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Abstract. This paper presents an approach to matching parts of deformable shapes.
Multiscale salient parts of the two shapes are first identified. Then, these parts
are matched if their immediate properties are similar, the same holds recursively
for their subparts, and the same holds for their neighbor parts. The shapes are
represented by hierarchical attributed graphs whose node attributes encode the
photometric and geometric properties of corresponding parts, and edge attributes
capture the strength of neighbor and part-of interactions between the parts. Their
matching is formulated as finding the subgraph isomorphism that minimizes a
quadratic cost. The dimensionality of the matching space isdramatically reduced
by convexifying the cost. Experimental evaluation on the benchmark MPEG-7
and Brown datasets demonstrates that the proposed approachis robust.

1 Introduction

This paper is about shape matching by using: (1) a new hierarchical shape representa-
tion, and (2) a new quadratic-assignment objective function that is efficiently optimized
via convexification. Many psychophysical studies suggest that shape perception is the
major route for acquiring knowledge about the visual world [1]. However, while hu-
mans are very efficient in recognizing shapes, this proves a challenging task for com-
puter vision. This is mainly due to certain limitations in existing shape representations
and matching criteria used, which typically cannot adequately address matching of de-
formable shapes. Two perceptually similar deformable shapes may have certain parts
very different or even missing, whereas some other parts very similar. Therefore, ac-
counting for shape parts in matching is important. However,it is not always clear how
to define a shape part. The motivation behind the work described in this paper is to
improve robustness of shape matching by using a rich hierarchical shape representation
that will provide access to all shape parts existing at all scales, and by formulating a
matching criterion that will account for these shape parts and their hierarchical proper-
ties.

We address the following problem: Given two shapes find correspondences between
all their parts that are similar in terms of photometric, geometric, and structural prop-
erties, the same holds recursively for their subparts, and the same holds for their neigh-
bor parts. To this end, a shape is represented by a hierarchical attributed graph whose
node attributes encode the intrinsic properties of corresponding multiscale shape parts
(e.g., intensity gradient, length, orientation), and edgeattributes capture the strength of
neighbor andpart-of interactions between the parts. We formulate shape matching as
finding the subgraph isomorphism that preserves the original graph connectivity and
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minimizes a quadratic cost whose linear and quadratic termsaccount for differences
between node and edge attributes, respectively. The cost isdefined so as to be invariant
to scale changes and in-plane rotation of the shapes. The search in the matching space
of all shape-part pairs is accelerated by convexifying the quadratic cost, which also re-
duces the chances to get trapped in a local minimum. As our experiments demonstrate,
the proposed approach is robust against large variations ofindividual shape parts and
partial occlusion.

In the rest of this paper, Sec. 2 points out main contributions of our approach with re-
spect to prior work, Sec. 3 describes our hierarchical representation of a shape, Sec. 4.1
specifies node and edge compatibilities and formulates our matching algorithm, Sec. 4.2
explains how to convexify and solve the quadratic program, and Sec. 5 presents experi-
mental evaluation of our approach.

2 Our Contributions and Relationships to Prior Work

This section reviews prior work and points out our main contributions. Hierarchical
shape representations are aimed at efficiently capturing both global and local properties
of shapes, and thus facilitating their matching. Shortcomings of existing representations
typically reduce the efficiency of matching algorithms. Forexample, the arc-tree [2, 3]
trades off its accuracy and stability for lower complexity,since it is a binary tree, gener-
ated by recursively splitting the curve in two halves. Arc-trees are different for similar
shapes with some part variations, which will be hard to match. Another example is the
curvature scale-space [4, 5] that loses its descriptive power by pre-specifying the degree
of image decimation (i.e., blurring and subsampling), while capturing salient curvature
points of a contour at different degrees of smoothing. Also,building the articulation-
invariant, part-based signatures of deformable shapes, presented in [6], is sensitive to
the correct identification of the shape’s landmark points and to the multidimensional
scaling and estimating of the shortest path between these points. Other hierarchical
shape descriptions include the Markov-tree graphical models [7], and the hierarchy of
polygons [8] that are based on the restrictive assumptions about the number, size, and
hierarchy depth of parts that a curve consists of. The aforementioned methods encode
only geometric properties of shape parts, and their part-ofrelationships, yielding a strict
tree. In contrast, we use a more general, hierarchical graphthat encodes the strength of
all ascendant-descendant and neighbor relationships between shape parts, as well as
their geometric and photometric properties. The sensitivity of the graph structure to
small shape variations is reduced, since we estimate the shape’s salient points at multi-
ple scales. Also, unlike in prior work, the number of nodes, depth, and branching factor
in different parts of the hierarchical graph are data dependent.

