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Abstract. This paper presents an approach to matching parts of defiterslaapes.
Multiscale salient parts of the two shapes are first identifiehen, these parts
are matched if their immediate properties are similar, tmesholds recursively
for their subparts, and the same holds for their neighbatspdihe shapes are
represented by hierarchical attributed graphs whose ntidbutes encode the
photometric and geometric properties of correspondingspand edge attributes
capture the strength of neighbor and part-of interacti@t&/éen the parts. Their
matching is formulated as finding the subgraph isomorphisat minimizes a
guadratic cost. The dimensionality of the matching spadeamatically reduced
by convexifying the cost. Experimental evaluation on thadmnark MPEG-7
and Brown datasets demonstrates that the proposed appsaatiust.

1 Introduction

This paper is about shape matching by using: (1) a new hisiicshape representa-
tion, and (2) a new quadratic-assignment objective fundtiat is efficiently optimized
via convexification. Many psychophysical studies sugdest shape perception is the
major route for acquiring knowledge about the visual wod#l However, while hu-
mans are very efficient in recognizing shapes, this provésm#ienging task for com-
puter vision. This is mainly due to certain limitations insing shape representations
and matching criteria used, which typically cannot adegjyatddress matching of de-
formable shapes. Two perceptually similar deformable shapay have certain parts
very different or even missing, whereas some other partg siemilar. Therefore, ac-
counting for shape parts in matching is important. Howetés,not always clear how
to define a shape part. The motivation behind the work desdrib this paper is to
improve robustness of shape matching by using a rich hieiGakshape representation
that will provide access to all shape parts existing at alex; and by formulating a
matching criterion that will account for these shape pantstheir hierarchical proper-
ties.

We address the following problem: Given two shapes find spwadences between
all their parts that are similar in terms of photometric, getric, and structural prop-
erties, the same holds recursively for their subparts, h@dame holds for their neigh-
bor parts. To this end, a shape is represented by a hieratetticdbuted graph whose
node attributes encode the intrinsic properties of comrdjng multiscale shape parts
(e.g., intensity gradient, length, orientation), and edljgbutes capture the strength of
neighbor and part-of interactions between the parts. We formulate shape mafasn
finding the subgraph isomorphism that preserves the ofigirsggh connectivity and
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minimizes a quadratic cost whose linear and quadratic terwasunt for differences
between node and edge attributes, respectively. The cdefirged so as to be invariant
to scale changes and in-plane rotation of the shapes. Thehseahe matching space
of all shape-part pairs is accelerated by convexifying ti@dyatic cost, which also re-
duces the chances to get trapped in a local minimum. As owerarpnts demonstrate,
the proposed approach is robust against large variatiomslafidual shape parts and
partial occlusion.

Inthe rest of this paper, Sec. 2 points out main contribgtafrour approach with re-
spect to prior work, Sec. 3 describes our hierarchical ssprtion of a shape, Sec. 4.1
specifies node and edge compatibilities and formulates atechimg algorithm, Sec. 4.2
explains how to convexify and solve the quadratic progrard,®ec. 5 presents experi-
mental evaluation of our approach.

2 Our Contributions and Relationships to Prior Work

This section reviews prior work and points out our main cibotions. Hierarchical
shape representations are aimed at efficiently capturitigdiobal and local properties
of shapes, and thus facilitating their matching. Shortemwof existing representations
typically reduce the efficiency of matching algorithms. Ezample, the arc-tree [2, 3]
trades off its accuracy and stability for lower complexdiypce it is a binary tree, gener-
ated by recursively splitting the curve in two halves. Areets are different for similar
shapes with some part variations, which will be hard to matctother example is the
curvature scale-space [4, 5] that loses its descriptivespbw pre-specifying the degree
of image decimation (i.e., blurring and subsampling), @leépturing salient curvature
points of a contour at different degrees of smoothing. Alsalding the articulation-
invariant, part-based signatures of deformable shapesgepted in [6], is sensitive to
the correct identification of the shape’s landmark pointd tmthe multidimensional
scaling and estimating of the shortest path between theisgsp®ther hierarchical
shape descriptions include the Markov-tree graphical nsdd§ and the hierarchy of
polygons [8] that are based on the restrictive assumptiboatadhe number, size, and
hierarchy depth of parts that a curve consists of. The afergioned methods encode
only geometric properties of shape parts, and their partdafionships, yielding a strict
tree. In contrast, we use a more general, hierarchical gteitencodes the strength of
all ascendant-descendant and neighbor relationshipsebetshape parts, as well as
their geometric and photometric properties. The sensitiof the graph structure to
small shape variations is reduced, since we estimate theeshealient points at multi-
ple scales. Also, unlike in prior work, the number of nodegtt, and branching factor
in different parts of the hierarchical graph are data depahd

