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Abstract— Recently, we have successfully implemented and
tested a vision based horizon-tracking algorithm for flight
stability and autonomy in Micro Air Vehicles (MAVs). Occa-
sionally, this algorithm fails in scenarios where the underlying
Gaussian assumption for the sky and ground appearances is
not appropriate. To improve its performance, especially in
the presence of video noise, we consider a novel image analy-
sis tool-namely, multiresolution linear discriminant analysis
(MLDA) that efficiently detects and economically represents
edges in images. The MLDA framework comprises the fol-
lowing components: the MLDA atom, dictionary, tree, graph,
and MLDA-based algorithms. In this paper, we explain these
components and demonstrate the powerful expressiveness of
MLDA, which gives rise to fast geometrical-structure-analysis
algorithms. With this approach, not only do we improve
sky/ground segmentation results, but also enhance MAV’s
potentials for surveillance and monitoring tasks.

I. INTRODUCTION

In this paper, we describe a novel image analysis tool
that will allow us to segment reliably sky from ground in
flight images and video. This goal was inspired by our
previous work in horizon tracking for Micro Air Vehicles
(MAVS) [1], [2]. In that work, we developed a rea-time,
vision-based horizon detection and tracking algorithm for
MAV's equipped with on-board video cameras. With this
system, we were able to achieve self-stabilized and au-
tonomous flights of MAV's, without any additional inertial
or rate sensors. We resorted to vision-based control, since
such inertial and rate sensors typically do not yet have
the requisite accuracy at the miniature scale required for
MAVs, where weight of sensors and other components is
of paramount importance.

Overdl, the horizon tracking algorithm works well,
especialy when the sky and ground distributions are rel-
atively coherent. Occasionally, however, horizon detection
fails in scenarios where the underlying Gaussian assump-
tion for the sky and ground appearances is not appropriate.
Due to the noise degradation and/or complex scene appear-
ances of sky and ground in images, this may be an incorrect
assumption with potentially fatal consequencesto the flight
vehicle. Thus, given the goal to precisely detect a boundary
between sky and ground regions (a requirement for MAV'’s
flight control and stability), careful consideration must be

given to selecting a reliable edge-extraction method.

For years now, active research has been conducted in the
area of wavelet-based image processing. However, recent
findings on human vision and natural image statistics [3],
[4] provide a host of arguments which seem to undermine
the popularity of wavelets. It has been reported that cor-
tical cells are not only highly sensitive to the location
and scale, but also to the orientation and elongation of
stimuli. Moreover, the basis elements which best “spar-
sify” natural scenes are highly direction-specific, unlike
wavelets. Findly, it is well known that wavelets do not
economically represent even straight edges, let alone more
complicated geometrical structures in images. Therefore,
al the aforementioned arguments suggest that there is a
need for new image analysis methods that should exhibit,
aside from the multiscale and localization properties of
waveletes, also, characteristics that account for concepts
beyond the wavelet framework.

Recently, the wedgel et transform has been proposed [5],
as a step toward improved extraction and representation
of edges in images. The wedgelet transform is a harmonic
analysis method for nearly optimal representation of binary
images consisting of piecewise constant regions separated
by smooth boundaries (i.e. the Horizon model). A wedgel et
is a piecewise constant function on either side of a line
that intersects a dyadic sguare. The multiscale wedgel et
representation of an image consists of a set of wedgelets
supported by dyadic squares of varying sizes that partition
the analyzed image. The wedgelet recursive partitioning is
optimized over multiple criteria [5]-{7] which essentialy
minimize the complexity-penalized mean-squared error.
Clearly, the wedgelet representation seeks a projection
that best represents an image in a least-squares sense.
However, there is no reason to assume that the components
useful for representing pixel values must also be useful for
discriminating between homogeneous regions in an image.
Therefore, we propose a substantially different optimiza-
tion criterion which maximizes the distance between the
means of the two regions while minimizing the variance
within each region. Thus, we implement multiscale linear
discriminant analysis (MLDA) which seeks for directions
that are efficient for discrimination.



Despite its similarity to the wedgelet transform, we
introduce a new name (i.e. MLDA) to emphasize the
fundamental difference between the two approaches. Min-
imizing the mean-squared error, a wedgelet represents the
most coherent regions in the corresponding dyadic square,
that is, the regions with the minimal variance. On the
other hand, an MLDA atom, supported by a dyadic square,
represents not only the most coherent regions but also
the regions with the maximum mean distance. One can
easily imagine cases where minimizing the variances solely
is insufficient for correct edge detection. In Fig. 1, we
illustrate such a case where regions have almost identical
means but different variances.

