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Abstract

Given an arbitrary image, our goal is to segment all dis-
tinct texture subimages. This is done by discovering distinct,
cohesive groups of spatially repeating patterns, called tex-
els, in the image, where each group defines the correspond-
ing texture. Texels occupy image regions, whose photomet-
ric, geometric, structural, and spatial-layout properties are
samples from an unknown pdf. If the image contains texture,
by definition, the image will also contain a large number of
statistically similar texels. This, in turn, will give riseto
modes in the pdf of region properties. Texture segmenta-
tion can thus be formulated as identifying modes of this pdf.
To this end, first, we use a low-level, multiscale segmenta-
tion to extract image regions at all scales present. Then, we
use the meanshift with a new, variable-bandwidth, hierar-
chical kernel to identify modes of the pdf defined over the
extracted hierarchy of image regions. The hierarchical ker-
nel is aimed at capturing texel substructure. Experiments
demonstrate that accounting for the structural propertiesof
texels is critical for texture segmentation, leading to com-
petitive performance vs. the state of the art.

1. Introduction

Images generally consist of distinct parts representing
different surfaces in the scene. Surfaces made of an op-
tically homogeneous material and under smoothly varying
illumination give rise to image parts with a smooth variation
of image brightness, referred to as non-texture subimage. In
contrast, surfaces with discontinuities in depth, material, il-
lumination, etc., give rise to texture subimages. The spatial
variation of intensity in each image part contains different
information about the scene, often requiring different types
of algorithms to be invoked on these parts. Depending on
its purpose, an algorithm may apply to either texture or non-
texture subimages, or both. For example, if a surface in the
scene gives rise to the texture subimage it may be better
to estimate the surface’s shape by shape-from-texture algo-
rithms than by shape-from-shading methods. Also, in or-

der for image smoothing and compression algorithms to be
applicable to the entire image they should account for dif-
ferences among textured and non-textured image parts, and
adjust their parameters accordingly.

This paper is about texture segmentation, i.e., delineat-
ing the boundaries of all distinct texture subimages in an
arbitrary image. The discovered boundaries will automati-
cally delineate the remaining, non-texture image parts. Ifall
distinct texture and non-texture image parts have been iden-
tified, then the decision as to which higher-level algorithms
need to be invoked on which parts will become easier.

A texture may be coarse. In this case, it is characterized
by a spatial repetition of texture elements – 2D patterns,
called texels – within the image area occupied by the tex-
ture [11, 2, 15, 28, 16, 18, 20, 12, 19, 3]. Alternatively,
the texture surface in the scene and imaging conditions may
be such that the texels appear with pixel or subpixel sizes.
In this case, the texture subimage has fine granularity with
a relatively high degree of pixel-level noise. This makes
such fine-granularity texture subimages appear more simi-
lar to non-texture image parts than to coarse-texture ones.In
this paper, we focus on segmenting distinct coarse-texture
subimages, where pixels form local, distinct clumps cor-
responding to texels. After identifying these textures, the
remaining parts of the image will correspond to non-texture
and fine-granularity-texture subimages.
The Problem: Texels in natural scenes, in general, are
not identical, and their spatial repetition is not strictlype-
riodic. Instead, texels are only statistically similar to one
another, and their placement along a surface is only statis-
tically uniform. Also, texels are not homogenous-intensity
regions, but may contain hierarchically embedded structure.
Therefore, image texture can be characterized by a probabil-
ity density function (pdf) governing the (natural) statistical
variations of the following texel properties: (1) geometric
and photometric – referred to as intrinsic properties (e.g.,
color, area, shape); (2) structural; and (3) relative orienta-
tions and displacements of texels – referred to as placement.
The Rationale: Given an image, suppose we used a low-
level, multiscale segmentation to identify homogeneous-
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intensity regions at all photometric scales present. A subset
of these regions may be texels, subtexels or groups of tex-
els, while some other regions may not be part of any texture.
Each region is characterized by certain intrinsic properties,
and spatial layout properties relative to other regions. These
properties can be used to define a descriptor vector of each
region. If the underlying joint pdf of these descriptors con-
tains a mode, this means that the image contains many sta-
tistically similar regions that belong to that mode. In turn,
if these similar regions belong to a certain, cohesive subim-
age, then, by definition, they can be interpreted as texels,
and the subimage can be taken as texture. It follows that
detection of texture subimages can be formulated as identi-
fying modes of the pdf of region descriptors. Since the pdf
is defined in terms of regions, detecting the mode simultane-
ously identifies texels, and the corresponding texture subim-
age. The rest of the image consists of other homogeneous
regions that do not belong to any coarse texture, and is said
to be non-texture and fine-granularity texture image parts.