Graph-based shape matching has been the focus of sustaseatceh activity for
more than three decades. Graph matching may be performéi byploiting spectral
properties of the graphs’ adjacency matrices [9,10]; (iihimizing the graph edit-
distance [11, 12]; (iii) finding a maximum clique of the asation graph [13]; (iv) us-
ing the expectation-maximization of a statistical, getieeanodel [14]. Regardless of a
particular formulation, graph matching in general can kst aa a quadratic assignment
problem, where a linear term in the objective function ersaabde compatibility func-
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tions, and a quadratic term encodes edge compatibilitytimme. Therefore, approaches
to graph matching mainly focus on: (i) finding suitable defimis of the compatibil-
ity functions; and (ii) developing efficient algorithms fapproximately solving the
quadratic assignment problem (since it is NP-hard), iralgié suitable reformulation
of the quadratic into linear assignment problem. Howevestpopular approximation
algorithms (e.qg., relaxation labeling, and loopy beliedgagation) critically depend on
a good initialization and may be easily trapped in a localimim, while some (e.g.,
deterministic annealing schemes) can be used only for grafth a small number of
nodes. Graduated nonconvexity schemes [15], and suceessivexification methods
[16] have been used to convexify the objective function aefpgrmatching, and thus al-
leviate these problems. Since it is difficult to convexifytokang cost surfaces that are
not explicit functions, these methods resort to restrctigsumptions about the func-
tional form of a matching cost, or reformulate the quadrabfective function into a
linear program. In this paper, we develop a convexificatdreme that shrinks the pool
of matching candidates for each individual node in the stégrarchy, and thus renders
the objective function amenable to solution by a convex cataisolver.

3 Hierarchical Shape Representation

In this paper, a shape (also called contour or curve) is semted by a hierarchical
graph. We first detect the contour’s salient points at migltjgales, which in turn define
the corresponding shape parts. Then, we derive a hierarfcthese shape parts, as
illustrated in Fig. 1.

Multiscale part detection: A data-driven number of salient (or dominant) points
along the contour are detected using the scale-invarigotighm of [17]. This algo-
rithm does not require any input parameters, and remaiiabteleven when the shape
is rich in both fine and coarse details, unlike most existipgraaches. The algorithm
first determines, for each point along the curve, its cumeatund the region of support,
which jointly serve as a measure of the point’s relative ificgnce. Then, the dominant
points are detected by the standard nonmaximum suppre&sich pair of subsequent
dominant points along the shape define the correspondimegbart. The end points
of each shape part define a straight line that is taken to ajpate the part. We recur-
sively apply the algorithm of [17] to each shape part whoseciated line segment has
a larger approximation error than a pre-set threshold. Fhisshold controls the res-
olution level (i.e., scale) at which we seek to representtirgour’s fine details. How
to compute this approximation error is explained later is fection. After the desired
resolution level is reached, the shape parts obtainedfatelift scales can be organized
in a tree structure, where nodes and parent-child (dirgetédes represent the shape
parts and their part-of relationships. The number of nodieisth, and branching factors
of each node of this tree are all automatically determinethbyshape at hand.

Transitive closure: Small, perceptually negligent shape variations (e.g., ue
varying illumination in images) may lead to undesired, éasructural changes in the
shape tree (e.g., causing a tree node to split into multipteehdants at multiple lev-
els). Asin [18], we address these potential structural ghanf the shape tree by adding
new directed edges that connect every node with all of itsetegants, resulting in a
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transitive closure of the tree. Later, in matching, the sitire closures will allow that
a search for a maximally matching node pair is conducted aVdescendants under a
visited ancestor node pair, rather than stopping the seftioh ancestors’ children do
not match. This, in turn, will make matching more robust.

Fig. 1. An example contour: (left) Lines approximating the detdatentour parts are marked
with different colors. (right) The shape parts are orgashirea hierarchical graph that encodes
their part-of and neighbor relationships. Only a few aseatdlescendant and neighbor edges
are depicted for clarity.

