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Abstract

Given a video, we would like to recognize group activ-
ities, localize video parts where these activities occur, and
detect actors involved in them. This advances prior work
that typically focuses only on video classification. We make
a number of contributions. First, we specify a new, mid-
level, video feature aimed at summarizing local visual cues
into bags of the right detections (BORDs). BORDs seek to
identify the right people who participate in a target group
activity among many noisy people detections. Second, we
formulate a new, generative, chains model of group activ-
ities. Inference of the chains model identifies a subset of
BORDs in the video that belong to occurrences of the activ-
ity, and organizes them in an ensemble of temporal chains.
The chains extend over, and thus localize, the time intervals
occupied by the activity. We formulate a new MAP infer-
ence algorithm that iterates two steps: i) Warps the chains
of BORDs in space and time to their expected locations,
so the transformed BORDs can better summarize local vi-
sual cues; and ii) Maximizes the posterior probability of the
chains. We outperform the sate of the art on benchmark UT-
Human Interaction and Collective Activities datasets, under
reasonable running times.

1. Introduction

This paper is about detecting the start and end frames of
group activities in videos, and localizing all their partici-
pants. This is challenging because group activities are typ-
ically characterized by large variations in motions, appear-
ances, and spatiotemporal layouts of actors involved. For
example, running in a group can be performed by a varying
number of people, in diverse, dynamically changing spatial
configurations, in which the runners may partially occlude
one another. To address these challenges, we seek answers
to the following questions: what video features should be
extracted, and how to model group activities for efficient
inference and robust learning?

Regarding activity features, we depart from the common
practice to extract a set of (arguably good) features, and

then conduct inference on this fixed set, without ever revis-
iting the video. We believe that the complexity of group
activities requires a more synergistic interaction between
high-level inference algorithms and low-level feature ex-
tractors than seen in existing work. We here formalize this
interaction as an iteration in which inference guides low-
level algorithms in their search for optimal features, while
adaptive feature extraction facilitates inference in the face
of many competing hypothesis. Instrumental to this is our
new, mid-level, video feature, referred to as a bag of the
right detections (BORDs). BORDs are aimed at summariz-
ing their space-time neighborhoods by histograms of visual
cues that are relevant for recognition of the target activity.
Specifically, BORDs are histograms of the right detections
of people, who are believed to participate in the target activ-
ity, where the detections occur amidst the background clut-
ter and other people who do not participate in the activity.
BORDs can be interpreted as spotlights that shed light on
certain space-time voxels in the video. If the activity occurs,
it has to be in the spotlight of many BORDs so that they
can collectively provide a strong support of this hypothesis.
There are two main differences from other common mid-
level features (e.g., Bag of Words, shape context). First, our
low-level features, which are used for computing the his-
togram of a BORD, are not observable, but hidden variables
that must be inferred. The histogram is computed from
the right detections, not any detections (as in BoW). Sec-
ond, BORDs are movable, laying on a deformable space-
time grid throughout the video. Their optimal locations are
informed top-down in inference. The inference algorithm
warps the grid so the BORDs could better summarize rele-
vant visual information for activity recognition. The sizeof
pixel neighborhoods associated with every BORD are adap-
tively re-computed at new video locations.

Regarding activity representation, we specify a new,
chains model aimed at organizing BORDs in an ensemble
of temporal chains. The chains may have arbitrary length,
ideally, beginning and ending at the end-points of time in-
tervals occupied by the activity. As we will show in this
paper, our chains model is particularly suitable for repre-
senting non-rigid transformations of various spatial config-
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(a) (b) (c)
Figure 1. Our approach: (a) BORDs (illustrated as space-time ellipsoids with black centroids) are placed on a deformable grid in the video
to jointly collect the most informative visual evidence foractivity recognition. (b) The MAP inference of the chains model identifies a
subset of BORDs, organized in a number of temporal chains, which jointly localize the spatiotemporal extent of the recognized activity. (c)
The chains are adaptively warped, such that the BORDs can better estimate the right detections of people who participatein the activity.

urations of people conducting the group activity. Another
chains model has been recently used for detecting a person’s
hand in a still image [5]. We here relax their restrictive as-
sumption that the feature chains must start from a known
reference point. In our case, the start and end frames of
the activity occurrences are hidden variables that must be
inferred. We specify a new inference algorithm that effi-
ciently guides the extraction of BORDs.

