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Abstract then conduct inference on this xed set, without ever revis-
iting the video. We believe that the complexity of group
Given a video, we would like to recognize group activ- activities requires a more synergistic interaction betwee
ities, localize video parts where these activities occad a  high-level inference algorithms and low-level feature ex-
detect actors involved in them. This advances prior work tractors than seen in existing work. We here formalize this
that typically focuses only on video classi cation. We make interaction as an iteration in which inference guides low-
a number of contributions. First, we specify a new, mid- level algorithms in their search for optimal features, whil
level, video feature aimed at summarizing local visual cues adaptive feature extraction facilitates inference in theef
into bags of the right detections (BORDs). BORDs seek toof many competing hypothesis. Instrumental to this is our
identify the right people who patrticipate in a target group new, mid-level, video feature, referred to as a bag of the
activity among many noisy people detections. Second, weight detections (BORDs). BORDs are aimed at summariz-
formulate a new, generative, chains model of group activ- ing their space-time neighborhoods by histograms of visual
ities. Inference of the chains model identi es a subset of cues that are relevant for recognition of the target agtivit
BORDs in the video that belong to occurrences of the activ- Speci cally, BORDs are histograms of the right detections
ity, and organizes them in an ensemble of temporal chains.of people, who are believed to participate in the targevacti
The chains extend over, and thus localize, the time intsrval ity, where the detections occur amidst the background clut-
occupied by the activity. We formulate a new MAP infer- ter and other people who do not participate in the activity.
ence algorithm that iterates two steps: i) Warps the chains BORDs can be interpreted as spotlights that shed light on
of BORDs in space and time to their expected locations, certain space-time voxels in the video. If the activity asgu
so the transformed BORDs can better summarize local vi-it has to be in the spotlight of many BORDs so that they
sual cues; and ii) Maximizes the posterior probability afth  can collectively provide a strong support of this hypotkesi
chains. We outperform the sate of the art on benchmark UT-There are two main differences from other common mid-
Human Interaction and Collective Activities datasets,emd level features (e.g., Bag of Words, shape context). Fitst, o
reasonable running times. low-level features, which are used for computing the his-
togram of a BORD, are not observable, but hidden variables
that must be inferred. The histogram is computed from
1. Introduction the right detections, not any detections (as in BoW). Sec-
) ] ) ond, BORDs are movable, laying on a deformable space-
This paper is about detecting the start and end frames Ofjme grid throughout the video. Their optimal locations are
group activities in videos, and localizing all their pakic  informed top-down in inference. The inference algorithm
pants. This is challenging because group activities are typ \yarps the grid so the BORDs could better summarize rele-
ically characterized by large variations in motions, appea yant visual information for activity recognition. The siae
ances, and spatiotemporal layouts of actors involved. Forpixel neighborhoods associated with every BORD are adap-
example, running in a group can be performed by a varyingtive|y re-computed at new video locations.
number of people, in diverse, dynamically changing spatial
con gurations, in which the runners may partially occlude Regarding activity representation, we specify a new,
one another. To address these challenges, we seek answeehains model aimed at organizing BORDs in an ensemble
to the following questions: what video features should be of temporal chains. The chains may have arbitrary length,
extracted, and how to model group activities for ef cient ideally, beginning and ending at the end-points of time in-
inference and robust learning? tervals occupied by the activity. As we will show in this
Regarding activity features, we depart from the common paper, our chains model is particularly suitable for repre-
practice to extract a set of (arguably good) features, andsenting non-rigid transformations of various spatial ogpn
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Figure 1. Our approach: (a) BORDs (illustrated as space-éiiipsoids with black centroids) are placed on a Ejgformgh'u in the video
to jointly collect the most informative visual evidence fagtivity recognition. (b) The MAP inference of the chainsdabidenti es a
subset of BORDs, organized in a number of temporal chainghybintly localize the spatiotemporal extent of the reiagd activity. (c)
The chains are adaptively warped, such that the BORDs céer lestimate the right detections of people who participatbe activity.

