher order potentials. From
(3), the key difference between HiRF and F-HiRF is that we allow only one-to-one con-
nectivity between the hidden layer h1 and observable nodes x in HiRF, whereas this
connectivity is extended to be full in F-HiRF. In this way, our F-HiRF is expected to
have the same advantages of F-HCRF over HCRF, mentioned in Sec. 3.1.

We next extend F-HiRF to Temporally Constrained F-HiRF, called FTC-HiRF. FTC-
HiRF enforces local constraints on temporal dependencies of the hidden variables. Sim-
ilar to Shape Boltzmann Machines [10], we partition the first hidden layer h1 such that
every partition has access only to a particular temporal segment of the video. While the
partitions of h1 cannot directly connect to all video segments, their long-range depen-
dencies are captured through connections to the second hidden layer h2.

Specifically, in FTC-HiRF, the first hidden layer h1 is divided into subsets, h1 =
{h1

t : t = 1, . . . , T}, where each h1
t can be connected only to the corresponding

temporal window of video features xt. The energy of FTC-HiRF is defined as

EFTC-HiRF(y,h|x) = −
[ ∑

i

w0·φ0(y, h2i ) +
∑
t

∑
(i,j)∈t

w1·φ1(h1it,xjt)

+
∑
i,j

w2·φ1(h2i , h
1
j )
]
,

(4)

where the third term includes all the hidden variables h1 from all temporal partitions.

3.3 Definitions of the Potential Functions

The section defines the three types of potential functions of HiRF, specified in (3).
The potential [w0·φ0(y, h2i )] models compatibility between the class label y ∈ Y =

{a : a = 1, 2, . . . }, and the particular figure-ground indicator h2i ∈ {b : b = 0, 1}. The
parameters w0 = [w0

ab] are indexed by the activity class labels of y, and binary states
of h2i . We define this potential as

w0·φ0(y, h2i ) =
∑
a∈Y

∑
b∈{0,1} w

0
ab1(y = a)1(h2i = b). (5)

The potential [w1·φ1(h1i ,xj)] models compatibility between the “topic” assigned
to h1i ∈ H = {c : c = 1, . . . , |H|}, and the d-dimensional video feature vector xj ,
when nodesxj and h1i are connected in the graphical model. The parametersw1 = [w1

c ]
are indexed by the “topics” of h1i . We define this potential as

w1·φ1(h1i ,xj) =
∑
c∈Hw

1
c ·xj1(h1i = c). (6)
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The potential [w2·φ2(h1i , h
2
j )] models compatibility between the figure-ground as-

signment of h2j ∈ {b : b = 0, 1}, and the “topic” assigned to h1i ∈ H = {c : c =

1, . . . , |H|} when nodes h2j and h1i are connected in the graphical model. The parame-
tersw2 = [w2

bc] are indexed by the binary states of h2j and the “topics” of h1i . We define
this potential as

w2·φ2(h1i , h
2
j ) =

∑
b∈{0,1}

∑
c∈H w

2
bc1(h

2
j = b)1(h1i = c). (7)

4 Bottom-up/Top-down Inference Using Linear Programming

Given a video x and model parametersw, the goal of inference is to predict y and h as

{ŷ, ĥ} = argmax
y,h

w·φ(y,h,x). (8)

We solve this inference problem by iterating the following bottom-up and top-down
computational steps.

Bottom-up pass. In the bottom-up pass of iteration τ , we first use the observable
variables x and ĥ2(τ−1) to estimate ĥ1(τ), then, from ĥ1(τ) and ŷ(τ−1) we compute
ĥ2(τ), and finally, we use ĥ2(τ) to estimate ŷ(τ). To this end, we reformulate the
potentials, given by (5)–(7), as linear functions of the corresponding unknown variables,
using auxiliary binary vectors z1i ∈ {0, 1}|H|, z2i ∈ {0, 1}2, and zy ∈ {0, 1}|Y|, where
z1i,c = 1 if h1i = c ∈ H, and z2i,b = 1 if h2i = b ∈ {0, 1}, and zya = 1 if y = a ∈ Y .
Thus, from (3), (6), and (7), we derive the following LPs for each node i of our model:

z1i (τ) = argmax
z1
i

z1i ·
[∑

j

w1·xj +
∑
j

w2 · z2j (τ−1)
]
, s.t.