Unlike the wedgelet transform designed for binary im-
ages, MLDA is capable of performing analysis of images
represented in a multidimensional feature space (e.g., the
RGB color space). In amore general setting of multidimen-
sional dataanalysis, the MLDA extracts an “edge’ between
clusters of data, projecting the multidimensional data space
onto the lower-dimensional MLDA representation.

MLDA exhibits the multiscale and localization proper-
ties of waveletes, but aso offers additional information
on alignments and spatial interrelationships among the
extracted linear discriminants. In the following sections
we explain these properties and demonstrate them with
MLDA-based algorithms for analyzing geometrical struc-
tures in images.

Il. MLDA FRAMEWORK

The MLDA framework consists of the following com-
ponents:

1. The MLDA atom w is a piecewise constant function
on either side of a linear discriminant that intersects the
perimeter of a dyadic square S in vertices v; and v;. The
discriminant (v;,v;) divides S into two regions R, and
Ry, in which w takes values uo and p; equal to the mean
vector of pixel valuestin Ry and R, respectively.

2. The MLDA dictionary is acollection of all possible
MLDA atoms w at afinite range of locations, orientations
and scales. MLDA is performed searching through the
MLDA dictionary for atoms that best represent the ana-
lyzed image with respect to multiple criteria. The search
keys are the location and scale of S and a discriminant
(vs,v;). Computational complexity requires that the set
of vertices {v;} on the perimeter of each S be finite
(e.g., anumber of pixels apart). In our implementation, the
distance between two adjacent vertices is constant, which
results in a different number of linear discriminants for
squares at different scales.

1in this paper we assume that the analyzed image is represented in
multidimensional feature space, where a feature vector is assigned to
each pixel.

Fig. 1. The wedgelet transform fails to detect the edge correctly: (left)
original image, (center) wedgelet, (right) MLDA atom

3. The MLDA tree 7 consists of MLDA atoms
generated in MLDA. Starting from S of size equal to
the analyzed image, MLDA decomposes the image into
children dyadic squares until optimization criteria are met.
The MLDA tree 7 is incomplete, because generating
atoms stop at different scales for different locations in
the image. The leaf nodes of 7 store the final MLDA
representation of an image, as illustrated in Fig. 2.

4. The MLDA graph is a graph plot of the MLDA
representation of an image, where edges are linear dis-
criminants and nodes are their corresponding vertices, as
depicted in Fig. 2.

5. MLDA-based algorithms exploit information stored
in the MLDA tree and graph. The tree structure gives rise
naturally to a host of multiscale analysis methods which
account for uo and py values of each w at various scales.
This type of agorithms has already been introduced in the
wavelet literature (e.g., Hidden Markov Tree modeling for
image segmentation [2]). There is but one noteworthy dif-
ference — namely, that the incomplete MLDA tree requires
less processing, as opposed to a complete wavelet tree that
includes a multitude of insignificant wavelet coefficients.
The second type of agorithms goes beyond the wavelet
framework analyzing spacial interrelationships of linear
discriminants. Using the MLDA graph, these algorithms
can efficiently examine connectedness, collinearity and
other properties of curves in an image.

We propose that the most important optimization cri-
teria for MLDA are discrimination and parsimony. The
pattern recognition literature abounds with various crite-
rion functions for computing the best linear discriminant.
In our implementation, we seek a direction (v;,v;), char-
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Fig. 2. (left) The MLDA graph: the dashed line depicts the actual curve;
(right) the corresponding MLDA tree




Fig. 3. The MLDA representation: (left) original image, (center) no pruning 1024 leaf nodes, (right) with pruning 253 leaf nodes

acterized by the maximum Mahalanobis distance between
Ry and Ry in S, as

(vi,v5) :d = ({)I_I%X){(Mo—ul)T(20+21)71(Mo—ul)},
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where ¥ and X; denote covariance matrices of Ry and
Ry, respectively. The computational cost of an exhaustive
search over a finite set of linear discriminants {(v;,v;)}
can be reduced by updating the relevant statistics only
with pixel values of delta regions (areas between two
consecutive candidate linear discriminants).

As the size of S decreases, we achieve better piece-
wise linear approximation of boundaries between regions
in an image. Therefore, an analyzed image is decomposed
into dyadic squares of varying sizes which results in the
MLDA tree 7. To control the generation of children
dyadic squares, we impose the next optimization criterion,
parsimony, as a counter-balance to accuracy. We define a
cost function to measure the parsimony of 7 as

R(T)=> r(w)+alT| , @

where r(wy) is the inverse of the Mahalanobis distance
computed for the corresponding leaf node wy, r(we) =
1/d, |T| denotes the number of termina nodes in T,
and o represents the complexity cost per terminal node.
Clearly, an exhaustive search in tree space for the minimum
cost function is computationally prohibitive. Therefore, we
implement the one-step optimal procedure analogousto the
algorithm proposed in [8].

