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Abstract to readily dismiss viewpoint-dependent approaches seems
too hasty.

This paper addresses view-invariantobject detectionand | this paper, we revisit the viewer-centered framework.

pose estima_tion from a single image. .While rec_ent work fo-\ne are motivated by two widely recognized findings in
cuses on object-cen_tgred representanons of point-balsed o psychophysics and cognitive psychology that: (i) shape is
ject ffeatures, we revisit the v!ewer—centered_ framevyopki, @  one of the most categorical object propertigs gnd (i)
use image contours as basic features. Given training ex-y;ewpoint-dependent object representations generalkie w
amples of arbitrary views of an object, we learn a sparse 5cross members of perceptually-defined classgs These
object model in terms of a few view-dependent shape teMsingings motivate our new approach that uses a number of
plates. The shape templates are jointly used for detecting,ie\ypoint-specific shape representations to model an bbjec
object occurrences and estimating their 3D poses in a NeWcategory. Shape is typically more invariant to color, tex-
image. Instrumental to this is our new mid-level feature, ture, and brightness changes in the image than other fea-
called bag of boundaries (BOB), aimed at ifting from indi- 65 (e.g., interest points), and thus generally enables a
vidual edges toward their more informative summaries for significant reduction in the number of training examples,
identifying object boundaries amidst the background elutt  yaquired to maintain high recognition accuracy. In this pa-
In inference, BOBs are placed on deformable grids both in her \ve show that using contours as basic object features
the image and the shape templates, and then matched. Thigiows a sparse multi-view object representation in terfns o
is formulated as a convex optimization problem that accom- g ey shape templates, illustrated in Flg. The templates
modates invariance to non-rigid, locally affine shape defor ;e gpecified as 2D probabilistic maps of viewpoint-specific
mations. Eygluanon on berjchmark datasets demonstrate%bject shapes. They can be interpreted as “mental images”
our competitive results relative to the state of the art. of an object category that are widely believed to play an im-
portant role in human visiontf]. While the templates are
) distinct, they are jointly analyzed in our inference. Given
1. Introduction only a few of these shape templates, we show that it is possi-
We study multi-view object detection and pose esti- ble to accurately_ identify boundaries and 3D pose of object
mation in a single image. These problems are challeng-Occurrences amidst background clutter.
ing, because appearances of 3D objects may differ signifi- Instrumental to the proposed shape-based 3D object
cantly within a category and when seen from different view- recognition is our new, mid-level feature, called bag of
points. A majority of recent work resorts to the object- boundaries (BOB). A BOB located at a given point in the
centered framework, where statistical generative modelsimage is a histogram of boundaries, i.e., the right image
[16, 22, 17, 1, 10, 7], discriminative models€], or view- contours that occur in the BOB'’s neighborhood and belong
independent implicit shape modelsy 18] are used to en-  to the foreground. If the object occurs, its boundaries will
code how local object features (e.g. points or edgelesd), an be “covered” by many BOBs in the image. Therefore, we
their spatial relationships vary in the images as the cam-represent the image and the shape templates of the object
era viewpoint changes. They strongly argue against certainmodel by deformable 2D lattices of BOBs which can collec-
limitations of viewer-centered approaches that apply sev-tively provide a stronger support of the occurrence hypothe
eral single-view detectors independently, and then coebin sis than any individual contour. This allows conducting 3D
their response<’[,, 13]. In the light of the age-long debate object recognition by matching the image’s and template’s
whether viewer- or object-centered representations are mo BOBSs, instead of directly matching cluttered edges in the
suitable for 3D object recognitionrl] 20], the recent trend  image and the shape templates. There are two main differ-
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Figure 1. Overview of our approach. We seek a subset of foregtimage contours, referred to as boundaries, thatydiett match to the
shape templates of the object model, under an arbitraryegffiojection. Instead of directly matching individual comts, we match their
summaries—our new, mid-level features, called bags of daries (BOBs). (a) A testimage, and the shape templateg afategory car.
(b) Successive iterations of matching BOBs placed on dedbtengrids in the testimage (magenta) and the shape tersyaiéow). Top:
current estimates of boundaries that best match to the shag#ates. Middle: matches from the previous iterationndefiow to project
the grids of BOBs of every shape template (yellow) onto tlséitaage, and thus match them to the grid of BOBs in the imageyémta);
the grids are deformable to accommodate invariance to igioh-focally affine shape deformations of object occuremndottom: current
estimates of the best matching shape template and its affiferfion onto the test image. (c) Our results: boundargatitn and 3D pose
estimation of the car occurrence in the test image. The agtinviewpoint is depicted as the green camera, and the lagshimg shape
template is shown as the orange camera. The label “frotitidebur discrete viewpoint estimate.

