
Latent Multitask Learning for View-Invariant Action Recognition

Behrooz Mahasseni and Sinisa Todorovic
Oregon State University

Corvallis, OR 97331, USA
mahasseb@eecs.oregonstate.edu, sinisa@eecs.oregonstate.edu

Abstract

This paper presents an approach to view-invariant ac-
tion recognition, where human poses and motions exhibit
large variations across different camera viewpoints. When
each viewpoint of a given set of action classes is specified
as a learning task then multitask learning appears suitable
for achieving view invariance in recognition. We extend the
standard multitask learning to allow identifying: (1) latent
groupings of action views (i.e., tasks), and (2) discrimi-
native action parts, along with joint learning of all tasks.
This is because it seems reasonable to expect that certain
distinct views are more correlated than some others, and
thus identifying correlated views could improve recognition.
Also, part-based modeling is expected to improve robust-
ness against self-occlusion when actors are imaged from
different views. Results on the benchmark datasets show
that we outperform standard multitask learning by 21.9%,
and the state-of-the-art alternatives by 4.5–6%.

1. Introduction
This paper considers the problem of view-invariant ac-

tion recognition. Given a video that shows a human ac-
tion (e.g., walking), we want to identify the action class and
camera viewpoint. The videos are captured from different
camera viewpoints, which are taken to be discrete and in-
dexed by the viewpoint identifier, or viewpoint, for short.

Invariance to viewpoint changes is critical for action
recognition, because people’s motion trajectories may take
arbitrary directions relative to the camera viewpoint while
performing an action. In our setting, natural variations of
action instances within a class are augmented by variations
in their appearance across different viewpoints.

One way to achieve view invariance could be to reason
about a 3D layout of the scene, or 3D volume of the human
body, so that the video features can be adapted from one
view to another through geometric transformations [29, 28,
23, 18, 14]. However, this framework critically depends on
accurate detection of the body joints and contour, which are

still open problems in real-world settings. An alternative
way would be to extract view-invariant video features [19,
17, 15, 25, 9, 7]. Some of these methods are limited by
requiring access to mocap data, while others find invariant
features for only a subset of views.

The third group of approaches use knowledge transfer.
They seek to extend knowledge acquired in training from
one or a limited number of views to other target views
where recognition will be performed. They either transform
view-dependent video features to a new view-invariant fea-
ture space [11, 12], or adapt model parameters to the tar-
get views [3, 4, 26]. The transformation is learned on the
co-occurrence statistics of view-dependent features. This is
attractive, because knowledge transfer relaxes the require-
ments for accurate 3D scene and 3D human-body recon-
struction. However, these approaches require access to si-
multaneous multiview observations of the same action in-
stance (except for [11]). In addition, they represent a video
by a bag-of-words (BoW) disregarding the layout of human-
body parts. Accounting for body parts seems important in
our setting, because they are subject to self-occlusion when
imaged from different views.

To approach our problem, we specify that each viewpoint
of a given set of action classes is a learning task. Then, view
invariance in recognition could be achieved by jointly learn-
ing all the tasks using Multitask Learning (MTL) [2]. This
is because MTL would be able to estimate a latent feature
representation shared across all views. While MTL is well
known to vision [20, 13, 16, 31], it has never been used for
view-invariant action recognition.

MTL is based on the assumption that all the tasks consid-
ered (i.e., in our case viewpoints of actions) are correlated.
However, in our setting, this assumption may be too strong.
Human actions may occur in cluttered scenes, and discrim-
inative movements of the human body may not be visible
from all viewpoints. Therefore, MTL is bound to under-
or over-estimate the correlation among all the viewpoints,
due to confusing background and foreground features, and
disregarding self-occlusions of the human body.

To address the above issues, we extend the standard

1

MTL to Latent Multitask Learning (LMTL). Our LMTL
uses a part-based action representation, instead of the stan-
dard BoW. In this way, LMTL is enabled to identify fore-
ground video features which group into discriminative ac-
tion parts, each corresponding to characteristic movements
of a human-body part. In addition, LMTL is enabled to
identify latent groupings of correlated viewpoints of a given
set of action classes. Thus, LMTL learns a new shared fea-
ture space, such that each group of camera viewpoints found
to be correlated are allowed to share features, whereas this
sharing is prohibited between the groups.