Our experimental results suggest that no single stopping
rule, which limits the size of 7, yields a satisfactory image
representation. Therefore, instead of stopping at different
terminal nodes, we continue MLDA image decomposition
until al leaf squares are small in size, resulting in a large
tree. Then, we selectively prune this large tree upward us-
ing the cost function R(7"). From expression (2), it follows
that we can regulate the pruning process by increasing «

to obtain a finite sequence of subtrees with progressively
fewer leaf nodes. First, for each nodew € 7, we determine
oy, for which the cost of a subtree 7, is higher than the
cost of its root node w, as follows:

R(Tw) > R(w) = Zr(wg) + ay|Tw| > r(w) + ay - 1

_ r(w) =y r(we)
= Q= Tol=1 . (©)]

Then, the whole subtree 7,, under the node w with the
minimum value of «,, is cut off. Repeatedly, we recalculate
o, Values and trim off the weakest links until the actual
number of leaf nodes is equal to or less than the desired
number of leaf nodes.

This pruning is computationally fast and requires only
asmall fraction of the total tree construction time. Starting
with a complete tree, the agorithm initially trims off
large subtrees with many leaf nodes. As the tree becomes
smaller, the procedure tends to cut off fewer nodes at a
time. In Fig. 3, we illustrate the efficiency in image repre-
sentation of the fully optimized MLDA tree, as compared
to the unpruned MLDA tree. While there is almost no
degradation in accuracy with complexity-cost pruning, we
achieved significant reduction in the number of terminal
MLDA atoms.

With additional optimization criteria, it is possible to
meet various application specific requirements. For in-
stance, in [6], the authors assume that curves in images
appear smooth and connected, and therefore they impose
a geometrical model as an optimization criterion for de-
riving the wedgelet image representation. Nevertheless,
keeping in mind that the human visual system is capable
of integrating scattered image constituents into coherent
global structures, we let the MLDA representation provide
all the richness of the underlying geometrical structures
and assign the role of “integrating” (e.g. analyzing the
smoothness and connectedness of curves) to ML DA -based
algorithms.



1. MLDA-BASED ALGORITHMS

As previously mentioned, MLDA gives rise to computer
vision algorithms difficult or even impossible to imple-
ment within the wavelet framework. MLDA is particularly
suitable for extracting perceptually important features such
as edges, singularities, and periodic patterns through a
range of scales. Herewith, we focus only on the problem
of extracting curves in an image, with the emphasis on
the MAV application, since a more thorough treatment is
beyond the scope of this paper.

The existing vision-based horizon tracking for flight
control and stability of our MAVs in flight is based on
the assumption that the horizon is a straight line [1].
Thus, the crucia part of the horizon detection algorithm
is extracting candidate lines in an image—a task almost
impossible to achieve using wavelets for noise-degraded
images. In Fig. 4, we show two typica flight images,
captured from an on-board camera of a MAV, where the
video noise introduced edges and ripples that may mislead
the wavel et-based edge detection. In this case, the MLDA
framework offers an efficient solution. First, the MLDA
image representation is found. Then, straight lines in the
image are extracted analyzing exhaustively all possible
directions, determined by a finite set of points ) along the
perimeter of the image. Each pair of points (v;,v;) € V
defines a direction with a slope a;; along which MLDA
atoms are examined. If slopes a of linear discriminants of
the examined atoms satisfy

la —a;;| < A, 4

where A denotes a slope step between two neighboring
directions and can be computed as

A = min{|a;; —ar|/(1 — asjam)} )
k € {2_17272_'_1}7
l S {]_17.77]_'_1}7

then that linear discriminant is extracted as a part of
the analyzed direction (v;, v;). Finally, comparing p; and
1o values of the extracted MLDA atoms with the prior
statistical models of sky and ground [2], the list of horizon
candidates is reduced to the horizon solution, as illustrated
in Fig. 4. The MLDA-based horizon detection a gorithm
is capable of processing a video stream of flight imagesin
rea time.