urations of people conducting the group activity. Another activity occurrences, as well as detect all their partictpa
chains model has been recently used for detecting a person'©ur BORD is similar to a mid-level feature, called control
hand in a still image]. We here relax their restrictive as- point, which has been used for detecting and summarizing
sumption that the feature chains must start from a knownthe right image contours falling along object boundaries,
reference point. In our case, the start and end frames ofamidst the clutter of other edges in the backgrourid [
the activity occurrences are hidden variables that must beOverview: Our approach consists of two main steps, as
inferred. We specify a new inference algorithm that ef - illustrated in Fig.1. BORDs are placed on a deformable
ciently guides the extraction of BORDs. grid in the video to jointly collect visual evidence if any
activity of interest is present. The MAP inference of the
Related work: Graphical models offer a principled com- chains model identi es temporal chains of the BORDs. In
putational framework for representation and inference of inference, the chains are adaptively warped, such that thei
many important properties of activities, including motion BORDs can better summarize visual information for rec-
appearance, and spatiotemporal layout of people involvedognizing and localizing all occurrences of the activitydan
in the activity. For example, activities have been modeled for detecting their participants. Speci cally, we specidy
by dynamic Bayesian net$], prototype trees], context-  new MAP inference algorithm that iterates two steps: i)
free grammars, 3], and CRFs [(]. Most of these ap-  Warps the chains of BORDs to their expected locations
proaches, however, do not address group activities. Theyin the video; and ii) Maximizes the posterior probability
can typically handle only sanitized environments withistat  of the chains. Our experiments demonstrate that the pro-
background, where actors are prominently featured (with posed approach is robust against transient occlusions sin
few exceptions, e.g.,3[ 10]). We address more realistic BORDs are minimally affected when a particular actor gets
videos. A few methods seek to learn temporal structure occluded. This is important because mutual occlusions of
of activities from data{(], or relevant contextual relations  actors are frequent in group activities.
within a group activity f]. However, their model structure In the sequel, we rst specify the BORD, and, then,
permits only a xed number of actors, or a xed number of formalize the chains model and its inference and learning.
primitive actions de ning the group activity. We overcome Next, we present our superior performance on challenging
these limitations by enabling inference of arbitrarilygar  penchmark datasets, including UT Human Interacticn [
numbers of activity participants and primitives. Spatiote  and Collective Activities [], relative to the state of the art.
poral match kernels have been used in a a heuristic voting
procedure for localizing group activities in the videld’]. 2. Bags of the Right Detections
By contrast, we localize activities in a principled manner u
ing the MAP inference of our chains model. Spatiotemporal The BORD is a descriptor associated with spatiotempo-
relations of video features within a group activity are mod- ral voxels of the video. In particular, the BORD;, is a
eled in [l]. However, they can only classify videos, whereas histogram of human poses detected in a space-time neigh-
we additionally seek to infer the start and end frames of the borhood centered at pointin the video volume. The his-
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togram is not computed from all people that are detected
in the neighborhood, but only from those detections that
are estimated to take part in the target activity. Also, the
right placement of points in the video, and the size of
their neighborhoods are adaptively determined from data,
such that the BORDs can summarize most informative hu-
man poses for activity recognition and localization. Below
we rst explain how to detect people and their poses in the
video, and, then, specify the BORD.

Given a video, we rst run an ef cient people detector. Figure 2. The BORDh; summarizes the neighborhodt around

Speci cally, we use the apprpach (ﬂ.][ Its parameters are pointi in terms of a histogram of the right people detections which
set such that the detector yields high recall, under the &V-are inferred in the indicator vectdy. Dissimilarity between two

erage running time of 2s per frame. The high recall en- BORDs,Cj , is de ned as their Mahalanobis distance.
sures that all activity participants are detected in thewid

Then, discarding false positives will be delegated to the ) )
higher-level inference algorithm. The resulting detewsio  nary. The shape of the neighborhood is de ned as a space-
are bounding boxes, which represent our noisy input. In thetime ellipsoid centered af whose scale and principal axes
sequel, we will use the terms detector responses, detsgtion are adaptively estimated to t the spatiotemporal changes
and bounding boxes, interchangeably. of bounding boxes in the vicinity (this is quite similar to