We use the latent large-margin framework [30] to for-
mulate LMTL, wherein we incorporate the mixed integer
programming of [10] for grouping the viewpoints. This ex-
tends the work of [10], which does not account for latent
parts. Within each group of viewpoints, a shared feature
representation is estimated and used for learning parame-
ters of a part-based action model, subject to the trace-norm
regularization. Fig. 1 shows an overview of our approach.

In the sequel, Sec. 2 gives a more formal overview of our
approach, Sec. 3 reviews the standard MTL, Sec. 4 formu-
lates our LMTL, Sec. 5 specifies inference, Sec. 6 describes
video features, and Sec. 7 presents our results.

2. Overview of Our Approach
Our LMTL framework leverages a deformable parts

model (DPM) [5]. DPM has K nodes representing K ac-
tion parts, connected in a star structure. An action part is
a discriminative space-time window in the video volume.
Thus, each node of DPM can be characterized by spatiotem-
poral features extracted from the corresponding space-time
window. The nodes are connected to the root, where the
graph edges encode space-time deformations of the action
parts. DPM parameters represent weights associated with
nodes and edges. The weights can be learned within the
latent large-margin framework [30], aimed at jointly dis-
covering the K latent parts, and estimating their weights so
as to maximize the discriminativeness of DPM across a set
of action classes. Below, we give an overview of how to
ground action parts onto raw pixels, and how to perform
view-invariant action recognition.

Access to action parts is provided by representing a
video by a large set of overlapping space-time windows
of different sizes and shapes, V = {V1, ...,VN}. When
an action occurs in the video, it occupies only a subset of
K � N windows, A = {Vk : Vk ∈ V, k = 1, ...,K},
corresponding to the K action parts. Video features ex-
tracted from A, and spatiotemporal displacements of the
windows in A can be represented by a d-dimensional vec-
tor, φ(x, y,h), where x denotes the features; y is the action
class; and h denotes the space-time locations of the win-
dows in A. For a set of M action classes, we learn a mul-
ticlass DPM by using an augmented D-dimensional feature

canonical view 1

...

Finding Latent Parts and Grouping Viewpoints of all Action Classes

Latent Multitask Learning

new video

max
y,v,h

wT
yvU

TΦ(x, y,h)

{{wv,y}, U}

{ŷ, v̂}

output

canonical view 2 canonical view g

Figure 1: For a given video, we estimate the action class ŷ
and viewpoint v̂ using Latent Multitask Learning (LMTL).
LMTL identifies action parts, h, and groups of correlated
camera viewpoints. LMTL learns a linear transformation
U to map input view-dependent features to a new feature
space, partitioned into subspaces which are shared by view-
points within the same group.

vector, Φ(x, y,h), whereD = d·M . Φ(x, y,h) is a sparse
vector, whose all elements are set to zero, except in the yth
segment of d elements copied from φ(x, y,h).

Our LMTL is aimed at transforming the input view-
dependent Φ(x, y,h) to a new, view-invariant feature
space. We use a linear transform, U>Φ(x, y,h), where
U ∈ RD×D is an orthogonal square matrix. For recogni-
tion, we define the multiclass discriminant function F as

Fy,v,h(x) = w>v U
>Φ(x, y,h), (1)

where v is the viewpoint, and wv ∈ RD are the multiclass
DPM parameters. Given a video, the action class and view-
point are estimated via localizing latent action parts as

(ŷ, v̂) = arg max
y,v,h

Fy,v,h(x). (2)

We learn wv using LMTL. In the following section, we
briefly review the standard MTL, and defer the specification
of LMTL to Sec. 4.

3. A Brief Review of Multitask Learning
The model parameters wv , defined in Sec. 2, can be

learned using MTL, where each task v represents recog-
nition of one of M action classes imaged from the given
view v. This section, first, specifies a learning paradigm
where the tasks are learned independently, referred to as
Baseline 1. Then, we present the standard MTL, referred to
as Baseline 2. Finally, we review the recent task-grouping
MTL of [10], referred to as Baseline 3. These baselines are
used in our experiments for comparison (Sec. 7).