Related work: Graphical models offer a principled com-
putational framework for representation and inference of
many important properties of activities, including motion,
appearance, and spatiotemporal layout of people involved
in the activity. For example, activities have been modeled
by dynamic Bayesian nets [15], prototype trees [9], context-
free grammars [4, 3], and CRFs [10]. Most of these ap-
proaches, however, do not address group activities. They
can typically handle only sanitized environments with static
background, where actors are prominently featured (with
few exceptions, e.g., [3, 10]). We address more realistic
videos. A few methods seek to learn temporal structure
of activities from data [10], or relevant contextual relations
within a group activity [6]. However, their model structure
permits only a fixed number of actors, or a fixed number of
primitive actions defining the group activity. We overcome
these limitations by enabling inference of arbitrarily large
numbers of activity participants and primitives. Spatiotem-
poral match kernels have been used in a a heuristic voting
procedure for localizing group activities in the video [12].
By contrast, we localize activities in a principled manner us-
ing the MAP inference of our chains model. Spatiotemporal
relations of video features within a group activity are mod-
eled in [1]. However, they can only classify videos, whereas
we additionally seek to infer the start and end frames of the

activity occurrences, as well as detect all their participants.
Our BORD is similar to a mid-level feature, called control
point, which has been used for detecting and summarizing
the right image contours falling along object boundaries,
amidst the clutter of other edges in the background [16].
Overview: Our approach consists of two main steps, as
illustrated in Fig.1. BORDs are placed on a deformable
grid in the video to jointly collect visual evidence if any
activity of interest is present. The MAP inference of the
chains model identifies temporal chains of the BORDs. In
inference, the chains are adaptively warped, such that their
BORDs can better summarize visual information for rec-
ognizing and localizing all occurrences of the activity, and
for detecting their participants. Specifically, we specifya
new MAP inference algorithm that iterates two steps: i)
Warps the chains of BORDs to their expected locations
in the video; and ii) Maximizes the posterior probability
of the chains. Our experiments demonstrate that the pro-
posed approach is robust against transient occlusions, since
BORDs are minimally affected when a particular actor gets
occluded. This is important because mutual occlusions of
actors are frequent in group activities.

In the sequel, we first specify the BORD, and, then,
formalize the chains model and its inference and learning.
Next, we present our superior performance on challenging
benchmark datasets, including UT Human Interactions [13]
and Collective Activities [1], relative to the state of the art.

2. Bags of the Right Detections

The BORD is a descriptor associated with spatiotempo-
ral voxels of the video. In particular, the BORD,hi, is a
histogram of human poses detected in a space-time neigh-
borhood centered at pointi in the video volume. The his-
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togram is not computed from all people that are detected
in the neighborhood, but only from those detections that
are estimated to take part in the target activity. Also, the
right placement of pointsi in the video, and the size of
their neighborhoods are adaptively determined from data,
such that the BORDs can summarize most informative hu-
man poses for activity recognition and localization. Below,
we first explain how to detect people and their poses in the
video, and, then, specify the BORD.

Given a video, we first run an efficient people detector.
Specifically, we use the approach of [2]. Its parameters are
set such that the detector yields high recall, under the av-
erage running time of 2s per frame. The high recall en-
sures that all activity participants are detected in the video.
Then, discarding false positives will be delegated to the
higher-level inference algorithm. The resulting detections
are bounding boxes, which represent our noisy input. In the
sequel, we will use the terms detector responses, detections,
and bounding boxes, interchangeably.