Contributions: As discussed in the next section, most re-
lated work assumes that textures have deterministic texels
with nearly periodic placement, and that size and place-
ment of texels are uncorrelated [18, 12, 21, 19]. A few ap-
proaches allow statistical variations in texel properties, but
using restrictive models and computationally intensive in-
ference algorithms [30]. In contrast, we do not make any as-
sumptions about the functional form of intrinsic and place-
ment properties of texels.Both appearance and placement
of texels are allowed to be stochastic and correlated.For
such textures, we propose unsupervised texture segmenta-
tion based on identifying the pdf modes of image regions.
Most prior work on pdf mode detection does not account
for hierarchical relationships between data points [26, 8, 7].
However, since texels typically contain substructure, cap-
turing structural properties of regions is critical for identify-
ing texture. To detect the pdf modes, we propose to modify
and use the meanshift algorithm [8, 7]. Unlike the original,
our new formulation is able to explicitly account for any
presence of hierarchical embedding of subtexels within the
texels. To this end, we define a new hierarchical kernel in
terms of region-subregion hierarchical properties. The new
kernel also has a locally-varying bandwidth. This variable
bandwidth is estimated by partitioning the feature space of
region descriptors into Voronoi polytopes. To the best of
our knowledge, texture segmentation under relatively un-
restricted assumptions about statistical properties of texels,
and the mentioned novel aspects of the structure-extracting
meanshift have never been reported in the literature.

Overview of Our Approach: The block diagram of our
approach is shown in Fig.1. (1) A multiscale segmentation
algorithm is used to extract homogeneous-intensity regions
at all photometric scales present. The multiscale segmen-
tation does not impose any constraints on region shapes,

input image pdf mode detection on

region descriptors 

texture segmentation

Figure 1. Our approach: A low-level segmentation partitions the
image into regions, each characterized by a descriptor vector of
region properties. The descriptors are viewed as samples from an
unknown pdf. Modes of the pdf are identified using a new mean-
shift that explicitly accounts for structural properties of regions.
This amounts to texture segmentation (our results marked white).

sizes, contrasts, and topological contexts. Each region thus
obtained is characterized by a descriptor vector of intrinsic
and spatial-layout properties (e.g., color, area, shape, loca-
tion). (2) The meanshift is used to estimate modes of the pdf
over the region descriptors. For the meanshift, we derive
a new hierarchical kernel with locally adaptive bandwidth.
The bandwidth is estimated via binning the feature space
of region descriptors. The bins represent Voronoi polytopes
around each descriptor. (3) The set of descriptors (i.e., re-
gions) visited by all meanshift procedures converging to one
of the identified modes, automatically delineates the associ-
ated texture subimage.

The paper is organized as follows. Sec.2 reviews prior
work. Sec.3 describes the feature space of region proper-
ties. Sec.4 specifies our pdf mode estimation. Experiments
and concluding remarks are presented in Sec.5 and Sec6.

2. Relationships to Prior Work

This section reviews prior work in texture modeling and
segmentation. Methods that explicitly encode texel prop-
erties in their models of texture typically use the following
texel representations: (a) salient blobs [28, 5]; (b) interest
points within texels [18, 12, 21]; (c) combination of interest
points and Canny edges [25]; or (d) user-specified templates
and filter functions [17, 30, 27, 19]. In contrast, we use seg-
ments that facilitate delineating the exact texel boundaries,
and thus accurate identification of texel regions. Julesz and
his colleagues [15] have argued the use of special features
called textons (e.g., closure, line endpoints, corners) for tex-
ture modeling. There have been several attempts to mathe-
matically define the notions of textons and texels. In [30],
for example, texture is modeled as a superposition of Ga-
bor base functions which are generated by a user-specified
vocabulary of texton templates. The region-based, hierar-
chical texel model of [3] encodes only the intrinsic proper-
ties of texels. In contrast to this approach, we additionally
consider the modeling of texel placement properties.