Baseline 1: Let W be a matrix whose columns are
wv , indexed by viewpoints v = 1, ..., V . Also, let

∆(y, ŷ(wv,x)) denote a loss function of recognizing ac-
tion class ŷ when the true class is y in the vth task. For
this baseline, we assume that all tasks use the same fea-
ture space, with feature vectors x. Given training data
Dv = {(xi, yi) : i = 1, 2, ...}, the tasks can be learned
independently as

min
W

∑V
v=1

∑
(xi,yi)∈Dv

∆(yi, ŷ(wv,xi)) + γ‖W‖2F , (3)

where ‖W‖2F =
∑

v ‖wv‖22 is the Frobenius norm of W .
Baseline 2 = MTL: MTL extends Baseline 1 by finding

a common feature subspace on which all the tasks perform
well. We use a linear transformation U of the original fea-
tures, U>x, to find a lower-dimensional subspace. As in
[10], we regularize MTL learning of every wv by using the
(2,1)-norm of W , ‖W‖2,1 =

∑D
i=1

√∑
v w

2
i,v , as

min
W,U

∑V
v=1

∑
(xi,yi)∈Dv

∆(yi, ŷ(wv, U
>xi)) + γ‖W‖22,1.

(4)
The regularization of W in (4) enforces row-sparseness of
W , i.e., maximizes the number of zero rows in W .

Note that the loss in (4) is not convex with respect to both
W and U ; but it is convex with respect to each of them sep-
arately. For solving (4), we use the approach of [1], where a
similar optimization problem is addressed by removing the
non-convex dependency of the loss function on two vari-
ables. To this end, we introduce the following notation:

(Θ, Ω) = (UW, Udiag(λ)U>), (5)

where λ = [‖W1‖2
‖W‖2,1 , ...,

‖Wi‖2
‖W‖2,1 ,,

‖WD‖2
‖W‖2,1] and Wi is the

ith row ofW . The columns of matrix Θ are denoted as {θv :
v = 1, ..., V }. Using this new notation, the minimization
problem of (4) can be expressed as (see the proof in [1]):

min
Θ,Ω

∑
v

∑
(xi,yi)∈Dv

∆(yi, ŷ(θv,xi)) + γ
∑
v

θ>v Ω−1θv. (6)

From (1) and (2), our inference requires the computation of
the product Θ = UW , rather than using the matrices U and
W individually. Therefore, instead of learning U and W , it
suffices to learn Θ, and then directly use Θ in (2). Next, we
describe an algorithm for estimating Θ and Ω from (6).

The following two-step iterative algorithm, presented in
[1], can be used for solving the optimization problem of (6):

1. Given Θ, find Ω from (6). By theorem 4.1 in [1], there

is a closed-form solution Ω= (ΘΘ>)
1
2

Trace((ΘΘ>)
1
2)

.

2. Given Ω, find Θ from (6). Substituting the
closed-form solution of Ω from step 1 in (6), we
get min

Θ

∑
v

∑
(xi,yi)∈Dv

∆(yi, ŷ(θv, xi)) + γ‖Θ‖2∗,
where ‖ · ‖∗ is the trace norm.

Baseline 3 = Task-grouping MTL: In [10], the standard
MTL is extended by grouping tasks and finding feature sub-
spaces for different groups. As mentioned in Sec. 1, the
approach of [10] is agnostic of parts, and thus is our Base-
line 3. The task grouping can be achieved by separating the
regularization of Θ over distinct task groups in (6) as

min
Θ,Ω

∑
v

∑
i

∆(yi, ŷ(θv,xi)) + γ
∑
g

∑
vg

θ>vgΩ−1θvg , (7)

where vg denotes viewpoints that belong to group g. Note
that a solution of (7) needs to resolve the latent assignment
of viewpoints to groups, in addition to finding Θ and Ω.

As for Baseline 2, we can use the above two-step iter-
ative algorithm for solving (7). For given Θ, the first step

finds the closed-form solution Ω= (ΘΘ>)
1
2

Trace((ΘΘ>)
1
2)

. Then, in

the second step, we substitute this closed-form solution for
Ω into (7), and obtain the following simpler problem:

min
Θ

∑
v

∑
i ∆(yi, ŷ(θv, xi)) + γ

∑
g ‖Θg‖2∗. (8)

where Θg is a matrix whose columns are parameters θvg of
the viewpoints in group g.