Neighbors: Like other strictly hierarchical representations, thasitive closure of
the shape tree is capable of encoding only a limited degznipf spatial-layout proper-
ties of the shape parts. For example, it cannot distinguféérent layouts of the same
set of parts along the shape. In the literature, this prolflambeen usually addressed
by associating a context descriptor with each part. In thjsap, we instead augment the
transitive closure with new, undirected edges, captuitiegneighbor relationships be-
tween parts. This transforms the transitive closure of tiegs tree into a more general
graph that we call the shape hierarchy.

Node Attributes: Both nodes and edges of the shape hierarchy are attribubei N
attributes are vectors whose elements describe photamaetligeometric properties of
the corresponding shape part. The following estimates ireffefine the shape proper-
ties. We estimate the contour’s mean intensity gradiemt, L& this vector to identify
the contour’s direction — namely, the sequence of pointsgatbe shape — by the right-
hand rule. The principal axis of the entire contour is estadas the principal axis of
an ellipse fitted to all points of the shape. The attributetareof a node (i.e., shape
part) includes the following properties: (1) length as acpatage of the parent length;
(2) angle between the principal axes of this shape part anghitent; (3) approxima-
tion error estimated as the total area between the shapanmhits associated straight
line, expressed as a percentage of the area of the fittedesl(igh) signed approximation
error is similar to the approximation error except that italtarea between the shape
part and its approximating straight line is computed by aoting for the sign of the
intensity gradient along the shape; and (5) curvature atwbeend points of the shape
part. All the properties are normalized to bdin1].

Edge Attributes: The attribute of an edge in the shape hierarchy encodeg#mgtt
of the corresponding part-of or neighbor relationship.ggia directed edge between a
shape part and its descendant part, the attribute of thisisdtgfined as the percentage
that the length of the descendant makes in the length of dhygegpart. Thus, the shorter
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descendant or the longer ancestor, the smaller strendtieiointeraction. The attribute
of an undirected edge between two shape parts can be eith€, wbere 1 means that
the parts have one common end point, and 0 means that theaparist neighbors.

4 Shape Matching

Given two shapes, our goal is to identify best matching shmgrts and discard dis-
similar parts, so that the total cost is minimized. This destefined as a function of
geometric, photometric, and structural properties of tlacimed parts, their subparts,
and their neighbor parts, as explained below.

4.1 Definition of the Objective Function of Matching

Let H = (V, E, ¢, ¢) denote the shape hierarchy, whéte= {v} andE = {(v,u)} C

V' x V are the sets of nodes and edges, arahd¢ are functions that assign attributes
to nodesy : V—|0,1]¢, and to edges) : E—[0, 1]. Given two shapedy andH’, the
goal of the matching algorithm is to find the subgraph isorhmm, f:U—U’, where
UCV andU’CV’, which minimizes the cost;, defined as

C= 85 er 1o, f0) + (1= B) Ly uper (v F@)u, F)] @)

wherec; is a non-negative cost function of matching nodesndv’ = f(v), andcs

is a non-negative cost function of matching edges:) and (v’,v’), andg € [0, 1]
weights their relative significance to matching. To minieniz, we introduce a vector,
X, indexed by all node pair@, v')eV xV’, whose each element,, €[0, 1] encodes
the confidence that pafp, v’) should be matched. Matching can then be reformulated
as estimatingX so thatC' is minimized. That is, we use the standard linearization and
relaxation of (1) to obtain the following quadratic progré@®):

min x [ﬁATX +(1- ﬁ)XTBX] ,

S.t. V(0,0 )eEV XV 2y >0, Y€V, Y] ) Tpur=1, YWEV,) v Tywr =1, (2)

veV

whereA is a vector of costa,, of matching nodes andv’, andB is a matrix of costs
buyuw Of matching edgegv, u) and (v/,u’). We definea,,, = L[v(v) — (v')]|2,
whered is the dimensionality of the node attribute vector. Also, defineb,,, . SO
that matching edges of different types is prohibited, antthes between edges of the
same type with similar properties are favored in () .., = oo if edges(v,u) and
(v/,u') are not of the same type; abgy .. = |d(v,v') — é(u,v’)| € [0,1] if edges
(v,u) and(v’, u’) are of the same type.