ences from other common mid-level features (e.g., Bag of and the shape templates learned in Step 1. The matching
Words, shape context). First, boundaries, which we use forseeks a subset of foreground image contours, i.e., bound-
computing the BOB histogram, are not observable, but hid- aries, that jointly best match to the shape templates under
den variables that must be inferred. The BOB histogram is an arbitrary affine projection (3D rotation, translationda
computed from the right contours, not any edges (as in, e.g.scale). We lift from the clutter of image edges, and realize
BOW, shape context). Second, BOBs lie on a deformableshape matching by establishing correspondences between
2D lattice, whose warping is iteratively guided top-down 2D lattices of BOBs in the image and the templates. This
by the inference algorithm, such that the BOBs could betteris formulated as an efficient convex optimization that al-
summarize boundaries for recognition. lows for non-rigid, locally affine, shape deformations. The
best matching BOBs identify object boundaries, and the as-
Overview: Our approach consists of two steps, illus- sociated affine projection of the template onto the image.
trated in Fig.1. In Step 1 we learn the viewer-centered The parameters of this affine projection are taken as a real-
shape templates of an object category. We assume that trainvalued, continuous estimate of 3D object pose, while the
ing images are labeled with bounding boxes around objectbest matching template identifies a discrete pose estimate.
instances. For each training image, we estimate its corre-  |n the following, Sec.2 points out our contributions;
sponding 3D camera location on the viewing sphere using aSec 3 describes the viewer-centered shape templates4Sec.
standard SfM method. For each camera viewpoint, the tem-specifies BOBs; Seé.and Sec6 formulate BOB matching;
plate is learned from boundaries detected within the bound-and Sec7 presents our empirical evaluation.
ing boxes around training instances, seen from that view-
point. After normalizing the bounding boxes to have the o oyr Contributions and Prior work
same size as the template, their boundaries are copied to the
template, and averaged. Every pixel in the template counts To our knowledge, this paper presents the first shape-
the average frequency it falls on a boundary, resulting in abased approach to view-invariant object detection and pose
probabilistic shape map (see Fig). In Step 2 we con- estimation from a single image. While most prior work de-
duct shape matching between all contours in a given image tects only bounding boxes around objedts, 22, 17, 1, 10,
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15,18, 21, 19, our approach is capable of detecting bound-
aries that delineate objects, and their characteristitspar
seen from arbitrary viewpoints. For delineating objectpar
we do not require part labels in training. The approach of
[7] also seeks to delineate detected objects. However, they
employ computationally expensive inference of a genera-
tive model of Gabor-filter responses only to detect sparsely
placed stick-like edgelets belonging to objects. By using
contours instead of point-based features, we relax the- stri
gent requirement of prior work that objects must have sig-
nificant interior texture to carry out geometric regiswati

We relax the restrictive assumption of some prior work
(e.g., [L7]) that objects are piece-wise planar, spatially re-
lated through a homography. We allow non-rigid object de- i
formations, and estimate the affine projection matrix. Figure 2'. Example s.hape templqtes obtained for Fhe muganyteg

. . Boundaries that fall in the bounding box of the object areayed

Our approach is fundamentally viewer-centered, because, torm the probabilistic shape map.
we use a set of distinct object representations correspgndi
to different camera viewpoints. However, we do not use the
two-stage inference common in prior workl 13], where cover different sets of contours, and thus change theirasso
one first reasons about objects based on each viewpoint repeiated histograms, as desired.
resentation independently, and then fuses these hypathese
in the second stage. Instead, our inferejoagtly considers 3. Building the Shape Templates
all distinct object representations within a unified convex
optimization framework.