Next, we identify a characteristic human pose for every
detection. In particular, the detector that we use localizes
human-body parts (e.g., legs, arms) within each detected
bounding box [2]. The spatial layout of these body parts can
be used to define a descriptor of human poses, in terms of: i)
Part distances and orientations relative to a reference body
part; and (ii) Mean optical flow vector within the bound-
ing box, computed by the approach of [14]. We map each
human-pose descriptor to a dictionary of codewords, where
the words represent characteristic human poses. Our dictio-
nary consists ofd = 300 characteristic poses, learned by the
K-means algorithm on training videos with labeled bound-
ing boxes around people performing various group activities
of interest. Note that many other alternative definitions of
the human-pose descriptor can be specified, when a partic-
ular people detector used does not localize body parts.

Given noisy people detections and their characteristic
poses, the BORD at pointi seeks to identify the right de-
tections, which belong to the target activity, and compute
the histogramhi of their associated human poses, within a
spatiotemporal neighborhood ofi. To computehi, we avoid
enumerating exponentially many figure/ground labelings of
the detections. Rather, we computehi as a linear function:

hi = Vib, (1)

whereb ∈ {0, 1}k is a hidden variable vector that must be
inferred, andVi ∈ {0, 1}d×k is an observable matrix defin-
ing the spatiotemporal neighborhood ofi, as illustrated in
Fig. 2. Specifically,b is an indicator vector of allk bound-
ing boxes detected in the video. An element ofb is set to
1 if the corresponding bounding box is estimated as fore-
ground, or 0, otherwise. Also, an element(Vi)uv = 1 if
vth bounding box “falls” withini’s neighborhood, and the
bounding box is mapped touth human pose in the dictio-

Figure 2. The BORDhi summarizes the neighborhoodVi around
pointi in terms of a histogram of the right people detections which
are inferred in the indicator vectorbi. Dissimilarity between two
BORDs,Cij , is defined as their Mahalanobis distance.

nary. The shape of the neighborhood is defined as a space-
time ellipsoid centered ati, whose scale and principal axes
are adaptively estimated to fit the spatiotemporal changes
of bounding boxes in the vicinity (this is quite similar to
the standard estimation of the scale of interest points in im-
ages). In our experiments, we observe ellipsoids that span
between 2 to 6 frames.

For activity recognition and localization, we initially
sample a number of points,i = 1, ..., n, forming a regular
spatiotemporal grid. We allow for data-driven, non-rigid de-
formations of the grid, such that BORDs associated with the
grid points may assume optimal locations for collectively
providing the accurate information about foreground peo-
ple detections. Thus, detecting actors in the video, i.e., the
inference ofb, is informed by both local cues in the vicin-
ity of every pointi, and contextual cues provided by other
points of the grid. The inference ofb, and the optimal non-
rigid transformation of the grid are formalized as the MAP
inference of the chains model representing the activity.

3. The Chains Model

The chains model is a generative model of a given
activity class. The observable random variables of the
chains model include the set of BORDs,H = {hi :
i = 1, ..., n}, observed in the video. The model ac-
counts thatH is partitioned into an ordered, temporal chain
of foreground BORDs,O = (O(1), ..., O(m), ..., O(M)),
∀m, 1 ≤ O(m) ≤ n, belonging to the activity occurrence,
and background BORDs,H\O. The hidden variables of the
chains model include: (i) the activity’s start and end frames,
LS andLE ; (ii) the chain of foreground BORDsO; and (iii)
their total numberM . The joint probability distribution of
all random variables,P (M, O, LS , LE , H), is specified as

P (M, O, LS , LE, H) = P (M)P (O)P (LS |M, O, H)·

·P (LE |M, O, H)

M−1∏

m=1

P (hO(m+1)|hO(m))
∏

i∈H\O

PG(hi).