The constraints in (2) are typically too restrictive, besaaf potentially large struc-
tural changes o/ or F in H that may be caused by relatively small variations of
certain shape parts. For example, supplisend H' represent similar shapes. It may
happen that node in H corresponds to a subgraph consisting of nogés. .., v/, }
in H', and vice versa. Therefore, a more general many-to-manghimat formulation
would be more appropriate for our purposes. The literatepents a number of heuris-
tic approaches to many-to-many matching [19-21], whichdwax are developed only
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for weighted graphs, and thus cannot be used for our shaparttiées that have at-
tributes on both nodes and edges. To relax the constrairf®y,inve first matchH to
H’, which yields solutionX;. Then, we matcti’ to H, which yields solutionXs. The
final solution, X, is estimated as an intersection of non-zero elemenf§;cind X5.
Formally, the constraints are relaxed as followsM{,v') € VxV’, z,, > 0; and
(i) Yo € V, 3" ey Towr = 1 When matchingd to H'; andve' € V7,3 Ty =1
when matchingd’ to H.

A1y’ 2v Aoy’
Dl s 4 Mu’wuf
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Fig. 2. Convexification of cost$a,. }.-<1 for each node € V. Matching candidates of that
belong to the region of support of the lower convex huflle V' (v), are marked red.

4.2 Convexification of the Objective Function of Matching

The QP in (2) is in general non-convex, and defines a matclpiagesof typically10*
possible node pairs in our experiments. In order to effigyeinid a solution, we con-
vexify the QP. This significantly reduces the number of maglcandidates.

Given H and H' to be matched, for each nodee V of H, we identify those
matching candidates € V' of H' that form the region of support of the lower convex
hull of costs{a,, } ey, as illustrated in Fig. 2. Le¥’(v) C V' denote this region
of support of the convex hull, and 18t (v) C V' denote the set of true matches of
nodewv that minimize the QP in (2) (i.e., the solution). Then, by digfin, we have
thatV’(v) C V'(v), i.e., the true matches must be located in the region of stipfo
the convex hull. It follows, that for each nodec V', we can discard those matching
candidates fron¥’ that do not belong td’’(v). In our experiments, we typically ob-
tain |V’ (v)| < |V’|, which leads to a dramatic reduction of the dimensionalitihe
original matching spac¢l xV’|.

In summary, we computd, X, B from original A, X, B, respectively, by deleting
all their element$,,’, Zyy, byyruw fOr whicho’ ¢ f/’(v). Then, we use the standard
interior-reflective Newton method to solve the followingpogram:

min [ﬁATX +(1- ﬁ))u(Tlv?)u(} , 3)
S.t. V(0,0)EV XV (1), 2pp>0, YoV, Zv'e\“//(v) Ty =1.

5 Results

This section presents the experimental evaluation of genageh on the standard MPEG-
7 and Brown shape datasets [12]. MPEG-7 has 1400 silhouedtgss showing 70 dif-
ferent object classes, with 20 images per object classluasrdted in Fig. 3. MPEG-7
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presents many challenges due to a large intra-class Vi#tsiakithin each class, and
small differences between certain classes. The Brown stiagset has 11 examples
from 9 different object categories, totaling 99 imagesstdtaset introduces additional
challenges, since many of the shapes have missing partsdieego occlusion), and the
images may contain clutter in addition to the silhouettes|lastrated in Figs. 1, 4, 5.
We use the standard evaluation on both datasets. For elleoysite in MPEG-7, we
retrieve the 40 best matches, and count the number of thasarthin the same class as
the query image. The retrieval rate is defined as the ratibeofdtal number of correct
hits obtained and the best possible number of correct Hitslatter number i$400- 20.
Also, for each shape in the Brown dataset, we first retriegelth best matches, then,
check if they are in the same class as the query shape, anit, fotampute the re-
trieval rate, as explained above. Input to our algorithmségia of two parameters: the
fine-resolution level (approximation error defined in S§@f3epresenting the contour,
andg. For silhouettes in both datasets, and the approximatiam @tefined in Sec. 3)
equal to 1%, we obtain shape hierarchies with typically BO-fiodes, maximum hi-
erarchy depths of 5-7, and maximum branching factors of Be6 every query shape,
the distances to other shapes are computed as the norm@liaéchatching costD,
between the query and these other shapés.iffthe solution of our quadratic program-
ming, thenD=[3AT X + (1-8)XTBX]/[|V| + |V'|], where|V| is the total number
of nodes in one shape hierarchy. Matching two shape hidemrtdkes about 5-10sec in
MATLAB on a 3.1GHz, 1GB RAM PC.
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Fig. 3. MPEG-7 retrieval results on three query examples and casgrawith [6]. For each
query, we show 11 retrieved shapes with smallest to higleest (top) Results of [6]. (bottom)
Our results. Note that for deer we make the first mistake irréttieval, and then get confused
with shapes whose parts are very similar to those of deetakiis for other queries usually occur
due to missing to capture fine details of the curves in theesh#rarchy in our implementation.
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Fig. 4. The Brown dataset — each of the four columns shows one exgraplef silhouettes, and
each of the two rows shows shape parts at a specific scaledhatagched; top row shows finer
scale and bottom row shows coarser scale. As can be seeyddiies that belong to the same
class may have large differences; despite the differercmgsesponding parts got successfully
matched (each match is marked with unique color).