Shape-based single-view object detection has a long-
track record in vision (e.g.,2] 5, 23]). The key research
guestions explored by this line of work concern the formula-
tion of shape representation and similarity for shape match . : . T
. S ) ) how to estimate camera viewpoints of training images.
ing. Similar to the work of 2, 23], we use a lattice of mid- S ) ;

. In each training image, we first extract long, salient con-
level shape features, called BOBs, for shape matching. Un—tours using the approach ofq. This is illustrated in
like shape context, a BOB is aimed at filtering the clutter of X 9 P ’

image edges, and identifying and summarizing boundariesFlg' 2. Then, we set the size of our template to an aver-

that occur in the BOB’s neighborhood. For object detec- 2?:;;?;3?if%illtggmllgtge ?;anggobg]xeez\fg;’ t::aetl:nt% of
tion, we find the best matching subset of BOBs to our shape P q g g

templates, such that the matched BOBs maximally cover aIIthe cor_respondmg sides of the bounding boxes). Allrggnin
. . ; .. bounding boxes are scaled to have the same size as the tem-
image contours that are estimated to be boundaries. This is

. . plate. This allows us to directly copy all boundaries from
very different f“’m_ most prior work on shape (e.@],)[th_at the bounding boxes to the template. Every pixel in the tem-
typically works with edge fragments, and seeks evidence

. L i : plate counts the average number of times it falls on a bound-
for their matching in relatively short-range neighborhsod . . . .
> . ary. This results in a probabilistic shape map, as shown in
Instead, we treat each contour as a whole unit, and requir

a joint support from multiple BOBs to either match it to eF'g' 2. As can be seen, due to the alignment and scaling

our model, or declare it as the background. This makes our.of bound|_ng boxe_s, the shape _template is capable of captur-
. ing prominent object boundaries. Any contours that come
shape matching more robust to background clutter.

] ) ) from background clutter or belong to rare variations of the
Our shape matching simultaneously estimates a 3D

: GPE : object category, by definition, will have low probability of
affine projection of the best matching shape templates 0. rrence in the shape template.
_the image. Related to ours is prior work on matching o | g way, we learn a number of shape templates corre-
images under 2D locally affine transformatiaip for global  g54nding to distinct viewpoints present in the training set
2D scale and rotation transformatio®].] However, they
treat descriptors of image features as fixed vectors, and do4_ Shape Representation
not account that they change under local or global affine
transformations. By contrast, we allow non-rigid deforma-  Our shape representation is designed to facilitate match-
tions of contours by estimating the optimal placement of ing between image contours, and all shape templates of the
BOBs in the image. As the BOBs change positions, they object category. We formulate this matching as many-to-

This section explains how to build the shape template
from a given set of training images captured from a specific
camera viewpoint. We will consider that the camera view-
point is given together with bounding boxes around objects,
for clarity. In Sec.7, we relax this assumption, and describe
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many, because, in general, specific features of a categoryandg;, are represented l#/x 1 and4 x 1 vectors, respec-
instance, and canonical features of the category model mayively. We want to estimate an x m matrix F' = [f;;],
not be in one-to-one correspondence. Thus, our goal is towhose each elemertfif; represents confidence that 2D point
identify a subset of image contours and a subset of template € 7 is the best match to 3D poirite M.

parts that match. Instead of directly matching contours, we  The criterion that best matching BOBs have maximally
match BOBs placed on deformable grids in the image andsimilar boundary histograms can be formalized as

all the templates, as illustrated in Fi&). The BOBs serve to )

jointly collect evidence on candidate boundaries, and-faci i 2iez 2jem figcis )
itate many-to-many shape matching. st Vij, fi; 20, Y, fiy =1, > fij <1,

A BOB that is placed in the shape template is the stan-
dard shape context], computed over a relatively large spa-
tial neighborhood. The radius of every BOB in the template
is data-driven and varies in inference, as described in55ec.

A BOB that is placed in the image differs from the stan-
dard shape context in that its log-polar histogram includes cijix = (ViX — Sj)TEj‘l(ViX - 5;) (3)
only those image contours occurring in its neighborhood . . .
that are estimated as boundaries. Similar to the work ofwherenthe |nd|ca,torv_ector of boundaries in the image
[23], we avoid enumerating exponentially many choices of {0, 1}_ , the BOB's nelghborhood matri;, and the bound-
figure/ground labeling of contours. Rather, for a BOB lo- ary histograns; are defined in Seet. The covariance ma-

cated at image point we compute the BOB's histogram, trix X; is learned in training for each template pojr M.