Next, we identify a characteristic human pose for every the standard estimation of the scale of interest points in im
detection. In particular, the detector that we use localize 29€s). In our experiments, we observe ellipsoids that span
human-body parts (e.g., legs, arms) within each detectedP€tween 2 to 6 frames. o o
bounding box ]. The spatial layout of these body parts can For activity recognition and Iocahzatlo_n, we initially
be used to de ne a descriptor of human poses, in terms of: j) Sample a number of points,= 1;::; n, forming a regular
Part distances and orientations relative to a referencg bod SPatiotemporal grid. We allow for data-driven, non-rigetd
part; and (i) Mean optical ow vector within the bound- formati(.)ns of the grid, such that BORD§ associated Wi'Fh the
ing box, computed by the approach af]. We map each grid points may assume opnmgl locations for collectively
human-pose descriptor to a dictionary of codewords, whereproviding the accurate information about foreground peo-
the words represent characteristic human poses. Our-dictioPl€ detections. Thus, detecting actors in the video, he., t
nary consists offl = 300 characteristic poses, learned by the inference of, is informed by both local cues in the vicin-
K-means algorithm on training videos with labeled bound- ity Of every pointi, and contextual cues provided by other
ing boxes around people performing various group activitie Points of the grid. The inference bf and the optimal non-
of interest. Note that many other alternative de nitions of f9id transformation of the grid are formalized as the MAP
the human-pose descriptor can be speci ed, when a partic_mference of the chains model representing the activity.
ular people detector used does not localize body parts. .

Given noisy people detections and their characteristic3' The Chains Model

poses, the BORD at pointseeks to identify the right de- The chains model is a generative model of a given

tections, which belong to the target activity, and compute getivity class. The observable random variables of the
the histogranh; of their associated human poses, within & ¢hajns model include the set of BORDE, = fh;

spatiotemporal neighborhoodiofTo computé;, weavoid  j = 1::::ng, observed in the video. The model ac-
enumerating exponentially many gure/ground labelings of counts that is partitioned into an ordered, temporal chain
the detections. Rather, we comphteas a linear function:  f foreground BORDsO = (O(1); :::; O(m); :::; O(M)),
8m;1 O(m) n, belonging to the activity occurrence,
and background BORDS| nO. The hidden variables of the
chains model include: (i) the activity's start and end frame
Ls andL g (i) the chain of foreground BORD®; and (jii)
their total numbeM . The joint probability distribution of
all random variable®? (M;O;L s;Lg;H), is speci ed as

hi = Vib; (1)

whereb 2 f 0; 1g* is a hidden variable vector that must be
inferred, andv; 2 f 0; 1g¢ ¥ is an observable matrix de n-
ing the spatiotemporal neighborhoodiofas illustrated in
Fig. 2. Speci cally, b is an indicator vector of akk bound-

ing boxes detected in the video. An elemenbdb setto  p(M;0;Lg:Lg;H)= P(M)P(O)P(LsjM;O:H)

1 if the corresponding bounding box is estimated as fore- 1 %

ground, or O, otherwise. Also, an elemégit),, = 1 if P(LejM;O;H) P(ho(m+1) ihom)) Ps(hi):
vth bounding box “falls” withini's neighborhood, and the m=1 i2Hno
bounding box is mapped toth human pose in the dictio- (2)
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Below, we explain each distributiod has a Poisson dis-
tribution,P(M = m) = %e v . This prevents infer-
ence of unrealistically short and very long chairf3(O)

is uniform if for all point pairs(O(m); O(m + 1)) the
frame of pointO(m) does not happen after the frame of
O(m + 1), andP(O) = 0, otherwise. This prevents the
chains to move backwards in time&? (LsjM;O;H ) and
P(LgjM;O;H) are de ned as the conditional probability
that the chain starts and endslat O(1) n andl
O(M) n. Specically, letto) andtou) be the frames

of the end-points of the chain. Then, we specify that the

probability of the start exponentially decreasesasg) be-

comes largerP (LsjM; O;H) = sexp(  s=22), and,
similarly, P(LejM; O;H) = g exp( W _

P(ho(m+1) Jho(m)) is the transition probability between

Figure 3. Our MAP inference iteratively nds the start (Speend

(E) frames of the activity through two steps. It: i) Estintathe
MAP Markov chains of a given set of BORDSs, and ii) Warps the
grid of BORDs so they can extract more relevant visual cues fo
the MAP inference in the next iteration.