∑
c∈H

z1i,c = 1, (9)

z2i (τ) = argmax
z2
i

z2i ·
[∑

j

w2 · z1(τ)j +w0 · zy(τ−1)
]
, s.t.

∑
b∈{0,1}

z2i,b = 1,(10)

zy(τ) = argmax
zy

zy ·
[∑

i

w0 · z2i (τ−1)
]
, s.t.

∑
a∈Y

zya = 1 (11)

Top-down pass. In the top-down pass, we solve the above LPs in the reverse order.
In our experiments, we observed convergence for τmax = 10. After τmax iterations,

the LP solutions z1i (τmax), z2i (τmax), and zy(τmax) uniquely identify ĥ and ŷ. Due to
the LP formulations in (9)–(11), our inference is more efficient than the quadratic-
optimization based inference algorithms of recent approaches presented in [17, 6, 13].

5 Max-Margin Learning

We use the max-margin framework for learning HiRF parameters, as was done in [24]
for learning HCRF parameters. In particular, we use the latent-SVM to learn w on
labeled training examples D = {(x(l), y(l)) : l = 1, 2, . . . }, by solving the following
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optimization problem:

min
w

[
C

2
‖w‖2 +

∑
l

w·φ(ŷ(l), ĥ(l),x(l)) +∆(ŷ, y(l))

]
︸ ︷︷ ︸

f(w)

−

[∑
l

w·φ(y(l),h∗(l),x(l))

]
︸ ︷︷ ︸

g(w)

(12)
where ∆(ŷ, y(l)) is the 0-1 loss,w ·φ(ŷ(l), ĥ(l),x(l)) = maxy,hw ·φ(y,h,x(l)), and
w ·φ(y(l),h∗(l),x(l)) = maxhw ·φ(y(l),h,x(l)). The presence of hidden variables h
in (12) make the overall optimization problem non-convex. The problem in (12) can be
expressed as a difference of two convex terms f(w) and g(w), and thus can be solved
using the CCCP algorithm [26]. Our learning iterates two steps: (i) Givenw, each ŷ(l),
ĥ(l), and h∗(l) can be efficiently estimated using our bottom-up/top-down inference
explained in Sec. 4; (ii) Given the 0-1 loss ∆(ŷ, y(l)) and all features φ(ŷ(l), ĥ(l),x(l))
and φ(y(l),h∗(l),x(l)), w can be estimated by the CCCP algorithm.

6 Results

This section specifies our evaluation datasets, implementation details, evaluation met-
rics, baselines and comparisons with the state of the art.

We evaluate our approach on the Collective Activity Dataset (CAD) [7], and New
Collective Activity Dataset (New-CAD) [6]. CAD consists of 44 videos showing 5 col-
lective activities: crossing, waiting, queuing, walking, and talking. For training and test-
ing, we use the standard split of 3/4 and 1/4 of the videos from each class. In every
10th frame, CAD provides annotations of bounding boxes around people performing
the activity, their pose, and activity class. We follow the same experimental setup as
described in [17]. New-CAD consists of 32 videos showing 6 collective activities –
namely, gathering, talking, dismissal, walking together, chasing, queuing – and 9 in-
teractions – specifically, approaching, walking-in-opposite-direction, facing-each-other,
standing-in-a-row, walking-side-by-side, walking-one-after-the-other, running-side-by-
side, running-one-after-the-other, and no-interaction – and 3 individual actions called
walking, standing still, and running. The annotations include 8 poses. As in [6], we
divide New-CAD into 3 subsets, and run 3-fold training and testing.