S;, as the following linear function of an indicator vector, \'I/'Y?' orﬁanlze d|55|m_|lar|tr|1esijg_( In ann x m matrix Cx.
X, indexed by all contours in the image, and a malfjx is allows expressing the objective @) {n a more conve-

where the constraints on thg;’s enforce one-to-many
matching, such that every BOB in the template finds its cor-
responding image BOB;; is the histogram dissimilarity of
BOBsi andj defined as

. . _ At .
which serves to formalize the BOB'’s neighborhood: nient matrix form:3 ;.7 3¢ v fijciix = tr{Cx F}.
To identify boundaries, I.e., estimalg, we extend?) as
Si =V X. (1) . T
min tr{Cx F}

An element ofX is set to 1 if the corresponding contour St F >0, F'1, =1, F1, <1,, X €[0,1]"
is estimated as foreground, or 0, otherwise. An element of _ . . . (4)
Vi, denoted agV;).;, counts the number of pixels ath where1,, is n-dimensional vector with all 1's, and is
contour that fall insth bin of the log-polar neighborhood  relaxed to take continuous real valuesani]".

of i. Note thatV; is observable. However, computirs The formulation in 4) has two major limitations. First,

requires estimation of the hidden variablésn inference. ~ the resulting matches may contain template BOBs from all
viewpoints, which would mean that the image shows all

5. Shape Matching object views at once. Therefore, it is necessary to addi-

tionally constrain 4), such that a majority of correspon-

This section presents our inference, under non-rigid dences are established between the image and a cluster of
shape deformations and arbitrary 3D affine projection. We templates corresponding to neighboring camera locations
place a number of BOBs in the image and the shape tem-on the viewing sphere (or, in a special case, one particu-
plates, and match them, as illustrated in Fig.The result  lar template). The best matching subset of templates can be
is a subset of best matching image BOBs which are closesjointly used to robustly estimate the object viewpoint, @rhi
to the expected affine projections of the corresponding tem-may have not been seen previously in training. Secof)d, (
plate BOBs onto the image. Also, the corresponding pairs does not provide invariance to non-rigid shape deformation
of BOBs have the smallest differences in their associatedand 3D affine transformations. Both limitations could be
boundary histograms. To jointly minimize these two cri- addressed by allowing image BOBs to iteratively move to
teria, we estimate the optimal placement of image BOBs the expected affine projections of their corresponding tem-
to maximally cover the identified object boundaries, and plate BOBs. This is similar to the EM algorithm. For com-
thus account for any non-rigid shape deformations. In the puting the expected locations of BOBs (E-step), we maxi-
following, we gradually formalize the matching of BOBs mize their matches (M-step). The iterative displacemehts o
from a simple standard linear assignment problem to theimage BOBs are constrained to be locally similar. In this
desired complex optimization which allows for non-rigid way, we enforce that image BOBs match to the shape tem-

shape transformations. plates with similar (neighboring) viewpoints on the viegin
More formally, let M be the set of template BOBs, sphere. Below, we specify these additional constraints.
m = |M|, andZ be the set of image BOBs, = |Z|. The Let 7 be a set of all projection matrices, $oc 7 has

homogenous coordinates of image and template B@Bs, the formT = K [R|t], whereR is a3 x 3 rotation matrix,
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tis a3 x 1 translation vector, and’ captures scale and the orthogonality constrainRR” = I to the norm con-
camera parameters. Givéhe 7 that projects the template  straint||R|| < 1. This can be done without affecting the
onto the image, the expected location of image ppiran original optimization problem (se€ ] for details). || B|| oo
be estimated ag;.;r = ZJEM fijTq;. After finding best is the spectral norm of:. After T is determined, we
correspondencds = [f;;], we move each,; to its expected  transform the image BOBs; to their expected locations
locationp;.r, and then repeat matching. The criterion that p;.r = ZJEM fijTq;.
neighboring BOBs should have the same displacements can (3) We fix 7" and F', and computeX, andC'x.
be formalized as (4) Steps (1)—(3) are iterated. After convergence, i.e.,
whenF, T and X no longer change, we remove the bound-
11@16192 (icr — pi) = Y wir(Brr — i), (5)  aries indicated byk from the initial set of image contours.
iel keZ (5) To detect multiple object occurrences in the image,
steps (1)—(4) are repeated until the set of image contours
reduces to the 10% of its initial size.
Implementation. On average, we extract around 80 con-
tours in each image. Our Matlab CVX implementation of
the above steps (1)—(5) takes about 3min on a 2.66GHz,
3.49GB RAM PC.