Mixture integer programming can be used in (8) to iden-
tify the latent assignment of viewpoints to groups. LetQg ∈
RV×V denote the diagonal assignment matrices for group-
ing the viewpoints into their respective groups g. Thus, (8)
can be conveniently expressed as

min
Θ,{Qg}

∑
v

∑
i ∆(yi, ŷ(θv, xi)) + γ

∑
g ‖ΘQg‖2∗

s.t.
∑

g Qg = I,
(9)

where I is the identity matrix. Note that when the maximum
g = 1, Baseline 3 is equivalent to Baseline 2.

4. Latent Multitask Learning
This section specifies our LMTL. We extend the task-

grouping MTL of [10] (i.e., Baseline 3) to additionally iden-
tify discriminative action parts. The goal of LMTL is to
learn Θ and Ω, defined in (5), and the viewpoint grouping
matrices {Qg}, defined in (9), and use them for inference
in (2). Below, we first specify how to estimate Ω, then for-
mulate a new optimization problem for estimating Θ, and
{Qg}, and finally present an iterative algorithm for learning
all LMTL parameters Θ, Ω, and {Qg} on training data.

As in Baselines 2 and 3, we can readily estimate Ω, given

Θ, using the closed-form solution Ω= (ΘΘ>)
1
2

Trace((ΘΘ>)
1
2)

.

New Optimization Problem. For learning Θ, and
{Qg}, we introduce a new loss function, and substitute it in
(9). Let h∗vi = h∗(θv,xi) denote the estimates of vth task
for latent action parts in a training video, (xi, yi) ∈ Dv ,
given its true action class yi. Also, let ĥvi = ĥ(θv,xi)

denote the estimates of vth task for latent action parts in
the same training video, (xi, yi) ∈ Dv , without the knowl-
edge of its true action class, but given some estimate ŷvi =
ŷ(θv,xi). Then, as in [5, 30], we define a loss function,
∆(yi,h

∗
vi, ŷvi, ĥvi), in terms of both action class labels and

latent variables, and substitute it in (9). Thus, we obtain the
following new optimization problem:

min
Θ,{Qg}

∑
v

∑
i ∆(yi,h

∗
vi, ŷvi, ĥvi) + γ

∑
g ‖ΘQg‖2∗

s.t.
∑

g Qg = I,
(10)

The above loss function ∆(yi,h
∗
vi, ŷvi, ĥvi) is not convex.

As discussed in [30, 5], defining a loss function based on h∗

is difficult. Following the derivation in [30, 5], we approx-
imate ∆(yi,h

∗
vi, ŷvi, ĥvi) with the upper-bound loss func-

tion, ∆(yi,h
∗
vi, ŷvi, ĥvi) ≤ ∆ub(yi, ŷvi, ĥvi), where

∆ub(yi, ŷvi, ĥvi) = max
ŷ,ĥ

[θv
>U>Φ(xi, ŷ, ĥ) + ∆01(yi, ŷ)]

−max
h

[θv
>U>Φ(xi, yi,h)],

(11)
where ∆01(yi, ŷ) is defined as the standard zero-one loss,
taking value 1 when yi 6= ŷ, and 0, otherwise. We substitute
∆ub in (10), which gives our final formulation for learning
Θ and Qg parameters:

min
Θ,{Qg}

∑
v

∑
i ∆ub(yi, ŷvi, ĥvi) + γ

∑
g ‖ΘQg‖2∗

s.t.
∑

g Qg = I.
(12)

Iterative Algorithm. Given training data, Dv =
{(xi, yi)}, v = 1, ..., V , the parameters of LTML, Θ, Ω
and {Qg}, are learned using an iterative algorithm, where
each iteration consists of the following three steps.