Regarding texel placement, most approaches make the
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assumption that texels form a (near-)regular lattice in the
image[12, 19, 20]. They identify texel locations by search-
ing for the most likely affine transform that may have dis-
torted the ideal 2D lattice of texels. Some methods allow
random placement of texels, based on random tessellations
[24], or based on representing texels as points and then
tracking similar points within heuristic pixel neighborhoods
[17]. Work on modeling the placement of random closed
sets in a plane (e.g., objects in the image) as the Poisson
process, i.e., the “dead leaves” model (DL) [2, 16] is also
related. However, texel orientations and relative displace-
ments typically have spatially larger dependencies than the
Poisson process, being memoryless, is capable of capturing.
In addition, the DL regards the pdf of object sizes and the
pdf of object locations in the image as being independent,
which may not be, in general, justified for modeling texture.

Most prior work on texture segmentation does not ac-
count for intrinsic and spatial layout properties of texels.
For example, filter-based statistical methods typically com-
pute filter responses over heuristically defined pixel neigh-
borhoods. This, in turn, may lead to mixing the statistics of
neighboring texture segments [13, 29], or confusing strong
responses in the direction of the boundary edge with the
texture response [22]. This is because they perform neigh-
borhood operations, whose results, in general, vary with the
location of the neighborhood within the texel and with re-
spect to the texel boundary. Consequently, filter-based tex-
ture segmentation often results in missing or hallucinating
texture segments. Adaptive-scale filtering [6] only partially
solves this problem, because some textures cannot be char-
acterized by a single scale, especially when texels them-
selves are textured, as commonly encountered in real im-
ages. A multiscale aggregation of filter responses and shape
elements [10], or hierarchical clustering of image segments
and texture descriptors[9] reduces, but does not eliminate
the aforementioned issues. Texture segmentation using ac-
tive contours requires that at least one image texture must
be present in the image [14], which we here relax.

3. The Feature Space of Region Properties

This section presents our Step 1. Since, in general, texels
are not homogenous-intensity regions, but contain hierar-
chically embedded structure, their representation shouldbe
hierarchical [3]. Access to such image structure is provided
by a strictly hierarchical, multiscale segmentation algorithm
that partitions the image over a range of photometric scales
(i.e., contrasts) [1, 4]. At each scale, the pixel-intensity
variations within each region are smaller than those across
the region boundary at each scale. The algorithm guar-
anties that regions obtained at lower contrasts will strictly
merge into larger regions as the photometric scale increases.
Therefore, the output of the segmenter is a hierarchy of re-
cursively embedded smaller regions within the larger ones,

called segmentation tree. Note that the segmenter produces
regions of various sizes. Since texels cannot occupy rela-
tively large image areas (otherwise they will not occur in
large numbers), we discard all large-size regions (> 50%
of image size). The remaining regions are our basic image
features corresponding to subtexels, texels, groups of texels,
textures, and other subimages.

A descriptor vector of propertiesxi is associated with
each image regioni. We definexi to contain the follow-
ing intrinsic and spatial-layout properties: 1) average con-
trast acrossi’s boundary; 2) area, excluding the total area
of i’s embedded children regions; 3) standard deviation of
i’s children areas; 4) displacement vector between the cen-
troids of i and its parent region; 5) perimeter ofi’s bound-
ary; 6) aspect ratio of the intercepts ofi’s principal axes
with the i’s boundary, where the principal axes are esti-
mated by standard ellipse fitting toi, i.e., as eigenvectors of
the covariance matrix of the second central shape moments
of i; 7) orientation, measured as the angle between the ma-
jor principal axis ofi and the x-axis of the image; and 8)
(x,y) coordinates of the centroid ofi. The descriptors of all
regions in the image are input to the standard PCA, and the
most representative (95% accuracy) subspace is used as the
feature space of region descriptors.