Implementation Details. We first run the person detector of [11] that uses HOG
features [9]. The detector is learned to yield high recall. On CAD and New-CAD, we
get the average false positive rates of 15.6% and 18.1%, respectively. Each person de-
tection corresponds to one leaf node in HiRF, and is assigned an action descriptor,
xi, similar to the descriptor used in [17]. We compute the action descriptor by con-
catenating a person descriptor that captures the person’s pose and action, and another
contextual descriptor that captures the poses and actions of nearby persons. The person
descriptor is a |Y|·8-dimensional vector that consists of confidences of two classifiers
which use HOG features of the person’s detection bounding box – namely, confidences
of SVM over |Y| action classes, and confidences of the 8-way pose detector presented
in [7]. The contextual descriptor is a |Y|·8-dimensional vector that computes the max-
imum confidences over all person descriptors associated with the neighboring person
detections. We use 10 nodes at the h1 level, and 20 nodes at the h2 level, empirically
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estimated as providing an optimal trade-off between accuracy and model complexity.
We establish the fully connectivity between all nodes of levels h1 and h2. To enforce
temporal constraints in FTC-HiRF, we split the video into T time intervals, and allow
connections between h1

it nodes and leaf nodes xjt only within their respective intervals
t = 1, . . . , T . The optimal T = 10 is empirically evaluated. Training takes about 6
hours, on a 3.40GHz PC with 8GB RAM.

Baselines. Our baselines include HCRF and F-HCRF specified in Sec. 3.1 and il-
lustrated in Fig. 2. The comparison between our HiRF and HCRF evaluates the effect
of replacing the temporal lateral connections in the HCRF with strictly hierarchical
connections in HiRF. F-HiRF and FTC-HiRF are variants of HiRF. F-HiRF fully con-
nects all nodes of the hidden layer h1 with all observable variables x. FTC-HiRF splits
the observable nodes into T disjoint sets xt, t = 1, . . . , T , corresponding to T time
intervals in the video, and connects each node of the hidden layer h1 only with the
corresponding set of observable nodes xt. The comparison between F-HiRF and FTC-
HiRF evaluates the effect of temporally constraining the video domain modeled by each
node of the hidden layer h1. In the following, we will assume that our default model is
FTC-HiRF.

Comparison. We compare FTC-HiRF with the state-of-the-art temporal approaches
of [2, 6, 13]. These approaches apply a people tracker, and thus additionally use tracking
information for inferring their Factor Graphs (FG) [6, 13] and spatiotemporal And-Or
graphs [2]. FTC-HiRF does not use any tracking information. For a fair comparison with
non-temporal approaches of [3, 17, 7] that conduct per-frame reasoning about activities
using SVM [7], F-HCRF [17], and spatial And-Or graph [3], we define a special variant
of our model, called HiRFnt. HiRFnt has the same formulation as HiRF except that it
uses observables (i.e., person detections) only from a single frame. Thus, inference of
HiRFnt is performed for every individual video frame. Also, note that for evaluation
on New-CAD all prior work uses a higher level of supervision for training their hidden
variables – namely, the available interaction labels – whereas, we do not use these labels
in our training.

Evaluation Metrics. We evaluate classification accuracy in (%), and precision and
recall of localizing foreground video parts. A true positive is declared if the intersection
of the estimated foreground and ground truth is larger than 50% of their union.

Experiments. We first evaluate individual components of our model by comparing
the performance of our model variants. Then, we compare FTC-HiRF against the state
of the art. Fig. 4 shows our example results on CAD and New-CAD. As can be seen, in
these examples, FTC-HiRF successfully detected the activity and localized foreground
associated with the recognized activity. In general, FTC-HiRF successfully estimates
foreground-background separation, as long as the background activities do not have
similar spatiotemporal layout and people poses as the foreground activity.

Fig. 5 shows the sensitivity of FTC-HiRF to the input parameters on the CAD and
New-CAD datasets. As can be seen, our model is relatively insensitive to a range of
parameter values, but starts overfitting for higher values.