Step 1: Given Ω and {Qg}, find Θ from (12). The
key ideas is that for given {Qg}, the optimization prob-
lem of (12) is separable, i.e., the columns of Θ, {θv :
v = 1, ..., V }, can be independently estimated. This fol-
lows from

∑
g ‖ΘQg‖2∗ =

∑
g ‖Θg‖2∗ =

∑
g

∑
v∈g ‖θv‖22,

where v ∈ g means that the latter sum is only over those
viewpoints in the group g. From (11) and (12), we derive
the following V optimization problems for finding Θ:

min
θv

[1

2
‖θv‖2 + C

n∑
i∈Dv

max
ŷ,ĥ

[θvΦ(xi, ŷ, ĥ) + ∆01(yi, ŷ)]

−C
n∑

i∈Dv

max
h

[θvΦ(xi, yi,h)]
]
,

(13)
Note that (13) is the standard latent structured SVM formu-
lation [5, 30], and can be efficiently solved using the CCCP
algorithm, as in [5, 30].

Step 2: Given {Qg} and Θ, compute Ω using the closed-

form solution, Ω = (ΘΘ>)
1
2

Trace((ΘΘ>)
1
2)

.

Step 3: Given Θ and Ω, find {Qg}. In this step, we use
the gradient descent, following the derivation presented in
[10]. The gradient decent of the Lagrangian function of (12)
is made possible in [10] by relaxing the integer regulariza-
tion in (12) to

∑
g ‖Θ

√
Qg‖2∗. For binary solutions of Qg

the relaxed regularization is equivalent to the original one.

5. Inference
Given a set of space-time windows of a new video, V =

{V1, ...,VN}, inference consists of two steps.
In the first step, we infer latent variables, ĥ, i.e., identify

K action parts in V, using the distance transform accom-
modated for 2D+time volumes [5]. From (1), this uniquely
specifies the augmented feature vector Φ(x, y, ĥ) that is
used for computing the multiclass discriminant function:

Fy,v,ĥ(x) = w>v U
>Φ(x, y, ĥ) = θ>v Φ(x, y, ĥ). (14)

In the second step, from (2) and (14), we recognize the
action class and viewpoint of the new video as

(ŷ, v̂) = arg max
y,v

θ>v Φ(x, y, ĥ). (15)

6. Features
This section describes our feature vectors x and

φ(x, y, ĥ).
A video is represented by a large set of overlapping

space-time (2D+t) windows of different sizes. Each 2D+t
window is characterized by the standard BoW with 2000
codewords. For extracting the codewords, we use dense
trajectories [22], which have shown promise for view-
invariant action recognition [26]. The dense trajectories
are described by a concatenation of the following descrip-
tors: trajectory(30), HOG(108), HOF(96), MBHx(96), and
MBHy(96)). For extracting the dense trajectories, and com-
puting their descriptors, we use the software implementa-
tion from [21]. Given the set of feature descriptors from all
videos in training data, we use K-means to find the 2000
codewords, and thus produce the BoW descriptions of all
space-time windows in the video.
φ(x, y, ĥ) is formed by concatenating unary and pair-

wise potentials of action parts. The unary potential is a
BoW associated with the corresponding space-time win-
dow. The pairwise potential is defined as the Euclidean dis-
tance between the two closest corners of the 2D+t windows
corresponding to the root and the action part.

7. Results
Datasets. We evaluate our approach on three benchmark

datasets including: the IXMAS dataset [25], the newer ver-
sion of IXMAS dataset [24] referred to as IXMAS(new),
and the i3DPost multiview human action dataset [6]. IX-
MAS has 12 different actions performed by 11 actors three

Figure 2: Our average recognition accuracy on i3DPost
videos for different input parameters K and g.

times. These actions have been recorded in five different
viewpoints. IXMAS(new) has the same set of actions as
IXMAS, recorded from five different viewpoints with dif-
ferent cameras. Two-thirds of the videos contain objects in
the scene partially occluding the actors. i3DPost has 13 ac-
tions of 8 people recorded from 8 viewpoints. In addition
to simple actions (e.g. Walk, Run, Bend), i3DPost contains
structured actions (e.g. Run-Fall, Run, Jump, Walk), and
actions with two actors (e.g. Pull). Prior work reports ac-
curacy only for the simple actions of i3DPost. We evaluate
our approach on all the actions of i3DPost.

Video Representation. A video is split into overlapping
2D+t windows of varying width, height and time duration.
The width and height vary in a range of [100, 200] pixels,
and time varies in [5-90] frames in increments of 10 frames.
This generates approximately 25000 overlapping 2D+t win-
dows for a video of 90 frames of size (400 × 300) pixels.
In our experiments, our approach is relatively insensitive to
the size parameters and placement of 2D+t windows. For
example, a twice larger size and coarser placement of 2D+t
windows, totaling 10000, yields on average a performance
reduction by 2%.