where||-|| is 2 norm, and thew;;,'s are elements of thex n
adjacency matrix of image BOBB/ = [w;;], representing
the neighbor strength between all BOB paiisk) € Z x
Z. We specifyw;;, as inversely proportional to the distance
betweerp; andpy..

The objective in ) minimizes only the magnitude of
relative displacements of BOBs in the image. We also want

to bound their absolute displacements as 7. Results

Datasets. We evaluate our approach on the 3D object
:fpﬂeipfz |ps:r — pall- (6)  dataset [6] and the Table Top dataset ofd]. The 3D
i€l object dataset is used for evaluating on classes cars and
bikes; whereas the Table Top dataset is used for evaluat-
ing on classes staplers, mugs and computer mice. In both
datasets, each class contains 10 object instances. THe first
are selected for training, and the remaining 5 for testisg, a
min  tr{CLF} +a|TQFT — P| in [16, 7, 18]. In the 3D object data;et, each instance is ob-
X, BT . - - served under 8 anglesl(..Ag), 2 heights {1, H;), and 3
HOI(TQF" — P) — (TQF" — P)WT| @) scales §;..53), i.e. 48 images. For training, we use only the
N images from scalé; . For testing, we use all x 48 = 240
st X elo, I]T TeT images per category. In the Table Top dataset, each instance
F20 F 1y =1m; Fly < 1n is observed under 8 angled (..Ag), 2 heights {,, Hs),
and one scaley;), i.e. 16 images. For cars, we also eval-
; ; ; uate our method on the PASCAL VOC 2006 dataset, and
(7) s equivalent to the 2D shape packing &fl. Also, (7) on the car show datasetd. The PASCAL dataset con-

is similar to recent matching formulations, presentedin [ tains 544 test | ™ how dataset tains 20
8]; however, they do not account that image features changealns est Images. € car show dataset contains

under affine transformation. sequences of cars as they rotate by 360 degrees. Similar
to [13], we use the last 10 sequences for testing, a total of

By introducing a3 x n matrix of image coordinateB, and
a4 x m matrix of template coordinatg, we combine the
objectives of §), (5), and @) into our final formulation:

Note that whery = 8 = 0 andX; is the identity matrix,

6. Algorithm 1120 images. Additionally, we evaluate our method on the
mug category of the ETHZ Shape datasgt [t contains 48
This section describes our algorithm for solving. (In- positive images with mugs, and 207 negative images with a
put to our algorithm are the BOB coordinat@sand P, mixture of apple logos, bottles, giraffes and swans.
and their adjacency matri’. We experimentally find op- Training. Each training image is labeled with the ob-

timala = 2 and8 = 1. We use an iterative approach ject's bounding box. We use two approaches to identify the
to find F, X andT in (7), and use the software CVX cameraviewpointofeach trainingimage. For the two object
http://cvxr.com cvx/ tocompute the optimization. categories cars and bikes, we use publicly available, AUTO

Each iteration consists of the following steps. CAD, synthetic models, as in [, 10, 7]. For the other ob-
(1) We fix X and T and computeF'. Initially, ject categories studied in this paper synthetic modelsare n
all image contours are considered, 30 is set to1,,. available, and, therefore, we estimate camera viewpoiats v
T is initially set to the orthogonal projection matrix standard SfM methods, as ifj] Then, for each training im-
[1000;0100;0010]. age, we extract long, salient contours usifig][ and build