Tab. 1 and Tab. 2 show the comparison of FTC-HiRF and other variants of our
approach with the baselines on CAD and New-CAD. As can be seen, in comparison
with HCRF, HiRF reduces the running time of inference, and achieves a higher average
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Fig. 4. Person detections using the detector of [11] set to give high recall, and our results us-
ing FTC-HiRF on: (top) the New-CAD dataset, and (bottom) the CAD dataset, for the activity
“talking”. The estimated foreground and background are marked green and red, respectively. The
blue frames indicate our localization of the activity’s temporal extent. Note that more than one
detection falling on the same person may be estimated as foreground.

classification accuracy. These results demonstrate the advantages of using strictly hi-
erarchical connections in our approach. F-HiRF slightly improves the results of HiRF,
but has a longer running time. The longer running time is due to the full connectivity
between the h1 level and the leaf level. Finally, FTC-HiRF improves the classification
accuracy of F-HiRF, and at the same time runs faster than F-HiRF. The training and test
times of FTC-HiRF are smaller than those of F-HiRF, since convergence in inference is
achieved faster due to a more constrained graph connectivity in FTC-HiRF.

Fig. 5. Sensitivity of FTC-HiRF to the input parameters on the CAD (blue) and New-CAD (red)
datasets. Average classification accuracy when using different numbers of: (a) Nodes at the h1

level; (b) Temporal intervals T ; (c) Nodes at the h2 level.

Tab. 3, and Tab. 4 show the comparison of FTC-HiRF with the state of the art on
CAD and New-CAD. As can be seen, we are able to achieve higher classification accu-
racy, under faster running times. Our non-temporal variant HiRFnt outperforms HCRF
[17] by 6.2% and spatiotemporal And-Or graph [2] by 3% on both datasets.

Tab. 5 shows our precision and false positive rates for localizing the activities on
CAD. As can be seen, HiRFnt successfully localizes foreground, and outperforms the
spatial And-Or graph of [3] by 3.7% in precision.
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Class HCRF [24] F-HCRF [17] FTC-HCRF [17] HiRF F-HiRF FTC-HiRF

Walk 83.3 83.9 87.6 84.1 86.2 89.7
Cross 71.2 71.7 78.7 76.8 78.1 86.5
Queue 79.2 80.5 82.2 81.1 83.4 98.2
Wait 71.8 73.6 75.8 74.3 75.1 85.9
Talk 99.1 99.3 99.4 99.3 99.4 99.6

Avg 80.9 81.8 84.7 83.1 84.4 92.0

Time 400 440 300 100 150 120
Table 1. CAD: Average classification accuracy in [%], and run time in seconds.

Class HCRF [24] F-HCRF [17] FTC-HCRF [17] HiRF F-HiRF FTC-HiRF

Gathering 45.3 47.1 52.3 49.2 52.1 54.9
Talking 84.1 84.5 83.9 84.7 86.2 89.3

Dismissal 78.2 79.6 80.6 78.1 82.8 87.6
Walking 89.3 89.1 89.0 89.4 91.2 94.3
Chasing 93.5 93.5 93.7 94.1 96.4 98.2
Queuing 93.0 93.1 94.3 93.8 95.6 99.2

Avg 80.6 81.1 82.3 81.5 84.0 87.2

Time 400 440 300 100 150 120
Table 2. New-CAD: Average accuracy in [%], and run time in seconds.

Tab. 6 shows our precision and false positive rates for localizing the activities on
New-CAD. To the best of our knowledge, we are the first to report localization results
on New-CAD.