Further, we apply the described algorithm for extract-
ing lines to solve the problem of detecting man-made
structures in air images, as may be required for MAV’s
surveillance tasks. Suppose, for example, that artificial
structures appear as long straight edges in images, as the
road in Fig. 5. Thus, given this prior knowledge, the recog-
nition problem can be solved implementing the MLDA-
based edge detection. First, we exhaustively analyze all

o

Fig. 4. Noise degraded MAV flight images

directions determined by a finite set of points along the
perimeter of the image, extracting linear discriminants.
The directions most effectively covered with the extracted
linear discriminants are candidate lines for the shapes of
man-made objects. Criteriato choose the solution from the
candidates can be based on examining various properties,
such as: whether the lines are parallel or perpendicular.
The two jagged white lines in Fig. 5b represent the two
longest directions that are also most effectively covered
with the extracted linear discriminants. It is most likely
that these lines represent the road in the image.

Finally, we present an MLDA-based agorithm for ex-
tracting the minimum length curve between two fixed
points in an image. Here, we implement the iterative-
deepening A* (IDA*) search algorithm to optimize a
path in the MLDA graph. It is well-known [9], [10] that
iterative-deepening search finds minimal cost paths with
memory requirements that grow only linearly with the
depth of the goal. Outward propagation from the starting
point in the MLDA graph (i.e. the generation of new nodes
in the IDA* search tree) is controlled by a function

f(n) =g(n) +h(n), (6)

where g(n) denotes the cost of a minimal cost path from
the start node n to the current node n, and h(n) denotes
the actual cost of the minimal cost path between n and the
goa node n,. Clearly, f(no) = h(ng) for the start node.
Recall that the exact positions in an image of all nodes
(i.,e. MLDA atoms) are known. Hence, we can estimate



(a) original image

A4 .#ﬂ

(b) extraction of lines

. A

(c) extraction of curves

Fig. 5. Noise degraded MAV flight image

the true h(n) with the following heuristic function:
h(n) = d(n,n+1) +de(n + 1) +d(n +1,n,), (7)

wheren+ 1 denotes a new node generated from the node n
(i.e, aneighboring MLDA atom), then d(n,n + 1) stands
for the minimum distance between the vertices of n and
n + 1, further, d,(n + 1) denotes the length of the linear
discriminant of n + 1, and finaly d(n + 1,n,) stands for
the minimum distance between vertices of then + 1 and
n, MLDA atoms. The controlling function f(n) = j(n)+
h(n) is an accumulative sum of distances and, hence, a
monotone nondecreasing function, assuring that the I D A *
search results in the minimum-length path.

The IDA* agorithm executes a series of depth-first
searches. In the first search, we establish a cost cut-off
valueequal to f(no) = §(no)+h(no) = h(no). We expand
nodes in a depth-first fashion, backtracking whenever the
f(n + 1) value of a successor exceeds the cut-off value.
If this depth-first search does not terminate at the goal
node n,4, then the cost cut-off value must be increased
to start another depth-first search. The new cut-off value
is set to the minimum f(n) value of the nodes visited but
not expanded in the previous depth-first search. The search
ends when the MLDA atom n, is reached.

The greatest drawback of 1D A* isitsinherent repetitive
expansions of nodes, which is the impediment for real
time applications. On the other hand, there are fair trade-
offs involving the reduced memory requirements and the
implementation efficiencies of the depth-first search. In
Fig. 5¢c, we illustrate the extraction of the minimum length
curve between two fixed points of interest. In this example,
the start point is on the down left and the end point is on
the up right side of the image.

IV. CONCLUSION

Considerations to improve the existing horizon-tracking
algorithm for flight stability and control of Micro Air

Vehicles (MAVS) motivated our research of new image
analysis tools. Currently well established methods do not
exhibit sufficient precision in detection and also do not
provide sparse representation of image features. To deal
with these problems, we proposed MLDA—a novel image
analysis method.

In this paper, we discussed the MLDA framework
and showed that MLDA efficiently represents location,
scale, orientation and elongation of image elements. Then,
to demonstrate its expressiveness, we presented MLDA-
based algorithms for extracting curves in images, as one
application of the MLDA framework. We showed that
employing MLDA for the horizon-tracking yielded excel-
lent sky/ground segmentation results in the presence of
video noise. With MLDA, not only did we improve the
horizon-tracking performance, but we also remained within
the real-time constraints. Further, we presented a possible
scenario, where a MAV was supposed to recognize a
man-made object, namely a road. Also, we considered
extraction of the minimum-length path in the MLDA graph
between two points of interest. These examples illustrated
some of the MAV'’s surveillance tasks, for which MLDA
offered an efficient solution.

All the considered algorithms in this paper arise from
the MLDA graph analysis. In our future research, we
will focus on incorporating the multi-scale information,
stored in the MLDA tree, into prospective computer vision
algorithms which could lead to greater autonomy and
versatility of our MAVs.
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