Graph-based shape matching has been the focus of sustained research activity for
more than three decades. Graph matching may be performed by:(i) exploiting spectral
properties of the graphs’ adjacency matrices [9, 10]; (ii) minimizing the graph edit-
distance [11, 12]; (iii) finding a maximum clique of the association graph [13]; (iv) us-
ing the expectation-maximization of a statistical, generative model [14]. Regardless of a
particular formulation, graph matching in general can be cast as a quadratic assignment
problem, where a linear term in the objective function encodes node compatibility func-
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tions, and a quadratic term encodes edge compatibility functions. Therefore, approaches
to graph matching mainly focus on: (i) finding suitable definitions of the compatibil-
ity functions; and (ii) developing efficient algorithms forapproximately solving the
quadratic assignment problem (since it is NP-hard), including a suitable reformulation
of the quadratic into linear assignment problem. However, most popular approximation
algorithms (e.g., relaxation labeling, and loopy belief propagation) critically depend on
a good initialization and may be easily trapped in a local minimum, while some (e.g.,
deterministic annealing schemes) can be used only for graphs with a small number of
nodes. Graduated nonconvexity schemes [15], and successive convexification methods
[16] have been used to convexify the objective function of graph matching, and thus al-
leviate these problems. Since it is difficult to convexify matching cost surfaces that are
not explicit functions, these methods resort to restrictive assumptions about the func-
tional form of a matching cost, or reformulate the quadraticobjective function into a
linear program. In this paper, we develop a convexification scheme that shrinks the pool
of matching candidates for each individual node in the shapehierarchy, and thus renders
the objective function amenable to solution by a convex quadratic solver.

3 Hierarchical Shape Representation

In this paper, a shape (also called contour or curve) is represented by a hierarchical
graph. We first detect the contour’s salient points at multiple scales, which in turn define
the corresponding shape parts. Then, we derive a hierarchy of these shape parts, as
illustrated in Fig. 1.

Multiscale part detection: A data-driven number of salient (or dominant) points
along the contour are detected using the scale-invariant algorithm of [17]. This algo-
rithm does not require any input parameters, and remains reliable even when the shape
is rich in both fine and coarse details, unlike most existing approaches. The algorithm
first determines, for each point along the curve, its curvature and the region of support,
which jointly serve as a measure of the point’s relative significance. Then, the dominant
points are detected by the standard nonmaximum suppression. Each pair of subsequent
dominant points along the shape define the corresponding shape part. The end points
of each shape part define a straight line that is taken to approximate the part. We recur-
sively apply the algorithm of [17] to each shape part whose associated line segment has
a larger approximation error than a pre-set threshold. Thisthreshold controls the res-
olution level (i.e., scale) at which we seek to represent thecontour’s fine details. How
to compute this approximation error is explained later in this section. After the desired
resolution level is reached, the shape parts obtained at different scales can be organized
in a tree structure, where nodes and parent-child (directed) edges represent the shape
parts and their part-of relationships. The number of nodes,depth, and branching factors
of each node of this tree are all automatically determined bythe shape at hand.

Transitive closure: Small, perceptually negligent shape variations (e.g., dueto
varying illumination in images) may lead to undesired, large structural changes in the
shape tree (e.g., causing a tree node to split into multiple descendants at multiple lev-
els). As in [18], we address these potential structural changes of the shape tree by adding
new directed edges that connect every node with all of its descendants, resulting in a
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transitive closure of the tree. Later, in matching, the transitive closures will allow that
a search for a maximally matching node pair is conducted overall descendants under a
visited ancestor node pair, rather than stopping the searchif the ancestors’ children do
not match. This, in turn, will make matching more robust.
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Fig. 1. An example contour: (left) Lines approximating the detected contour parts are marked
with different colors. (right) The shape parts are organized in a hierarchical graph that encodes
their part-of and neighbor relationships. Only a few ascendant-descendant and neighbor edges
are depicted for clarity.

Neighbors:Like other strictly hierarchical representations, the transitive closure of
the shape tree is capable of encoding only a limited description of spatial-layout proper-
ties of the shape parts. For example, it cannot distinguish different layouts of the same
set of parts along the shape. In the literature, this problemhas been usually addressed
by associating a context descriptor with each part. In this paper, we instead augment the
transitive closure with new, undirected edges, capturing the neighbor relationships be-
tween parts. This transforms the transitive closure of the shape tree into a more general
graph that we call the shape hierarchy.