Fig. 5. The Brown dataset — two example pairs of silhouettes, anid shape parts that got
matched. The shapes belong to different classes, but thatalg identifies their similar parts, as
expected (each match is marked with unique color). The niiwethtotal matching cost between

the bunny and gen (left), or the fish and tool (right) is lartfean the costs computed for the
examples shown in Fig 4, since there are fewer similar thesiilar parts.§ = 0.4)

Qualitative evaluation: Fig. 3 shows a few examples of our shape retrieval results
on MPEG-7. From the figure, our approach makes errors mairdyathe non-optimal
pre-setting of the fine-resolution level at which contoues @presented by the shape
hierarchy. Also, some object classes in the MPEG-7 are cteiaed by multiple dis-
joint contours, whereas our approach is aimed at matchihgame single contour at a
time. Next, Fig. 4 shows four example pairs of silhouetteafthe same class, and their
matched shape parts. Similar shape parts at multiple sgatessiccessfully matched in
all cases, as expected. Fig. 4 presents two example paiibhofisttes that belong to
different classes. As in the previous case, similar shaps gat successfully matched;
however, since there are fewer similar than dissimilargi#e normalized total match-
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ing cost in this case is larger. This helps discriminate betwthe shapes from different
classes in the retrieval.

Quantitative evaluation: To evaluate the sensitivity of our approach to input pa-
rameters3, we compute the average retrieval rate on the Brown datasefunction of
input3 = 0.1 : 0.1 : 0.9. The maximum retrieval rate of 99% is obtained f£0.4,
while for 8 = {0.3, 0.5, 0.6} we obtain the rate of 98%. This suggests that both intrinsic
properties of shape parts and their spatial relations apeitant for shape matching,
and that our algorithm is relatively insensitive to smalobes of3 around0.4. How-
ever, as any hierarchical approach, ours also seems to dig\seto the right choice of
the finest resolution at which the shape is represented. Adiomed above, different
values of this input parameter may result in large variatiofithe number of nodes in
the shape hierarchy, which, in turn, cause changes in congptite normalized total
matching cost. If the right choice is selected separatalgéezh class of MPEG-7, us-
ing validation data, then we obtain the retrieval rat8®£3%. If this parameter is set
to 1%, as stated above, for all classes, then our performdmoges to84.3%. This is
comparable to the state of the art that achieves the rat®s43% in [6] and87.70%
in [3]. Table 1 summarizes our retrieval rates on the Browtasket after first top 1 to
10 retrievals, for3 = 0.4 and shape-resolution level fixed over all classes. Agais, th
retrieval improves if we select a suitable value for the hatsan parameter for each
class separately, using validation data.

Table 1. Retrieval results on the Brown dataset fbe= 0.4

Approacheglst 2nd|3rd|4th| 5th| 6th| 7th| 8th| 9th| 10th
[12] 99| 99(99(98|98|97|96|95|93| 82
[6] 99|99(99(98|98|97|97|98|94| 79
[3] 99(99(99|99(99|99(99|97|93| 86
Our method99| 99|98(98(98|97|96|94|93| 82

6 Conclusion

Matching deformable shapes is difficult since they may begmually similar, but
have certain parts very different or even missing. We hagsgted an approach aimed
at robust matching of deformable shapes by identifying iseate salient shape parts,
and accounting for their intrinsic properties, and pargntl neighbor relationships.
Experimental evaluation of the proposed hierarchical smiapresentation and efficient
minimization via convexification of a quadratic matchingtioas demonstrated that the
approach robustly deals with large variations of or misgiags of perceptually similar
shapes.
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