(2)
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Below, we explain each distribution.M has a Poisson dis-
tribution, P (M = m) =

λm

M

m! e−λM . This prevents infer-
ence of unrealistically short and very long chains.P (O)
is uniform if for all point pairs(O(m), O(m + 1)) the
frame of pointO(m) does not happen after the frame of
O(m + 1), andP (O) = 0, otherwise. This prevents the
chains to move backwards in time.P (LS |M, O, H) and
P (LE|M, O, H) are defined as the conditional probability
that the chain starts and ends at1 ≤ O(1) ≤ n and1 ≤
O(M) ≤ n. Specifically, lettO(1) andtO(M) be the frames
of the end-points of the chain. Then, we specify that the
probability of the start exponentially decreases astO(1) be-

comes larger,P (LS|M, O, H) = λS exp(−λS
tO(1)

tmax
), and,

similarly, P (LE |M, O, H) = λE exp(−λE
(tmax−tO(M))

tmax
).

P (hO(m+1)|hO(m)) is the transition probability between
two consecutive BORDs in the chain. We assume that all
legal orderings have a uniform distribution. Thus, in the
following, we will simplify notation and writeP (hj |hi) to
denote the probability of transitioning between foreground
points. Finally,PG(hi) is a uniform distribution that BORD
i belongs to the background. In summary, the set of param-
eters of the chains model isΘ = {λS , λE , λM , P (hj |hi)}.

4. The MAP Inference

Our MAP inference iterates two steps, as illustrated in
Fig. 3. In the first step, we compute the marginal posterior
distribution ofLS andLE over all possible chains, given a
set of observed BORDs,P (LS, LE |H). In the second step,
we re-estimate BORDs by adaptively warping their grid to-
ward maximizing their informativeness. In the following
two subsections, we explain each step.

4.1. Maximizing the Marginal Posterior

From (2), the marginal posterior ofLS andLE is

P (LS , LE |H) ∝
∑

M,O P (M, O, LS , LE , H),

∝
∑

M,O P (M)P (LS, LE |M, O, H)
∏

i,j P (hj |hi).
(3)

We compute (3) by organizing all transition probabili-
ties in ann × n matrix X = [P (hj |hi)]. Note that
each rowi of X contains the probabilities of transition-
ing, in one step, from pointi to other pointsj in the
video. The sum of these probabilities along each row
of X must be 1, X1n = 1n, where 1n is the n-
dimensional vector with all 1’s. It follows that the prob-
ability of transitioning fromi to j in m steps is equal to
(Xm)ij . In addition, we organize all conditional proba-
bilities P (LS, LE |M, O, H), for each control point, into
n-dimensional vectorsω = [P (LS=1|·), ..., P (LS=n|·)]T,
andγ = [P (LE=1|·), ..., P (LE=n|·)]T. It is straightfor-
ward to show that (3) can be computed as

P (LS, LE |H) ∝ ωT [
∑n

m=1 P (M = m)Xm] γ, (4)

Figure 3. Our MAP inference iteratively finds the start (S) and end
(E) frames of the activity through two steps. It: i) Estimates the
MAP Markov chains of a given set of BORDs, and ii) Warps the
grid of BORDs so they can extract more relevant visual cues for
the MAP inference in the next iteration.

Note that the summation in (4) includes all paths of length
m – not only simple paths without loops. We resort to this
approximation for reducing complexity. Assuming thatn is
a very large number,n → ∞, the bracketed term in (4) can
efficiently be approximated as

n∑

m=1

P (M = m)Xm
≈ e−λM

∞∑

m=0

λm
M

m!
Xm = e−λM eλM X .

(5)
By plugging in the parameters of different activity models,
Θa, a = 1, 2, ..., from (4) and (5), we have that the MAP
inference recognizes activity classa∗ as

a∗ = argmax
a=1,2,...

ωT
a · exp(λM ;a · Xa) · γa. (6)

Also, from (4) and (5), the optimal start and end of ac-
tivity a∗ can be estimated as indices1 ≤ i ≤ n and
1 ≤ j ≤ n of the maximum product:(L∗

S , L∗
E) =

argmaxi,j ωi;a∗ ·γj;a∗ · [exp(λM ;a∗ ·Xa∗)]
ij

. When multi-
ple instances of the activity need to be detected, we choose
the second, third, etc. best pair(i, j) for (L∗

S , L∗
E).