Node Attributes: Both nodes and edges of the shape hierarchy are attributed. Node
attributes are vectors whose elements describe photometric and geometric properties of
the corresponding shape part. The following estimates helpus define the shape proper-
ties. We estimate the contour’s mean intensity gradient, and use this vector to identify
the contour’s direction – namely, the sequence of points along the shape – by the right-
hand rule. The principal axis of the entire contour is estimated as the principal axis of
an ellipse fitted to all points of the shape. The attribute vector of a node (i.e., shape
part) includes the following properties: (1) length as a percentage of the parent length;
(2) angle between the principal axes of this shape part and its parent; (3) approxima-
tion error estimated as the total area between the shape partand its associated straight
line, expressed as a percentage of the area of the fitted ellipse; (4) signed approximation
error is similar to the approximation error except that the total area between the shape
part and its approximating straight line is computed by accounting for the sign of the
intensity gradient along the shape; and (5) curvature at thetwo end points of the shape
part. All the properties are normalized to be in[0, 1].

Edge Attributes: The attribute of an edge in the shape hierarchy encodes the strength
of the corresponding part-of or neighbor relationship. Given a directed edge between a
shape part and its descendant part, the attribute of this edge is defined as the percentage
that the length of the descendant makes in the length of the shape part. Thus, the shorter
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descendant or the longer ancestor, the smaller strength of their interaction. The attribute
of an undirected edge between two shape parts can be either 1 or 0, where 1 means that
the parts have one common end point, and 0 means that the partsare not neighbors.

4 Shape Matching

Given two shapes, our goal is to identify best matching shapeparts and discard dis-
similar parts, so that the total cost is minimized. This costis defined as a function of
geometric, photometric, and structural properties of the matched parts, their subparts,
and their neighbor parts, as explained below.

4.1 Definition of the Objective Function of Matching

LetH = (V,E, ψ, φ) denote the shape hierarchy, whereV = {v} andE = {(v, u)} ⊆
V × V are the sets of nodes and edges, andψ andφ are functions that assign attributes
to nodes,ψ : V→[0, 1]d, and to edges,φ : E→[0, 1]. Given two shapes,H andH ′, the
goal of the matching algorithm is to find the subgraph isomorphism,f :U→U ′, where
U⊆V andU ′⊆V ′, which minimizes the cost,C, defined as

C =
[

β
∑

v∈V c1(v, f(v)) + (1 − β)
∑

(v,u)∈E c2(v, f(v), u, f(u))
]

, (1)

wherec1 is a non-negative cost function of matching nodesv andv′ = f(v), andc2
is a non-negative cost function of matching edges(v, u) and(v′, u′), andβ ∈ [0, 1]
weights their relative significance to matching. To minimizeC, we introduce a vector,
X , indexed by all node pairs(v, v′)∈V×V ′, whose each elementxvv′∈[0, 1] encodes
the confidence that pair(v, v′) should be matched. Matching can then be reformulated
as estimatingX so thatC is minimized. That is, we use the standard linearization and
relaxation of (1) to obtain the following quadratic program(QP):

minX

[

βATX + (1 − β)XTBX
]

,
s.t. ∀(v, v′)∈V×V ′, xvv′≥0, ∀v′∈V ′,

∑

v∈V xvv′=1, ∀v∈V,
∑

v′∈V ′ xvv′=1,
(2)

whereA is a vector of costsavv′ of matching nodesv andv′, andB is a matrix of costs
bvv′uu′ of matching edges(v, u) and(v′, u′). We defineavv′ = 1

d
‖ψ(v) − ψ(v′)‖2,

whered is the dimensionality of the node attribute vector. Also, wedefinebvv′uu′ so
that matching edges of different types is prohibited, and matches between edges of the
same type with similar properties are favored in (2):bvv′uu′ = ∞ if edges(v, u) and
(v′, u′) are not of the same type; andbvv′uu′ = |φ(v, v′) − φ(u, u′)| ∈ [0, 1] if edges
(v, u) and(v′, u′) are of the same type.