(2) We fix X and F' and computé’. We linearize the 16 shape templates (8 angles and 2 heights). For each tem-
quadratic constraint on the rotation matdik by relaxing plate, we sample 25 BOBs on a uniform 5x5 grid, so we
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OUTPUT

IMAGE MATCHING

TEMPLATES

sample a total of 400 BOBg; € M. A shape context de-
scriptorS); is associated with eaeh), with a radius equal to

: - LK

Figure 3. Iterative matching of BOBs in the image and the stigmplates. Top: Estimated boundaries, and 3D BOBs thanatehed to
the image BOBs. Middle and Bottom: Initially, the matches @stablished with multiple templates. After a few itenasiothe matching
identifies the correct shape template, and the image canselected as foreground indeed fall on the object. Correlpg pairs of image
and template BOBs are marked with the same color.

L

pixels, which is more precise. We count as true positives
the detected contour pixels that intersect with the olgect’

% of the object size. This way, each descriptor representsmask. The contours extracted originally form the total set
a significant part of the object, and there is a large overlapof true positives and true negatives.

between adjacent descriptors, see BigUsing the camera

pose of each viewpoint, we can compute the 3D location of yields an estimate of the object's 3D pose.

each BOBy;.

Testing. For each test image, we extract contours by
the approach of43. We sample 121 BOBg; on a uni-
form 11x11 grid (empirically found optimal), and com-
pute a shape context descriptor for every paint Ini-
tially, the right scale for the descriptor is unknown. We
try multiple BOB radii, proportional to the image size, i.e.
radius = v+, with v € {0.05,0.1,0.15,0.2}. We run
one iteration and keep the solutid®’, 7", X) that returns
the best score for the objective function if.( In further
iterations, the projection matriX' gives us an estimate of

In addition to the 2D localization, the proposed approach
For view-
point classification, we take the viewpoint-label of thetbes
matching template, whose camera centroid is the closest
(Euclidean distance) to the estimated camera.

Evaluating our training setup. To determine how many
viewpoints are necessary to represent an object categery, w
train (a) 4, (b) 8, (c) 16, and (d) 32 shape templates for the
car category of the 3D object datasét]. The selected
viewpoints are (a) front, left, back and right, height,
scalesSy, (b) all 8 viewpoints, height{,, scaleS;, (c) all
8 viewpoints, heightgi,, H», scaleS;, and (d) all 8 view-
points, heightdd,, Hs, scalesSy, So. We test each setup on

the scale of the object. The radius of the descriptor is thenthe task of 8-viewpoint classification, and report the agera

set t013—0 the size of the estimated object, to match the BOB

defined in the templates. This constitutes our default setup

Evaluation criteria. To evaluate the 2D detection, we
use the standard PASCAL VOC detection quality criterion.
For a correct localization, the overlap between predicted
bounding boxB,, and ground truth bounding ba®,; must

exceed 50%, as defined hy, = %}’;823. Our 2D

localization is created by fitting a bounding box to the con-

classification performance in Tah.

Number of templates| 4 8 16 32
Average 64.5% 78.9% 85.4% 86.1%
performance +15% | £0.7% | +£0.6% | £0.5%

Table 1. 3D object car dataset. Influence of the number of tem-
plates on the pose estimation performance.

As expected, the performance improves as we add more

tours that are selected by our algorithm. Since our methodtemplates. We choose to use 16 templates and not 32, be-
outputs contours, and not just a bounding box, we can com-cause the small performance gain does not justify the large
pute precision and recall of our detector in terms of contour increase in computation time. Our formulation is linear but
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the solver takes much longer to handle large matrices, whichmate the equal error rate detection threshgld. We run

makes it impractical to use 32 templates on large datasets. our mug detector on the remaining 207 images. Each can-
Precision of pose estimation. To evaluate the preci- didate detection with an objective score belQw. is clas-

sion of our camera pose estimate, we use synthetic datagified as mug. The precision and recall at equal error rate

for which it is easy to obtain ground truth. We collect 6 is measured &4.3% =+ 0.5%, which is better than the 59%

synthetic car models from free CAD databases, e.g. tur-reportedin 3. This also suggests that our shape templates

bosquid.com. Cameras are positioned at azimuth= generalize well to other datasets.