From (6), the MAP inference requiresX. In the next
subsection, we explain how to estimateX.

4.2. Extracting Optimal Features

Our goal is to estimate optimal locations of BORDs in
the video, so their histograms jointly provide the most rel-
evant visual cues for the MAP inference. At different loca-
tions, the BORDs include in their histograms different sets
of people detections. Thus, when in the optimal layout, the
BORDs should jointly include only foreground bounding
boxes in their histograms, i.e., correctly provide evidence
about people involved in the activity.

Finding optimal locations of BORDs and estimating
their transition probabilitiesX is specified as a constrained
optimization, and iteratively solved by alternating two
steps. We initially place 16 BORDs in every 5th frame,
so they form a regular grid. In the first optimization step,
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we deform the grid along the spatial and temporal axes to
its expected layout. Then, in the second step, eachXij is
estimated as confidence that BORDsi and j are the best
one-step transition along the temporal chain representing
the target activity. The two steps are iterated until conver-
gence. Below, we explain these two steps in greater detail.

First, given a current estimate ofX, the expected loca-
tion of each pointi can be found aŝqi =

∑
j Xijqj . The

qi is defined as a row vector:qi = [xi, yi, ti, cosϕi, sin ϕi],
wherexi andyi are coordinates of pointi in frameti, and
ϕ is the direction of optical flow ati, computed by [14].
Let Q denote ann × 5 matrix whose rows areQi· = qi,
i = 1, ..., n. Then, the expected locations of all points can
be expressed aŝQ = XQ.

Second, to estimateX, we find the best matching pairs
of BORDs, such that the matching is invariant to locally
affine transformation of the grid. Importantly, as the
BORDs change locations in the first optimization step, their
histograms “cover” different sets of bounding boxes in the
video, and consequently the best matching pairs of BORDs
change. In the following, we gradually formalize the match-
ing of BORDs from a simple standard linear assignment
problem to the desired complex optimization which allows
for non-rigid transformation of the grid.

Using the definition ofX, given in Sec.4, the matching
of BORDs can be formulated as the linear assignment:

minimize
∑n

i=1

∑n

j=1 XijCij

subject to∀i, j, Xij ≥ 0, X1n = 1n,
(7)

where dissimilarityCij = [(Vi − Vj)b]
T
Σ

−1(Vi − Vj)b.
Σ is learned for each activity class, and encodes the
activity-specific covariance of human poses. We organize
all dissimilaritiesCij in an n × n matrix Cb, whereb in
subscript indicates that eachCij is a function ofb. This
allows to write the summation in (7) more compactly as∑

i,j XijCij = tr{CT
b
X}.

Since computingCb requires foreground detections,b,
be estimated, we extend (7) with additional constraints, for
conducting minimization with respect to bothX andb:

minimize tr{CT
b
X}

subject toX ≥ 0, X1n = 1n, b ≥ 0, ‖b‖2
2 = 1.

(8)

We also wish to constrain points on the grid to preserve
their neighbor relations after reallocating to their expected
positionsQ̂ in the first optimization step. To this end, we
define ann × n adjacency matrixW , where eachWij is
inversely proportional to the Euclidean distance betweenqi

andqj , andWii = 0. W is used to extend (8), and ad-
ditionally minimize expected distances of each point to its
neighbors, defined as L1 norm‖Q̂ − WQ̂‖1, as

minimize tr{CT
b
X} + α‖(I − W )XQ‖1

subject toX ≥ 0, X1n = 1n, b ≥ 0, ‖b‖2
2 = 1.

(9)

We also wish to constrain the displacements of points
from their original positions, before warping the grid, not
only their relative distances to neighbors. This yields our
final formulation:

minimize tr{CT
b
X} + α‖(I−W )XQ‖1 + β‖(I−X)Q‖1

subject toX ≥ 0, X1n = 1n, b ≥ 0, ‖b‖2
2 = 1.