7 Conclusion

We have presented a new deep model, called Hierarchical Random Field (HiRF), for
modeling, recognizing and localizing collective activities in videos. HiRF extends re-
cent work that models activities with HCRF by: 1) Adding another layer of hidden
variables to HCRF, 2) Removing the lateral temporal connections between all hidden
variables, and 3) Enforcing local constraints on temporal connections between the hid-
den variables for capturing latent subactivities. We have also specified new inference
of HiRF. Our inference iterates bottom-up/top-down computational steps until conver-
gence, where each step efficiently estimates the latent variables using a linear program.
Efficiency comes from our formulation of the potentials of HiRF as linear functions
in each set of the hidden variables, given current estimates of other variables. This ad-
vances prior work which requires more complex quadratic programing in inference.
Our empirical evaluation on the benchmark Collective Activity Dataset [7] and New
Collective Activity Dataset [6] demonstrates the advantages of using strictly hierarchi-
cal connections in our approach. Our model is relatively insensitive to a range of input
parameter values, but starts overfitting for higher values. In comparison with HCRF,
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Class FTC-HiRF ST-AOG [2] FG [6] FG [13] HiRFnt AOG [3] HCRF [17] SVM [7]

Walk 89.7 83.4 65.1 61.5 77.3 74.7 80 58.6
Cross 86.5 81.1 61.3 67.2 81.2 77.2 68 59.4
Queue 98.2 97.5 95.4 81.1 96.2 95.4 76 80.6
Wait 85.9 83.9 82.9 56.8 78.4 78.3 69 81.9
Talk 99.6 98.8 94.9 93.3 99.6 98.4 99 86.0

Avg 92.0 88.9 80.0 72.0 86.6 84.8 78.4 72.5

Time 120 180 N/A N/A 80 160 N/A N/A
Table 3. Average classification accuracy in [%], and run time in seconds on CAD. FTC-HiRF
is used to compare against temporal approaches of [2, 6, 13], while HiRFnt is used to compare
against non-temporal approaches of [3, 17, 7].

Class FTC-HiRF ST-AOG[2] FG [6] HiRFnt AOG[3] SVM [7]

Gathering 54.9 48.9 43.5 51.2 44.2 50.0
Talking 89.3 86.5 82.2 83.1 76.9 72.2

Dismissal 87.6 84.1 77.0 79.2 50.1 49.2
Walking 94.3 92.5 87.4 88.1 84.3 83.2
Chasing 98.2 96.5 91.9 92.6 91.2 95.2
Queuing 99.2 97.2 93.4 92.1 92.2 95.9

Avg 87.3 84.2 83.0 81.0 74.8 77.4

Time 120 180 N/A 80 160 N/A
Table 4. Average classification accuracy in [%], and run time in seconds on New-CAD. FTC-
HiRF is used to compare against temporal approaches of [2, 6], while HiRFnt is used to compare
against non-temporal approaches of [3, 7].

Class FTC-HiRF FTC-HiRF HiRFnt HiRFnt S-AOG [3] S-AOG [3]
Precision FP Precision FP Precision FP

Walk 70.0 7.6 68.1 8.0 65.3 8.2
Cross 78.3 8.1 75.0 8.4 69.6 8.7
Queue 79.1 5.0 78.7 5.1 76.2 5.2
Wait 76.7 7.0 74.1 7.4 68.3 7.7
Talk 87.9 5.7 84.4 6.0 82.1 6.2

Avg 78.4 6.7 76.0 7.0 72.3 7.2
Table 5. Average precision and false positive rates in (%) on CAD.
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Class FTC-HiRF FTC-HiRF HiRFnt HiRFnt
Precision FP Precision FP

Gathering 77.8 15.6 77.5 18.5
Talking 85.1 6.4 80.9 6.5

Dismissal 72.2 11.1 68.2 14.1
Walking 74.5 3.1 72.2 3.5
Chasing 68.0 7.7 65.2 10.5
Queuing 92.7 6.5 88.1 7.2

Avg 77.7 8.4 75.2 10.0
Table 6. Average precision and false positive rates in (%) on New-CAD.

HiRF reduces the running time of inference, and achieves a higher average classifica-
tion accuracy. Also, HiRF outperforms the state-of-the-art approaches, including Factor
Graphs [6, 13] and spatiotemporal And-Or graphs [2], in terms of classification accu-
racy, precision, and recall.
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