0..360° in 10° steps, elevatior = 0..40° in 20° steps,

and distancel = 3,5,7 (generic units). 324 images are

rendered for each 3D model, for a total of 1944 test images

(see the supplemental material). For each image, we rur

our car detector and record the 3D location of the estimated "

camerg. The position err(_)éi is (;Iefineddas thhe Euclideanddis- e S

tance between the centroids of ground truth camera and es ., — Hu, CVPR 10 .

timated camera. We measure an average errdriof- 1.2 TR [ Rezaw ooy o

units. There is a large variation because when we incor- = * © 7 T T T eE e a

rectly estimate the camera, it is oftentimes because we havé&igure 5. Our detection results on the PASCAL VOC 2006 car

mis-interpreted a viewpoint for its symmetric, e.g. froot f ~ dataset (Ieft) and the car show dataset (right).

back. The position error is also due to the underestima-

tion of the distance between object and camera, which is  Fig. 6 shows our confusion matrices for viewpoint clas-

probably caused by our choice of resolving the scale via thesification, and compares our performance to thatlpfip,

camera pose. 10, 18, 7] on different datasets. Our approach shows su-
Independent viewpoints. We test a setup where one perior performance for nearly all viewpoints and categorie

considers each viewpoint independently. We solve 16 in- relative to these approaches. After the deadline of camera-

dependent optimizations, as defined By, for each of the ready submissions, we became aware of the state-of-the-art

16 shape templates. The image receives the viewpoint-labefesults of viewpoint classification, presentedéh+ specif-

of the template that yields the best score. We here get a dropcally, they reported the viewpoint classification accyraf

in classification performance By3% =+ 0.4% comparedto ~ 92.8% for cars, and 96.8% for bicycles. For the mice and

our default setup. staplers of the 3D object dataset, we achieve a viewpoint
Qualitative results. Fig. 4 shows examples of success- f:lassification ofr8.2% 4+ 1.1%, resp.77.6% + 0.9%, and

ful detections and 3D object pose estimation. We success/MProve by 3.2%, resp. 4.1% the results of]

fully detect the object boundaries, and we correctly esti-

mate the 3D poses. We are also able to identify interme-8. Conclusion

diate poses that are not available in our discrete set okeshap

templates, e.g. the car in the lower-rightimage. We have presented a novel, shape-based approach to 3D
Quantitative results. We first evaluate our performance POS€ estimation and view-invariant object detection. 8hap

on object detection. Figh shows the precision/recall of being one of the most categorical object.features, has al-

our detector on the PASCAL cars and the car show datasetlowed us to formulate a new, sparse, view-centered ob-

- ject representation in terms of a few, distinct, probatidjs
We outperform the existing methods of{ 11, 7, 13. shape templates. The templates are analogues to the well-

Our approach allows for non-rigid deformations and esti- \nown “mental images”, believed to play an important role
mates a full affine projection matrix, which explain our su- in human vision. We have formulated 3D object recognition
perior results. Our method can also detect object parts.as matching image contours to the set of shape templates.
We count 425 wheels in the car images of the 3D object To address the background clutter, we have lifted shape
dataset, and record precision/recall at equal error r&i®JE ~ matching from considering individual contours to match-
of 63.7% + 0.5% for the wheel parts. Also, for the con- ing of new, mid-level features, called bags of boundaries
tour pixels detection, we measure precision/recall at EER(BOBs). BOBs are histograms of the right contours esti-
of 68.3% =+ 0.2% on the 3D object car dataset. After the mated to belong to the foreground. In inference, BOBs in

deadline of camera-ready submissions, we became award€ image are iteratively re-located to jointly best summa-
of competitive detection results, presentedéh specif- rize object boundaries and match them to the shape tem-

. lates, while accounting for likely non-rigid shape defor-
ically, they reported an ROC curve that saturates at abou%ations. Our experiments have demonstrated that BOBs