(10)
We here use empirically estimatedα = 0.3 andβ = 0.9.

To solve (10), we follow the linearization steps presented
in [8]. Thus, we introduce auxiliaryn × 5 matricesZ and
Y to replace the L1-norm constraints in (10) as

minimize tr{CT
b
X} + α1

T
n

Z 15 + β1
T
n

Y 15

subject to X ≥ 0, X1n = 1n, b ≥ 0, ‖b‖2
2 = 1,

Z ≥ 0, Y ≥ 0
(I − W )XQ ≤ Z, (I − W )XQ ≥ −Z

(I − X)Q ≤ Y , (I − X)Q ≥ −Y

(11)
where minimization is overX, b, Z, andY . From (11),
it follows that the matching of BORDs can be efficiently
solved as the linear program (LP). An LP with tens of
thousands of variables, and thousands of constraints can be
solved within seconds on a standard PC using state-of-the-
art solvers, such as CVX. The number of variables in our LP
model in (11) is proportional ton2. In our implementation,
for 103 BORDs, the CVX takes less than 5s on a 2.66GHz,
3.49GB RAM PC.

After findingX andb from (11), the BORDs are moved
to their expected locationŝQ = XQ. This, in turn, changes
their layout. In the next iteration step, we recompute: i)
W to capture new neighbor relations, and ii) histograms
hi = Vib to account for any new bounding boxes indicated
by the newb. The newW andCb are then plugged back
in (11). The iterations are repeated until changes of the ob-
jective of (11) become close to zero. We usually run 5 it-
erations. Our experiments demonstrate that the approach is
relatively insensitive to a specific choice of the initial layout
of BORDs, as long as they sufficiently densely populate the
video (e.g., our setup of 16 BORDs in every 5th frame).

5. Learning

The model parameters,Θ = {λS , λE , λM , P (hj |hi)},
are learned fromR training videos, provided for each group
activity. We assume that the training videos of lengthtmax

are labeled with the start and end frames of the activity oc-
currences,{(tS;r, tE;r) : r = 1, ..., R}, and with bound-
ing boxes around participants in regularly sampled frames.
Then, we computeλS=R/

∑
r

tS;r

tr
, λE=R/

∑
r(1−

tE;r

tr
),

andλM = R/
∑

r

(tE;r−tS;r)
tr

. The transition probabilities
P (hj |hi) depend on the covariance matrix of human poses
Σ. ForΣ, we first run the people detector of [2], and keep
only those detections that fall within the labeled bounding
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boxes. Then, we map the human-pose descriptors associ-
ated with these detections to codewords of the dictionary of
characteristic human poses. Finally, each elementΣuu′ is
computed as the covariance of codewordsu andu′.

6. Results

Our approach is evaluated on two benchmark datasets.
First, the Collective Activities dataset [1] consists of 75
short videos of crossing, waiting, queuing, walking, talking,
running, and dancing. This dataset tests our performance on
collective behavior of individuals under realistic conditions,
including background clutter, and transient mutual occlu-
sions of actors. For training and testing, we use2/3 and1/3
of the videos from each class, respectively. The dataset pro-
vides labels of every 10th frame, in terms of bounding boxes
around people performing the activity, their pose, and activ-
ity class. Second, the UT-Interaction dataset [13] consists of
20, 1-minute videos of continuous executions of 6 classes
of human interactions: shaking-hands, pointing, hugging,
pushing, kicking, and punching. Each video shows at least
one instance of every interaction class, where in some cases
distinct activities may co-occur. The videos show two scene
types: 10 videos are taken on a parking lot, and the other
10 videos are captured in a natural setting by a moving
camera. The UT-Interaction dataset presents a number of
challenges: the jittery camera motion, simultaneous perfor-
mance of several activities, activities may begin and end at
arbitrary times, presence of people who are not involved in
the activity, etc. The dataset provides ground truth labelsin
terms of time intervals of the activities, and bounding boxes
around all actors. Our evaluation setup is the same as that
presented in [12]. Specifically, for training, we use 20% of
the available manual segmentations of the videos into 60 in-
tervals, each occupied by a unique activity instance. We test
on the full (unsegmented) sequences.