Note that the summation irt) includes all paths of length

two consecutive BORDs in the chain. We assume that all jy _ not only simple paths without loops. We resort to this
legal orderings have a uniform distribution. Thus, in the approximation for reducing complexity. Assuming thas

following, we will simplify notation and write® (h; jh;) to
denote the probability of transitioning between foregrun
points. FinallyPg (h;) is a uniform distribution that BORD

i belongs to the background. In summary, the set of param- X' X m

eters of the chains modeliss f s; g; wm;P(hjjhi)a.

4. The MAP Inference

Our MAP inference iterates two steps, as illustrated in

avery large numben !'1 | the bracketed term infj can
ef ciently be approximated as

PM=mX"t e ™
m=1
©)
By plugging in the parameters of different activity models,
a,a=1;2;::, from (4) and 6), we have that the MAP

Fig. 3. In the rst step, we compute the marginal posterior inference recognizes activity claas as

distribution ofLs andLg over all possible chains, given a
set of observed BORD®,(Ls;LgjH). In the second step,

we re-estimate BORDs by adaptively warping their grid to-

ward maximizing their informativeness. In the following
two subsections, we explain each step.

4.1. Maximizing the Marginal Posterior
From (2), the marginal posterior df s andLg is

P(LgsLeiM) /o P(M:O;LsiLpiH);

/ M:O P(M)P(Ls;LejM;O;H) i P(hjjhi):

3

We compute §) by organizing all transition probabili-
ties in ann n matrix X = [P(h;jjh;)]. Note that
each rowi of X contains the probabilities of transition-
ing, in one step, from point to other pointsj in the
video.
of X must be 1,X1, = 1,, wherel, is the n-
dimensional vector with all 1's. It follows that the prob-
ability of transitioning fromi to j in m steps is equal to
(X ™)j . In addition, we organize all conditional proba-
bilities P(Ls;LgjM;O;H), for each control point, into
n-dimensional vectors =[P (Ls=1j);::;;P(Ls=nj)]",
and =[P(Le=1j);::;P(Le=nj)]". Itis straightfor-
ward to show that3) can be computed as

P(Ls;LgjH)/ ! T[P T PM=m)X™ (4

The sum of these probabilities along each row

— T
a =argmax ! 5

a=1;2;::

exp( M :a X a) a- (6)

Also, from @) and 6), the optimal start and end of ac-
tivity a can be estimated as indicds i n and
1 i n of the maximum product:(Lg;Lg) =
argmax; ia ja [exp( m:a Xa )]ij . When multi-
ple instances of the activity need to be detected, we choose
the second, third, etc. best péirj ) for (Lg;Lg).

From (), the MAP inference requireX . In the next
subsection, we explain how to estimate

4.2. Extracting Optimal Features

Our goal is to estimate optimal locations of BORDs in
the video, so their histograms jointly provide the most rel-
evant visual cues for the MAP inference. At different loca-
tions, the BORDs include in their histograms different sets
of people detections. Thus, when in the optimal layout, the
BORDs should jointly include only foreground bounding
boxes in their histograms, i.e., correctly provide evidenc
about people involved in the activity.

Finding optimal locations of BORDs and estimating
their transition probabilitieX is speci ed as a constrained
optimization, and iteratively solved by alternating two
steps. We initially place 16 BORDs in every 5th frame,
so they form a regular grid. In the rst optimization step,
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we deform the grid along the spatial and temporal axes to

its expected layout. Then, in the second step, e&ghis
estimated as con dence that BORDsand| are the best

We also wish to constrain the displacements of points
from their original positions, before warping the grid, not
only their relative distances to neighbors. This yields our

one-step transition along the temporal chain representing nal formulation:

the target activity. The two steps are iterated until conver
gence. Below, we explain these two steps in greater detail.