Unlike in [3], where the objective is texel recognition
despite changes in scale and orientation, our goals are dif-
ferent, and thus we specify the region descriptor in terms of
properties that are not scale and rotation-in-plane invariant.
Specifically, we seek to segment a single image based on
distinct textures present, whose perception and discrimina-
tion critically depend on a degree of texel variations. Any
invariance to scale and rotation may in general lead to con-
fusing distinct textures as being identical.

The descriptors,xi, i=1, . . ., N , define data points in the
feature space of region properties. GivenN descriptors, our
objective is to estimate modes of their underlying pdf,f(x).

4. Voronoi-based Binned Meanshift

This section presents our Step 2 that introduces two mod-
ifications to the meanshift: (i) Variable-bandwidth Gaussian
kernel, and (ii) New hierarchical kernel that uses (i). These
modifications will allow us to explicitly account for struc-
tural properties of texels, which is beyond the scope of the
original meanshift formulation [8, 7]. We begin by review-
ing the meanshift algorithm.

4.1. Technical Rationale

The meanshift procedure starts from a random point in
the feature space,y1, and then visits a sequence of points
{yt}, t=1, 2, . . ., whereyt+1 = yt + m(yt), andm(yt)
is the meanshift vector pointing along the density gradient.
The meanshift procedure is usually run in parallel, starting
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simultaneously from many data points. The sequence{yt}
is shown to converge to a stationary point. All points in the
feature space visited by the meanshift along the trajectories
toward the local maximum are taken to belong to the corre-
sponding pdf mode.

One of the limitations of the original meanshift formu-
lation is that it uses the fixed bandwidth kernel, chosen
so as to globally balance the estimator bias and variance.
Due to the sparseness of data in higher dimensions, how-
ever, multivariate neighborhoods are generally empty, par-
ticularly in the “tails” of the density. As the dimension in-
creases, larger bandwidths are necessary to balance the es-
timator bias and variance. This in turn has negative effects
of over-smoothing the density near its modes. Varying the
amount of smoothing is widely regarded as a suitable solu-
tion in feature spaces with low to moderate dimensions. The
meanshift can be improved by using a multivariate, sample-
point estimator [8, 7]

f̂S(x) = 1
N

∑N
i=1 KHi(x − xi), (1)

whereHi,H(xi) is a varying smoothing matrix associ-
ated with each sample pointxi, and whereKHi(x−xi) is
a Gaussian kernel with meanxi and covarianceHi. In [8],
Hi is defined to be isotropic, and only a function of the
true density atxi, Hi∝f(xi)

−1/2I, whereI is the iden-
tity matrix, while many other characteristics off(x) (e.g.,
curvature) are ignored. Also, the estimate off(x) is not
readily available, since the meanshift estimates the gradient
of f(x). In [7], statistically stable Gaussian-mixture modes
are estimated using a range of fixed bandwidths.

While we retain the assumption thatKHi(·) is Gaussian,
in the sequel, we derive a new expression for the optimal
Hi that is anisotropic, unlike in [8], and we relax the as-
sumption of [7] that a mode is Gaussian. We also derive a
hierarchical Gaussian kernel for capturing hierarchical rela-
tionships between region descriptors.

4.2. The New Variable-Bandwidth Matrix

Binned sample-point estimator (BSPE):We partition the
feature space, defined in Sec3, in a number of bins,Bj ,
j=1, . . ., M , with volume|Bj |. Then, we compute a repre-
sentative of each bin,bj , and use BSPE:

f̂B(x) = 1
N

∑M
j=1 njKHj (x − bj), (2)

whereHj,H(bj), KHj (·) is Gaussian, andnj is the num-
ber of region descriptors injth bin. Before we derive the ex-
pression forHj, we first show that our BSPE based mean-
shift converges to a stationary point. Note that an estimate
of the gradient off(x) is the gradient of̂fB(x)

∆f̂B(x)= 1
N

∑M
j=1 njH

−1
j (bj − x)KHj (x − bj). (3)