The constraints in (2) are typically too restrictive, because of potentially large struc-
tural changes ofV or E in H that may be caused by relatively small variations of
certain shape parts. For example, supposeH andH ′ represent similar shapes. It may
happen that nodev in H corresponds to a subgraph consisting of nodes{v′1, . . . , v

′

m}
in H ′, and vice versa. Therefore, a more general many-to-many matching formulation
would be more appropriate for our purposes. The literature reports a number of heuris-
tic approaches to many-to-many matching [19–21], which however are developed only
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for weighted graphs, and thus cannot be used for our shape hierarchies that have at-
tributes on both nodes and edges. To relax the constraints in(2), we first matchH to
H ′, which yields solutionX1. Then, we matchH ′ toH , which yields solutionX2. The
final solution,X̃ , is estimated as an intersection of non-zero elements ofX1 andX2.
Formally, the constraints are relaxed as follows: (i)∀(v, v′) ∈ V×V ′, xvv′ ≥ 0; and
(ii) ∀v ∈ V,

∑

v′∈V ′ xvv′ = 1 when matchingH toH ′; and∀v′ ∈ V ′,
∑

v∈V xvv′ = 1
when matchingH ′ toH .
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Fig. 2.Convexification of costs{avv′}v′∈V ′ for each nodev ∈ V . Matching candidates ofv that
belong to the region of support of the lower convex hull,v′ ∈ V̆ ′(v), are marked red.

4.2 Convexification of the Objective Function of Matching

The QP in (2) is in general non-convex, and defines a matching space of typically104

possible node pairs in our experiments. In order to efficiently find a solution, we con-
vexify the QP. This significantly reduces the number of matching candidates.

GivenH andH ′ to be matched, for each nodev ∈ V of H , we identify those
matching candidatesv′ ∈ V ′ of H ′ that form the region of support of the lower convex
hull of costs{avv′}v′∈V ′ , as illustrated in Fig. 2. Let̆V ′(v) ⊂ V ′ denote this region
of support of the convex hull, and let̃V ′(v) ⊂ V ′ denote the set of true matches of
nodev that minimize the QP in (2) (i.e., the solution). Then, by definition, we have
that Ṽ ′(v) ⊆ V̆ ′(v), i.e., the true matches must be located in the region of support of
the convex hull. It follows, that for each nodev ∈ V , we can discard those matching
candidates fromV ′ that do not belong tŏV ′(v). In our experiments, we typically ob-
tain |V̆ ′(v)| ≪ |V ′|, which leads to a dramatic reduction of the dimensionality of the
original matching space,|V×V ′|.

In summary, we computĕA, X̆ , B̆ from originalA,X ,B, respectively, by deleting
all their elementsavv′ , xvv′ , bvv′uu′ for which v′ /∈ V̆ ′(v). Then, we use the standard
interior-reflective Newton method to solve the following program:

min
X̆

[

βĂT X̆ + (1 − β)X̆T B̆X̆
]

,

s.t. ∀(v, v′)∈V×V̆ ′(v), xvv′≥0, ∀v∈V,
∑

v′∈V̆ ′(v) xvv′=1.
(3)

5 Results

This section presents the experimental evaluation of our approach on the standard MPEG-
7 and Brown shape datasets [12]. MPEG-7 has 1400 silhouette images showing 70 dif-
ferent object classes, with 20 images per object class, as illustrated in Fig. 3. MPEG-7
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presents many challenges due to a large intra-class variability within each class, and
small differences between certain classes. The Brown shapedataset has 11 examples
from 9 different object categories, totaling 99 images. This dataset introduces additional
challenges, since many of the shapes have missing parts (e.g., due to occlusion), and the
images may contain clutter in addition to the silhouettes, as illustrated in Figs. 1, 4, 5.
We use the standard evaluation on both datasets. For every silhouette in MPEG-7, we
retrieve the 40 best matches, and count the number of those that are in the same class as
the query image. The retrieval rate is defined as the ratio of the total number of correct
hits obtained and the best possible number of correct hits. The latter number is1400·20.
Also, for each shape in the Brown dataset, we first retrieve the 10 best matches, then,
check if they are in the same class as the query shape, and, finally, compute the re-
trieval rate, as explained above. Input to our algorithm consists of two parameters: the
fine-resolution level (approximation error defined in Sec. 3) of representing the contour,
andβ. For silhouettes in both datasets, and the approximation error (defined in Sec. 3)
equal to 1%, we obtain shape hierarchies with typically 50-100 nodes, maximum hi-
erarchy depths of 5-7, and maximum branching factors of 4-6.For every query shape,
the distances to other shapes are computed as the normalizedtotal matching cost,D,
between the query and these other shapes. IfX is the solution of our quadratic program-
ming, thenD=[βATX + (1−β)XTBX ]/[|V | + |V ′|], where|V | is the total number
of nodes in one shape hierarchy. Matching two shape hierarchies takes about 5-10sec in
MATLAB on a 3.1GHz, 1GB RAM PC.