60% recall. N _are rich contextual features that facilitate view-invatia-
On the ETHZ Shape dataset, we use 24 positive mug im-ference, yielding favorable performance relative to tlagest
ages and 24 negative images from the other classes to estief the art on benchmark datasets.
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Figure 4. Examples of our contour detection and 3D objece mstimation. Upper left: 3D object car dataset. Upper rigable Top
stapler dataset. Lower left: ETHZ dataset. Lower right: steow dataset. We are successfully detecting the contouleafbjects, and

we correctly estimate their 3D pose. The viewpoint labeheflbest matching template is taken as a discrete estimatgenft @ose, e.qg.
right-front for the stapler. Example matches between ineagkshape templates BOBs are also shown. (Best viewed in)colo
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Figure 6. Viewpoint classification results. Top: cars in 3@eob-
jectdataset. Middle: bikes in the 3D object dataset. Bottmice-
staplers-mugs in the Table Top dataset. Left: confusiomioset

Right: diagonal elements of our confusion matrices are @et

with the state of the art.

References

[1] M. Arie-Nachimson and R. Basri. Constructing implicD3

shape models for pose estimation.IGCV, 2009.
[2] S. Belongie, J. Malik, and J. Puzicha.
and object recognition using shape conteXtSEE TPAM|
24(4):509-522, 2002.
[3] I. Biederman.

Shape matching

Surface versus edge-based determindnts o

(4]

(5]
(6]
(7]

(8]
9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

visual recognition.Cog. Psych.20(1):38-64, 1988.

S. J. Dickinson, R. Bergevin, |. Biederman, J.-O. Ekland
R. Munck-Fairwood, A. K. Jain, and A. Pentland. Panel re-
port: the potential of geons for generic 3-D object recogni-
tion. Image and Vision Computind5(4):277-292, 1997.

V. Ferrari, T. Tuytelaars, and L. Van Gool. Object deimat
by contour segment networks. HCCV, 2006.

C. Gu and X. Ren. Discriminative mixture-of-templates f
viewpoint classification. IEECCV, 2010.

W. Hu and S.-C. Zhu. Learning a probabilistic model mikin
3D and 2D primitives for view invariant object recognition.
In CVPR 2010.

H. Jiang and S. X. Yu. Linear solution to scale and rotatio
invariant object matching. I€VPR 2009.

H. Li, E. Kim, X. Huang, and L. He. Object matching with
a locally affine-invariant constraint. I@VPR 2010.

J. Liebelt and C. Schmid. Multi-view object class d¢itc
with a 3D geometric model. I@VPR 2010.

J. Liebelt, C. Schmid, and K. Schertler.  Viewpoint-
independent object class detection using 3D feature maps.
In CVPR 2008.

A. Nemirovski. Sums of random symmetric matrices and
quadratic optimization under orthogonality constraints.
Mathematical Programming2007.

M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation &e¢
gory specific multiview object localization. I@VPR 2009.

Z. W. Pylyshyn. Mental imagery: In search of a thedBe-
havioral and Brain Science25(2):157-182, 2002.

N. Razavi, J. Gall, and L. V. Gool. Backprojection reies!:
Scalable multi-view object detection and similarity mesri
for detections. IIEECCV, 2010.

S. Savarese and L. Fei-Fei. 3D generic object categjiniz,
localization and pose estimation. IGCV, 2007.

H. Su, M. Sun, L. Fei-Fei, and S. Savarese. Learning aelen
multi-view representation for detection, viewpoint cléisa-
tion and synthesis of object categories.|@QCV, 2009.

M. Sun, G. Bradski, B. Xu, and S. Savarese. Depth-ertode
hough voting for joint object detection and shape recovery.
In ECCV, 2010.



in Proc. 13th International Conference on Computer VislQC{), Barcelona, Spain, 2011

[19] M. Sun, H. Su, S. Savarese, and L. Fei-Fei. A multi-view
probabilistic model for 3d object classes.GVPR 2009.

[20] M. J. Tarr and |. Gauthier. Do viewpoint-dependent mech
anisms generalize across members of a clagd@gnition
67(1-2):73-110, 1998.

[21] A.Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, B. S¢haamd
L. Van Gool. Towards multi-view object class detection. In
CVPR 2006.

[22] P. Yan, S. Khan, and M. Shah. 3D model based object class
detection in an arbitrary view. IICCV, 2007.

[23] Q. Zhu, L. Wang, Y. Wu, and J. Shi. Contour context se-
lection for object detection: A set-to-set contour matghin
approach. IrEECCV, 2008.