Following the derivation steps presented in [7], we intro-
duce the auxiliary mean bandwidth matrix

H̄(x)−1 ,
∑M

j=1

njKHj
(x−bj)

PM
j′=1

nj′KH
j′

(x−bj′ )
H−1

j , (4)

which immediately gives the expression of the variable-
bandwidth meanshift vector (see [7] for details)

mB(x) , H̄(x)∆f̂B(x)/f̂B(x) . (5)

From (5), the magnitude ofmB(x) becomes larger where
data are scarce (i.e. tails and valleys), and smaller near
modes, as desirable. SinceKHj(·) is Gaussian with a
convex and monotonic decreasing profile, from the theo-
rem presented in [8], it immediately follows that the mean-
shift procedure, explained in Sec.4.1, that uses ourmB(x),
given by (5), converges to a stationary point.

The following theorem states how to compute the op-
timal anisotropic matricesHj, given a partitioning of the
feature space intoM bins, Bj , j=1, . . ., M . This result
will be used in (2)-(5) to run the meanshift. We deriveHj ,
under the assumption thatf(x) can be approximated by a
function that is piece-wise constant in each bin. This as-
sumption seems reasonable if the bins are sufficiently small
in the areas of the feature space with high values off(x).
As we will show, our partitioning of the feature space satis-
fies this condition.

Theorem: If we are given: a partition of the feature space
into binsBj , j=1, . . ., M , representative vectorsbj of each
bin, and a neighborhood system of the bins,η(j) = {i :
(bi, bj)∈Neighbors}, and if

∫

Bj
f(x)dx ≈ f(bj)|Bj |, then

the optimalHj used in (2) and (3), is given by

Hj=
X

i∈η(j)

3f(bi)|Bi|

f(bj)|Bj |+
X

i′∈η(j)

f(bi′)|Bi′ |
(bi−bj)(bi−bj)

T
,

(6)

Proof: See Appendix.
The above theorem states thatHj of jth bin should be

computed as a weighted mean of the covariances between
bj and the representatives of neighboring binsbi, i∈η(j).
It can be shown that when usingHj given by (6) the es-
timation bias decreases and the estimation covariance re-
mains the same in comparison with the case when a fixed-
bandwidth kernel is used.

Consistent with our assumption that the bins are suffi-
ciently small in the feature-space areas of high density, we
expect very small variations inf(x) across the neighboring
bins. This allows us to simplify the expression in (6) as

Hj ≈
∑

i∈η(j)

3|Bi|

|Bj |+
∑

i′∈η(j) |Bi′ |
(bi−bj)(bi−bj)

T . (7)
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We use the expression in (7) to computeHj for every bin
j=1, . . ., M , which is then plugged in (2)-(5) in order to
run the meanshift procedure, explained in Sec.4.1. Next,
we explain our approach to partitioning the feature space
into bins which satisfy the conditions of the above theorem.

Definition of bins: To partition the feature space, we
use the Voronoi diagram of region descriptors{xi},
i=1, . . ., N , defined in Sec.3. The Voronoi dia-
gram associates with each descriptorxi a polytope
Bi which is defined by all pointsx in the feature
space closer toxi than to any other pointxj, j 6=i,
Bi,{x:x∈R

d, ∀j 6=i, ‖xj−x‖>‖xi−x‖}. Thus, for any
nondegenerate distribution of data, the Voronoi diagram tes-
sellates the feature space into a set of polytopesBi, each
containing exactly one of the descriptors. Two Voronoi
polytopes that share a part of their boundaries are called
neighbors. ForN descriptors, complexity of computing the
Voronoi diagram isO(N log N).

For our purposes, the Voronoi polytopes are a good
choice to define bins in the feature space, since they capture
the global layout of and mutual relationships between the
region descriptors. For example, size of the Voronoi poly-
topes is large in areas where the descriptors are sparse, and,
conversely, size of the polytopes is small in densely popu-
lated areas. Also, the Voronoi diagram provides a natural
definition of the neighborhood system of the bins, which
does not require any thresholds on distances between the
points, or any other input parameters.