Fig. 3. MPEG-7 retrieval results on three query examples and comparison with [6]. For each
query, we show 11 retrieved shapes with smallest to highest cost. (top) Results of [6]. (bottom)
Our results. Note that for deer we make the first mistake in 6thretrieval, and then get confused
with shapes whose parts are very similar to those of deer. Mistakes for other queries usually occur
due to missing to capture fine details of the curves in the shape hierarchy in our implementation.
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Fig. 4.The Brown dataset – each of the four columns shows one examplepair of silhouettes, and
each of the two rows shows shape parts at a specific scale that got matched; top row shows finer
scale and bottom row shows coarser scale. As can be seen, silhouettes that belong to the same
class may have large differences; despite the differences,corresponding parts got successfully
matched (each match is marked with unique color).

Fig. 5. The Brown dataset – two example pairs of silhouettes, and their shape parts that got
matched. The shapes belong to different classes, but the algorithm identifies their similar parts, as
expected (each match is marked with unique color). The normalized total matching cost between
the bunny and gen (left), or the fish and tool (right) is largerthan the costs computed for the
examples shown in Fig 4, since there are fewer similar than dissimilar parts. (β = 0.4)

Qualitative evaluation: Fig. 3 shows a few examples of our shape retrieval results
on MPEG-7. From the figure, our approach makes errors mainly due to the non-optimal
pre-setting of the fine-resolution level at which contours are represented by the shape
hierarchy. Also, some object classes in the MPEG-7 are characterized by multiple dis-
joint contours, whereas our approach is aimed at matching only one single contour at a
time. Next, Fig. 4 shows four example pairs of silhouettes from the same class, and their
matched shape parts. Similar shape parts at multiple scalesgot successfully matched in
all cases, as expected. Fig. 4 presents two example pairs of silhouettes that belong to
different classes. As in the previous case, similar shape parts got successfully matched;
however, since there are fewer similar than dissimilar parts the normalized total match-
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ing cost in this case is larger. This helps discriminate between the shapes from different
classes in the retrieval.

Quantitative evaluation: To evaluate the sensitivity of our approach to input pa-
rameterβ, we compute the average retrieval rate on the Brown dataset as a function of
inputβ = 0.1 : 0.1 : 0.9. The maximum retrieval rate of 99% is obtained forβ=0.4,
while forβ = {0.3, 0.5, 0.6}we obtain the rate of 98%. This suggests that both intrinsic
properties of shape parts and their spatial relations are important for shape matching,
and that our algorithm is relatively insensitive to small changes ofβ around0.4. How-
ever, as any hierarchical approach, ours also seems to be sensitive to the right choice of
the finest resolution at which the shape is represented. As mentioned above, different
values of this input parameter may result in large variations of the number of nodes in
the shape hierarchy, which, in turn, cause changes in computing the normalized total
matching cost. If the right choice is selected separately for each class of MPEG-7, us-
ing validation data, then we obtain the retrieval rate of88.3%. If this parameter is set
to 1%, as stated above, for all classes, then our performancedrops to84.3%. This is
comparable to the state of the art that achieves the rates of85.40% in [6] and87.70%
in [3]. Table 1 summarizes our retrieval rates on the Brown dataset after first top 1 to
10 retrievals, forβ = 0.4 and shape-resolution level fixed over all classes. Again, this
retrieval improves if we select a suitable value for the resolution parameter for each
class separately, using validation data.

Table 1.Retrieval results on the Brown dataset forβ = 0.4

Approaches1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
[12] 99 99 99 98 98 97 96 95 93 82
[6] 99 99 99 98 98 97 97 98 94 79
[3] 99 99 99 99 99 99 99 97 93 86

Our method99 99 98 98 98 97 96 94 93 82

6 Conclusion

Matching deformable shapes is difficult since they may be perceptually similar, but
have certain parts very different or even missing. We have presented an approach aimed
at robust matching of deformable shapes by identifying multiscale salient shape parts,
and accounting for their intrinsic properties, and part-ofand neighbor relationships.
Experimental evaluation of the proposed hierarchical shape representation and efficient
minimization via convexification of a quadratic matching cost has demonstrated that the
approach robustly deals with large variations of or missingparts of perceptually similar
shapes.
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