We test different aspects of our approach through four
variants. Var1 is our default. It runs the MAP inference
on the optimally warped grid of BORDs, which seek to
identify the right participants of the activity in the clutter
of people detections obtained by the detector of [2]. We
set a low threshold of -3 for this detector that gives 93%
false positives on the UT-Interaction dataset.Var2 serves to
evaluate using BORDs as mid-level activity features versus
directly using lower-level, noisy people detections for activ-
ity recognition. Var2 has the same steps as Var1, except that
instead of the BORDs we run our MAP inference directly
on bounding boxes detected by the people detecter of [2],
and described by the pose descriptor. Note that we cannot
search for the optimal locations of video features, in Var2,
because the features are fixed people detections. Thus, we
compute the transition probabilitiesX in one-shot match-
ing of these detections from (11), where dissimilaritiesCij

are computed as differences of the pose descriptors. Var2

also evaluates the chains model when its inferences is not
boosted by the iterative search for optimal features.Var3 is
designed to evaluate the impact of the people detector of [2]
on our performance, by replacing its detections with even
more noisy, lower-level features. Given a test video, we
compute HOG-HOF descriptors at a dense grid of space-
time interest points (STIPs) [7]. As in Var1, we here use K-
means to build a dictionary of 300 codewords of HOGHOF
descriptors extracted from training videos. STIPs of the test
video are mapped to the dictionary of codewords, which en-
ables estimation of our BORDs. As in Var1, we search for
the optimal warping of these BORDs capturing the context
of HOGHOF-based codewords. Finally,Var4 evaluates the
significance of enabling invariance to non-rigid transforma-
tions of the grid of BORDs. Var4 uses all the steps of Var1,
except that we setα = β = 0 in (11).

Quantitative Results: We use three types of metrics for
evaluation: i) Activity classification accuracy, ii) Recall and
precision of activity detection (a-detection), and iii) Recall
and precision of detecting people involved in the activity (p-
detection). For evaluating a-detection, we compute a ratio,
ρa, of the intersection and union of detected and ground-
truth time intervals of activity occurrences. If the activity is
correctly recognized, andρa > 0.5 then the detected inter-
val is declared true positive (a-TP), otherwise it is false pos-
itive (a-FP). Note this also evaluates localization of start and
end frames of activity occurrences. For testing p-detection,
we compute a ratio,ρp, of the intersection and union of
detected and ground-truth bounding boxes of people partic-
ipating in activities. If the activity is correctly recognized,
andρp > 0.5 then the detected person is declared p-TP,
otherwise they are p-FP.

Table 1 compares our activity classification accuracy
with that of the state of the art approaches [6, 1, 11] on
the Collective Activity Dataset. For running and dancing
classes, no previous results have been reported. Table1 also
shows the average running times of our different variants.
The reported running times include only the MAP infer-
ence, and do not include the time it takes to run the people
detector, and compute other features and descriptors. As
can be seen, Var1 outperforms [6, 1, 11] in reasonable run-
ning times. Var2 is the fastest, but also the worst of all our
variants, because it does not search for the optimal features,
but takes fixed people detections as activity features. Nev-
ertheless, the inference of our chains model on “raw” fea-
tures, in Var2, compares favorably against the competing
methods. From Table1, searching for the optimal features
in Var1 improves performance by 3.9% relative to using
“fixed” features in Var2, with reasonable increase in run-
ning time. The results for Var3 and Var4 suggest that our
approach performs competitively well even with “poorer”
STIP features, and that enabling invariance to locally affine
transformations of features in Var1 improves performance
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Class Var1 Var2 Var3 Var4 [6] [1] [11]
Walk 72.2% 68.2% 68.8% 68.5% 68% 57.9% 25.5%
Cross 69.9% 65.1% 67.3% 66.4% 65% 55.4% 38.9%
Queue 96.8% 96% 96.5% 96.2% 96% 63.3% 25.5%
Wait 74.1% 70.0% 72.0% 71.1% 68% 64.6% 24.4%
Talk 99.8% 99% 99% 99% 99% 83.6% 43.0%
Run 87.6% 80% 82.7% 81.3% N/A N/A N/A