In this paper, the representative of each bin is equal to
the descriptor generating that bin,bi = xi, i = 1, . . ., N
(M=N ). Note that this does not make equations (1) and (2)
equal, since they use different bandwidth matrices. Specif-
ically, (2) uses the optimal, anisotropic bandwidth, defined
by the Voronoi neighborhood system.

4.3. The Hierarchical Kernel

In the previous section, we have shown that the use of the
Gaussian kernel with the optimalHj, given by (6), yields
the meanshift procedure that converges. Below, we define
a hierarchical kernel,Kh

Hj
(·), which can be used in the

meanshift instead of the Gaussian one,Kg
Hj

(·). The mo-
tivation for using a hierarchical kernel is that texels, in gen-
eral, are not homogenous-intensity regions, but may contain
hierarchically embedded subregions. Therefore, the use of
Kh

Hj
(·) may yield a more accurate estimation of modes of

f(x). Since region descriptors represent image regions, we
can define hierarchical relationships between the descrip-
tors based on the embedding of corresponding smaller re-
gions within larger regions in the image. Formally, each de-
scriptorxi defines a tree-structured graph of descriptorsxk

corresponding to subregionsk embedded within regioni in
the image. These hierarchical relationships can be extended

between any two arbitrary pointsx and x′ in the feature
space, which do not correspond to any particular regions
in the image. To this end, we use our Voronoi partitioning
of the feature space. Specifically, supposex belongs toBi,
andx′ belongs toBj , then the hierarchical relation between
anyx andx′ is equivalent to that between the descriptors
xi andxj . This extension allows us to use the hierarchical
kernel,Kh

Hj
(·), on all points in the feature space.

Given thatx is in bin Bi, we computeKh
Hj

(x − xj)
by finding the maximum subtree isomorphism between two
trees rooted atxi andxj as

Kh
Hj

(x−xj),Kg
Hj

(x−xj)max
Mij

∏

(k,l)∈Mij

Kg
Hl

(xk−xl)

︸ ︷︷ ︸

‖

,

minMij

∑

(k,l)∈Mij
(xk−xl)

T H−1
l (xk−xl).

(8)
where mappingMij includes the matching descendant sub-
regionsk andl embedded within their respective ascendant
regionsi andj in the image. To compute (8), we use the
standard tree matching algorithm described in [3], whose
complexity isO(n2) in the number of nodesn in trees.

SinceKh
Hj

(·) is computed as a product of Gaussians,

it is straightforward to see thatKh
Hj

(·) has a convex and
monotonic decreasing profile. From the theorem presented
in [8], it immediately follows that the meanshift procedure,
explained in Sec.4.1, that usesKh

Hj
(·) in (2)-(5) converges

to a stationary point.

5. Experimental Evaluation

This section presents our quantitative and qualitative
evaluation on four datasets: (1) 100 collages of randomly
mosaicked, 111 distinct Brodatz textures, where each tex-
ture occupies at least 1/6 of the collage (Fig.2); (2) 180
collages of randomly mosaicked, 140 distinct Prague tex-
tures from 10 thematic classes (e.g., flowers, plants, rocks,
textile, wood, etc.), where each texture occupies at least 1/6
of the collage (Fig.3, 4); (3) 100 Aerial-Produce images,
where 50 aerial images show housing developments, agri-
cultural fields, and landscapes (Fig.5), and 50 images show
produce aisles in supermarkets (Fig.5); (4) Berkeley seg-
mentation dataset (Fig.6, 7, fig:Comparison1). Datasets (1)
and (2) provide ground truth texture segmentations. The
texture mosaics of both datasets (1) and (2) are challeng-
ing for segmentation, because they contain complex layout
topologies of subimages occupied by texture (e.g., bound-
aries of several regions meet at one point). The Prague
dataset verifies our performance over a wide range of tex-
ture types, imaged under variations in scale, rotation, and
illumination. Aerial-Produce and Berkeley present many
well-known challenges of real images. Quantitative evalua-
tion on Berkeley dataset is impossible, since its annotation
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(a) Our results (b) Detail from (a) (c) Results of [8] (d) Results of [7]

Figure 2. Segmentation results on a collage of Brodatz textures. The identified texture boundaries are marked black and overlaid on the
original image. The algorithms of [8] and [7] use variable bandwidth kernels, but do not account for structural properties of regions. In
contrast, we do so by using the hierarchical kernel. The comparison on this collage suggests that this is a critical factor for successful
texture segmentation. We succeed in delineating the texture boundaries even when several boundaries meet at a point.