First, given a current estimate #f, thg expected loca-
tion of each point can be found ag = RYLE The
gi isde ned as arow vectolg; = [X;;Vi;tj;cos i;sin' ],
wherex; andy; are coordinates of pointin framet;, and
' is the direction of optical ow ati, computed by 14].

Let Q denote am 5 matrix whose rows ar®; = ¢,
i =1;::;n. Then, the expected locations of all points can
be expressed 8 = XQ .

Second, to estimaté , we nd the best matching pairs
of BORDs, such that the matching is invariant to locally
af ne transformation of the grid. Importantly, as the
BORDs change locations in the rst optimization step, their
histograms “cover” different sets of bounding boxes in the

video, and consequently the best matching pairs of BORDs

change. Inthe following, we gradually formalize the match-
ing of BORDs from a simple standard linear assignment
problem to the desired complex optimization which allows
for non-rigid transformation of the grid.

Using the de nition ofX , given in Sec4, the matching
of BORDs can be formulated as the linear assignment:

P n IDn
minimize ;5 X Cj 7
subject to8i;j; X 0, X1, = 1,;
where dissimilarityCj; = [( V; Vj)b]T Yvi V)b

minimize tfC/X g+ k(I W)XQ ki + k(I X)Qk;
subjecttoX 0; X 1,=1,; b 0; kbk3=1:
(10)
We here use empirically estimated=0:3and =0:9.
To solve (L0), we follow the linearization steps presented
in [8]. Thus, we introduce auxiliarg 5 matricesZ and
Y to replace the L1-norm constraints ib(j as

minimize tfCIX g+ 11Z1s+ 1lY1s

subjectto X  0; X 1,=1,; b 0; kbk3 =1;
Z 0Y 0
(I WXQ Z:; ( W)XQ Z
(I X)Q Y, X)Q Y
(11)

where minimization is oveK , b, Z, andY . From (11),
it follows that the matching of BORDs can be ef ciently
solved as the linear program (LP). An LP with tens of
thousands of variables, and thousands of constraints can be
solved within seconds on a standard PC using state-of-the-
art solvers, such as CVX. The number of variables in our LP
model in (L1) is proportional tan?. In our implementation,
for 10° BORDs, the CVX takes less than 5s on a 2.66GHz,
3.49GB RAM PC.

After nding X andb from (11), the BORDs are moved
to their expected locatior® = XQ . This, inturn, changes
their layout. In the next iteration step, we recompute: i)

is learned for each activity class, and encodes theW to capture new neighbor relations, and ii) histograms

activity-speci ¢ covariance of human poses. We organize
all dissimilaritiesC;; in ann  n matrix Cy,, whereb in
subscript indicates that ea@y; is a function ofb. This
gllows to write the summation in7] more compactly as

i X Cij = trfch 0.

Since computindCp, requires foreground detectiorts,
be estimated, we extend)(with additional constraints, for
conducting minimization with respect to bath andb:

minimize tf C/X g

subjecttoX 0, X1,=1,: b 0 kbki=1: &

We also wish to constrain points on the grid to preserve
their neighbor relations after reallocating to their expédc
positions@ in the rst optimization step. To this end, we
dene ann n adjacency matriV , where eactw;; is
inversely proportional to the Euclidean distance betwegen
andg;, andW; = 0. W is used to extends], and ad-
ditionally minimize expected distances of each point to its
neighbors, de ned as L1 nork® W ®k,, as

minimize tfCJX g+ k(I W )XQ k;

subjecttoX 0, X1,=1,: b 0O kbki=1: &

h; = V;bto account for any new bounding boxes indicated
by the newb. The newW andCy are then plugged back

in (11). The iterations are repeated until changes of the ob-
jective of (L1) become close to zero. We usually run 5 it-
erations. Our experiments demonstrate that the approach is
relatively insensitive to a speci c choice of the initialiaut

of BORDs, as long as they suf ciently densely populate the
video (e.g., our setup of 16 BORDs in every 5th frame).