Dance 70.2% 65% 67.2% 67.6% N/A N/A N/A

Avg 81.5% 77.6% 79.0% 78.0% N/A N/A N/A

Time 55s 42s 54s 51s N/A N/A N/A

Table 1. Average activity classification accuracy, and running
times of the MAP inference on the Collective Activity Dataset [1].
Our Var1 outperforms [11], [1] and [6] on all classes.

Class Var3 Accur. Var3 a-FP Rate [12] Accur. [12] a-FP Rate
S.-Hands 78.9% 6.0% 75% 8.8%

Hug 90.4% 5.5% 87.5% 7.5%
Point 66.3% 2.5% 62.5% 2.5%
Punch 63.2% 15.4% 50% 20.13%
Kick 77.5% 10.8% 75% 13.8%
Push 78.2% 10.1% 75% 12.5%

Avg 75.75% 8.3% 70.8% 10.8%

Table 2. Average activity classification accuracy, and false positive
rates for a-detection on the UT Interaction Dataset [13].

by 3.5% over Var4.
Table 2 compares our activity classification accuracy,

and a-FP rate with those of [12] on the UT-Interaction
dataset. We here use Var3 for fair comparison, because [12]
does not use any people detector. We outperform [12] in
both metrics. Var3’s area under ROC curve for a-detection
is 0.94 which outperforms 0.91 of [12]. Also, Var3’s area
under ROC curve for p-detection is 0.87.

Qualitative Results: For generating qualitative results
we use our default Var1. Figures4-5 show our typical re-
sults on a few frames from the UT-Interactions and Collec-
tive Activity datasets. Figure6 shows a failure example,
where Var1 correctly detects activityhugging, but has p-FP
for one of the actors who is too close to the true participant.

7. Conclusion

We believe that complexity of group activities requires
a more synergistic interaction between high-level inference
algorithms and low-level feature extractors than seen in ex-
isting work. We have specified this interaction through: i)
Defining a new mid-level feature, called BORD; ii) Formu-
lating a new generative chains model for representing group
activities; and iii) Deriving a new MAP inference algorithm
that guides top-down optimal extraction of BORDs from the
video, and organizes them in temporal chains. This has en-
abled not only recognizing and localizing occurrences of
group activities, but also detecting their participants. Our
evaluation of benchmark UT-Human Interaction and Col-
lective Activities datasets demonstrates that we outperform
the sate of the art in activity recognition and localization,
under reasonable running times.
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Figure 4. Results of Var1 on example frames from the UT-Interaction Dataset. Our MAP inference correctly: i) Recognizesand detects
pushingandkickingeven when these activities co-occur in the video (top); ii) Identifies foreground BORDs (only a few examples shown
as colored ellipses, for clarity); and iii) Detects participants of the activity (colored bounding boxes). The BORDs and people detections
that are inferred to belong to the same activity are marked with the same color; the other people detections that are not associated with any
activity are marked with black bounding boxes. Locations and neighborhood size of BORDs are data-driven. As can be seen,a group of
people may be captured by a single BORD, and conversely one person may be covered by several BORDs.

Figure 5. Results of Var1 on example frames from the Collective Activity Dataset [1]: See the caption of Fig.4. Var1 is able to detect
distinct co-occurring activities. Sometimes, Var1 inferstwo activities instead of one, when the true activity is spatially spread-out (e.g.,
walking).

Figure 6. A failure example on the UT-Interaction Dataset: See the caption of Fig.4. Var1 correctly detects the activityhugging, but
wrongly identifies one bounding box as the actor (red); the other actor is correctly identified (magenta); this error is because the p-FP is
very close to the two truly hugging people.
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