Table 1. Unsupervised texture segmentation on Prague dataset
CS OS US ME NE

[8] 15.13% 23.87% 10.58% 50.31% 51.36%
[9] 56.37% 11.93% 19.79% 11.55% 10.29%

Our results 59.13% 10.89% 18.79% 10.45% 9.93%

is only for object segmentation. Other common datasets,
e.g., KTH-TIPS containing only random-pixel-field tex-
tures, CUReT containing only 3D textures, and PSU con-
taining only near-regular textures, are aimed at testing dif-
ferent aspects of texture analysis that are beyond our scope.
Quantitative evaluation – Brodatz: Let G denote the area
of true texture, andD denote the area of a subimage that
our approach segments. Segmentation error per texture,ε,
is estimated asε = XOR(G,D)

Union(G,D) . Averaged over all mo-
saic parts, and over all 100 collages of Brodatz textures,
we obtainε̄ = 93.3% ± 3.7. Next, we evaluatēε when
the meanshift kernel is not hierarchical, but simply Gaus-
sian that uses the variable bandwidth matrix, given by (7),
and immediate properties of the sample points. This tests
the effect of explicitly accounting for structural properties
of regions vs. ignoring them. When the kernel is not hi-
erarchical,̄ε reduces to77.9% ± 4.1. Using the meanshift
algorithm of [7], with a non-hierarchical kernel, in the same
feature space, reducesε̄ to 62.3%± 7.8. This indicates that
the Gaussian kernel that uses our variable bandwidth ma-
trix, given by (7), gives better meanshift performance than
the kernel presented in [7].
Quantitative evaluation – Prague: The standard metrics
for evaluating texture segmentation on Prague dataset are:
correct-, over-, and under-segmentation (CS, OS, US), and
missed and noise error (ME, NE), among others. Using
the above definitions ofG and D, D is declaredCS iff
G∩D≥0.75G andG∩D≥0.75D. OS (or US) counts ev-
ery G (D) that is split into smaller regionsD (G). ME (or
NE) counts everyG (D) that does not belong toCS, OS,

andUS. It is desired thatCS is large and the remaining
metrics small. In Tab.1, we show comparison on Prague
dataset with standard meanshift [8], and the state-of-the-art
unsupervised texture segmentation [9]. The latter approach
uses color and the standard covariance matrix as a texture
descriptor. We do not use color information, but intensity
contrasts. As can be seen, we outperform both approaches.
All steps of our approach, starting from a low-level seg-
mentation to texture segmentation, take about 5min for a
512×512 Prague texture mosaic, in MATLAB on a 3.1GHz,
2GB RAM PC.
Qualitative Evaluation: As can be seen in Figs.2–8,
we succeed in delineating texture boundaries even when
they form complex-layout topologies. Filter-based meth-
ods, or approaches based on image decimation and smooth-
ing would typically fail to accurately delineate topologically
complex spots in which several texture boundaries meet.
Our texture segmentation is also successful on real-world
images shown in Figs.5–7. For instance, despite using a
low-level segmenter for feature extraction, our algorithmis
not affected by abrupt changes in illumination or shadows
(see the fish’s fin in Fig.6), because we use the intrinsic and
placement properties of texels that are invariant to a wide
range of local and global illumination changes. We illus-
trate comparison with [9] on Prague and Berkeley datasets
in Figs.3 and8, and [10] on Berkeley dataset in Fig.7. This
comparison suggests that we produce better segmentations
in terms of identifying perceptually more valid image tex-
tures. [10] does not report any quantitative results.