5. Learning

The model parameters= f s; g; m;P(hjjhi)g,
are learned fromR training videos, provided for each group
activity. We assume that the training videos of lengtk
are labeled with the start and end frames of the activity oc-
currencesf (ts.r;te.r) : r = 1;::;Rg, and with bound-
ing boxes around particip@nts in regularlyﬁampled frames.
Then, we comButes: R= tsi = _=R= (@ tfr" ),

rot !
and v = R= | “Ertits’) The transition probabilities
P (hjjhi) depend on the covariance matrix of human poses
. For , we rstrun the people detector of], and keep

only those detections that fall within the labeled bounding
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boxes. Then, we map the human-pose descriptors associalso evaluates the chains model when its inferences is not
ated with these detections to codewords of the dictionary of boosted by the iterative search for optimal featukés3 is
characteristic human poses. Finally, each elemegpb is designed to evaluate the impact of the people detectéi of |

computed as the covariance of codewardmdu®. on our performance, by replacing its detections with even
more noisy, lower-level features. Given a test video, we
6. Results compute HOG-HOF descriptors at a dense grid of space-

time interest points (STIPs)]. As in Varl, we here use K-

. . o . means to build a dictionary of 300 codewords of HOGHOF
First, t_he CoIIectlve_Act|V|t|_e_s datase?i][conss_ts of 75 descriptors extracted from training videos. STIPs of tise te
short. videos of crossing, waiting, queuing, walking, tagi video are mapped to the dictionary of codewords, which en-
running, and dancing. This dataset tests our performance OMiples estimation of our BORDs. As in Varl, we search for
collective behavior of individuals under realistic comatits, the optimal warping of these BORDs capturing the context
including background clutter, and transient mutual occlu- ¢ L\ GHOE-based codewords Finaljar4 evaluates the
sions of actors. For fraining and testing, we Bsgand1=3 signi cance of enabling invariance to non-rigid transfam

of the videos from each class, respectively. The dataset Prosions of the grid of BORDs. Var4 uses all the steps of Varl,
vides labels of every 10th frame, in terms of bounding boxes exceptthatwe set = =0 in (L1)

around people performing the activity, their pose, and/acti

ity class. Second, the UT-Interaction datasé} fonsists of ~ Quantitative Results: We use three types of metrics for
20, 1-minute videos of continuous executions of 6 classes€valuation: i) Activity classi cation accuracy, i) Redaind

of human interactions: shaking-hands, pointing, hugging, Precision of activity detection (a-detection), and iii)daé
pushing, kicking, and punching. Each video shows at least2nd Precision of detecting people involved in the activity (-
one instance of every interaction class, where in some case§etection). For evaluating a-detection, we compute a,ratio
distinct activities may co-occur. The videos show two scene a- ©f the intersection and union of detected and ground-
types: 10 videos are taken on a parking lot, and the othertruth time mtervgls of activity occurrences. If the adly_MS
10 videos are captured in a natural setting by a moving COrrectly recognized, and, > 0:5 then the detected inter-
camera. The UT-Interaction dataset presents a number of@! is declared true positive (a-TP), otherwise it is fales-p
challenges: the jittery camera motion, simultaneous perfo Ve (a-FP). Note this also evaluates localization oftsiad
mance of several activities, activities may begin and end at®nd frames of activity occurrences. For testing p-detactio
arbitrary times, presence of people who are not involved in W& compute a ratio, », of the intersection and union of
the activity, etc. The dataset provides ground truth laels ~detected and ground-truth bounding boxes of people partic-
terms of time intervals of the activities, and bounding loxe Pating in activities. If the activity is correctly recogrd,
around all actors. Our evaluation setup is the same as thaf"d p > 0:5 then the detected person is declared p-TP,
presented in17]. Speci cally, for training, we use 20% of ~ Otherwise they are p-FP.
the available manual segmentations of the videos into 60in- Table 1 compares our activity classi cation accuracy
tervals, each occupied by a unique activity instance. We tes with that of the state of the art approachés ], 11] on
on the full (unsegmented) sequences. the Collective Activity Dataset. For running and dancing
We test different aspects of our approach through four classes, no previous results have been reported. Taide
variants. Varl is our default. It runs the MAP inference shows the average running times of our different variants.
on the optimally warped grid of BORDs, which seek to The reported running times include only the MAP infer-
identify the right participants of the activity in the cleatt ence, and do not include the time it takes to run the people
of people detections obtained by the detector&f [We detector, and compute other features and descriptors. As
set a low threshold of -3 for this detector that gives 93% can be seen, Varl outperfornis [, 11] in reasonable run-
false positives on the UT-Interaction datadér2 servesto  ning times. Var2 is the fastest, but also the worst of all our
evaluate using BORDs as mid-level activity features versusvariants, because it does not search for the optimal feature
directly using lower-level, noisy people detections fanac but takes xed people detections as activity features. Nev-
ity recognition. Var2 has the same steps as Varl, except thaertheless, the inference of our chains model on “raw” fea-
instead of the BORDs we run our MAP inference directly tures, in Var2, compares favorably against the competing
on bounding boxes detected by the people detectef]pf [ methods. From Tabl&, searching for the optimal features
and described by the pose descriptor. Note that we cannotn Varl improves performance by 3.9% relative to using
search for the optimal locations of video features, in Var2, “ xed” features in Var2, with reasonable increase in run-
because the features are xed people detections. Thus, weaning time. The results for Var3 and Var4 suggest that our
compute the transition probabilitieé in one-shot match-  approach performs competitively well even with “poorer”
ing of these detections from.{), where dissimilaritie€ STIP features, and that enabling invariance to locally af n
are computed as differences of the pose descriptors. VarZransformations of features in Varl improves performance