6. Conclusion

We have presented a texel-based approach to segment-
ing image parts occupied by distinct textures. This is done
by capturing intrinsic and placement properties of distinct
groups of texels. The scale or coarseness of texture is lower-
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Figure 5. Aerial-Produce images: our texture segmentationresults. Despite very similar colors of fruit on the leftmost image, and plants
on the rightmost image, we succeed in identifying perceptually valid textures, because we account for texel placement and substructure.
Color-based methods would find these examples challenging.

(a) (b) (c)

Figure 3. A mosaic from Prague dataset and segmentation results
overlaid on the original image. The results are obtained using:
(a) [9] without texture descriptors; (b) [9] with texture descriptors;
and (c) our approach.

(a) (b) (c)

Figure 4. (a) A mosaic from Prague dataset. (b) Results obtained
using [9] with texture descriptors. (c) Our results.

Figure 6. Examples from Berkeley dataset: the texture boundaries
identified by our approach are marked black and overlaid on the
original image.

bounded by the size of its texels. Since we define texels as
regions, we do not address pixel- or subpixel-scale textures.
Experimental evaluation on texture mosaics and real-world
images suggests that capturing structural properties of tex-
els is very important for texture segmentation. To account
for texel substructure, we have derived and used a hierarchi-
cal, variable-bandwidth kernel in the meanshift.

(a) Original image (b) Results of [10] (c) Our results
Figure 7. Comparison on Berkeley dataset with [10]. Our segmen-
tation seems to yield more perceptually valid texture subimages.

(a) Original image (b) Results of [9] (c) Our results

Figure 8. Comparison on Berkeley dataset with [9]. Our segmen-
tation is successful on low-contrasted regions, because weaccount
for all photometric scales present in the image.

Appendix

This section presents the proof of Theorem stated in Sec.4.
We deriveHj , by minimizing the mean integrated squared error
MISE , E{

R

(f̂B(x)−f(x))2dx} with respect toHj . We have:

MISE= 1
N2

P

j E{nj

R

K2
Hj

(x − bj)dx}

+ 1
N2

P

i6=j E{ninj

R

KHi(x − bi)KHj (x − bj)dx}

− 2
N

P

j E{nj

R

KHj (x − bj)f(x)dx}+
R

f(x)2dx,

(9)
In (9), the only random variables are the numbers of data points in
each bin,nj , j=1, . . ., M . They can be characterized by a multi-
nomial distribution with parameterspj,

R

Bj
f(x)dx, whereBj

denotesjth bin. Since our kernel is Gaussian, following the deriva-
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tion steps presented in [23], from (9) we obtain

MISE= 2

N(2π)d/2

P

j [pj(1 − pj) + Np2
j ]|Hj |

−1/2

+N−1
N

P

i6=j pipjKHi+Hj (bi − bj)

− 2
N

P

j pj

R

KHj (x − bj)f(x)dx+
R

f(x)2dx.

(10)

Next, we use the condition of the Theorem thatf(x) is piece-
wise constant within each binBj , f(x)≈

pj

|Bj |
, ∀x∈Bj . This

affects only the third row of (10),
R

KHj (x−bj)f(x)dx =
P

i
pi

|Bi|

R

Bi
KHj (x−bj)dx≈pjKHj (0)=

pj |Hj |
−1/2

(2π)d/2 , yielding

MISE= 2

N(2π)d/2

P

j [pj + (N − 2)p2
j ]|Hj |

−1/2

+N−1
N

P

i6=j pipjKHi+Hj (bi − bj)+
R

f(x)2dx,
(11)

The optimalHj can be found using the derivative of the asymp-
totic MISE (AMISE), whenN → ∞, as

∂AMISE
∂Hj

=
−p2

j |Hj|
−3/2

(2π)d/2 +pj

P

i6=j pi

∂KHi+Hj
(bi−bj)

∂Hj
=0.

(12)
From (12) and the assumption thatKHi+Hj (bi−bj) ≈ 0 when
Bi andBj are not neighboring bins, we obtain (6)

Hj =
3

P

i∈η(j) pi(bi−bj)(bi−bj)
T

pj +
P

i∈η(j) pi
. � (13)
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