Our approach is evaluated on two benchmark datasets
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Class Varl Var2 Var3 Var4 [6] [1] [11]
Walk 72.2% | 68.2% | 68.8% | 68.5% | 68% | 57.9% | 25.5% ACknOWledgement

Cross | 69.9% | 65.1% | 67.3% | 66.4% | 65% | 55.4% | 38.9% . . .
Queue | 96.8% | 96% | 96.5% | 96.2% | 96% | 63.3% | 25.5% The support of the National Science Foundation under

Wait | 74.1% | 70.0% | 72.0% | 71.1% | 68% | 64.6% | 24.4% grant NSF IIS 1018490 is gratefully acknowledged.
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7. Conclusion

We believe that complexity of group activities requires
a more synergistic interaction between high-level infeeen
algorithms and low-level feature extractors than seen in ex
isting work. We have speci ed this interaction through: i)
De ning a new mid-level feature, called BORD; ii) Formu-
lating a new generative chains model for representing group[ls] Q. Zhu, L. Wang, Y. Wu, and J. Shi. Contour context se-
activities; and iii) Deriving a new MAP inference algorithm lection for object detection: A set-to-set contour matghin
that guides top-down optimal extraction of BORDs from the approach. IFEECCV, 2008.2
video, and organizes them in temporal chains. This has en-
abled not only recognizing and localizing occurrences of
group activities, but also detecting their participantsur O
evaluation of benchmark UT-Human Interaction and Col-
lective Activities datasets demonstrates that we outperfo
the sate of the art in activity recognition and localization
under reasonable running times.
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Figure 4. Results of Varl on example frames from the UT-aton Dataset. Our MAP inference correctly: i) Recogniaed detects
pushingandkicking even when these activities co-occur in the video (top);déniti es foreground BORDs (only a few examples shown
as colored ellipses, for clarity); and iii) Detects pag#nits of the activity (colored bounding boxes). The BORDs people detections
that are inferred to belong to the same activity are markek the same color; the other people detections that are sotiased with any
activity are marked with black bounding boxes. Locationd agighborhood size of BORDs are data-driven. As can be segrgup of
people may be captured by a single BORD, and conversely asempenay be covered by several BORDs.

Figure 5. Results of Varl on example frames from the Collecfictivity Dataset []: See the caption of Figl. Varl is able to detect
distinct co-occurring activities. Sometimes, Varl infex® activities instead of one, when the true activity is &bt spread-out (e.g.,
walking).

Figure 6. A failure example on the UT-Interaction Datasete $he caption of Figd. Varl correctly detects the activityugging but
wrongly identi es one bounding box as the actor (red); thieeotactor is correctly identi ed (magenta); this error ichase the p-FP is
very close to the two truly hugging people.