Input parameters to our LMTL include: the number
of action parts K = {2, 4, 6, 8} and the number of groups
g ∈ {1, 5, 6, 7, 8}. We test our sensitivity to the specific
choice ofK and g. Fig. 2 shows that changes of g affect our
average accuracy on the action classes of i3DPost. Varying
K in the subrange 4−−6 seems to have negligent effect on
our average accuracy. In the following, we will use g = 3
and K = 6, which give the best results, if not mentioned
otherwise.

Baselines. Baseline 1 learns action classifiers separately
for different viewpoints, and is specified in (3). Baseline 2
learns a common feature subspace for all tasks; it is intro-
duced in [1], and specified in (4). Baseline 3 learns a feature
subspace for a group of tasks; it is introduced in [10], and
specified in (9).

Two Settings. We use two settings for evaluation. First,
we have access to a balanced set of labeled data from all
viewpoints. We use the standard two-thirds and one-third

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg
B1 78.7 75.3 74.8 73.8 69.6 74.4
B2 78.9 71.5 70.1 69.1 72.4 72.4
B3(g=3) 81.1 82.8 82.5 80.4 77.6 80.9
LMTL(g=1) 86.4 85.5 80.2 84.1 76.8 82.6
LMTL(g=3) 96.8 95.6 94.7 96.5 92.1 95.1

Table 1: Average accuracy in [%] of LMTL and Baseline1
(B1), Baseline2 (B2), Baseline3 (B3) for different camera view-
points on IXMAS.

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg
B1 65.5 64.2 62.7 68.8 59.3 64.1
B2 60.3 66.2 60.5 63.8 61.9 62.5
B3(g=3) 68.8 70.1 66.5 70.6 64.4 68.1
LMTL(g=1) 78.2 81.6 80.7 77.6 76.1 78.8
LMTL(g=3) 90.2 91.4 88.7 88.1 84.4 88.6

Table 2: Average accuracy in [%] of LMTL and Baseline1
(B1), Baseline2 (B2), Baseline3 (B3) for different camera view-
points on IXMAS(new).

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Cam5 Cam6 Cam7 Avg
B1 72.4 74.8 72.6 69.6 69.7 70.6 73.9 71.2 71.9
B2 69.7 73.9 72.3 68.8 70.5 69.7 70.4 70.1 70.7
B3(g=3) 71.3 81.2 79.4 80.7 74.5 77.3 78.2 77.8 77.6
LMTL(g=1) 85.4 84.5 86.7 86.6 81.6 79.5 79.8 80.9 83.1
LMTL(g=3) 89.9 91.1 89.5 90.9 86.9 85.6 84.2 83.4 87.7

Table 3: Average accuracy in [%] of LMTL and Baseline1
(B1), Baseline2 (B2), Baseline3 (B3) for different camera view-
points on i3DPost.

split for training and testing, respectively. This setting al-
lows us to compare our LMTL with the baselines and meth-
ods which use all viewpoints in training. The second set-
ting tests how our LMTL deals with an unbalanced number
of videos from different viewpoints, as is often the case in
real world applications. We have access to videos from one
or more source views, and limited (or no) access to videos
from other target views. For evaluation, we vary the num-
ber of source views, and the number of videos from target
views present in training.

Tables 1, 2 and 3 show the average accuracy of LMTL
and the baselines with respect to different viewpoints on IX-
MAS, IXMAS(new) and i3DPost respectively in the first
setting.

We see that sharing features across all viewpoints in
Baseline 2 worsens results relative to Baseline 1. This
is not a surprise, because the assumption that all view-
points share a common feature space is too strong (e.g.,
top view in IXMAS dataset has completely different ap-
pearance from the other views). We can see that Base-
line 3 gives better accuracy by grouping different view-
points. Another interesting observation is the effect of using
latent action parts. LMTL(g=1), gets better results com-
pared to Baseline 3, especially on the IXMAS(new) and

CW CA GU KI PU PT PC SH SD TA WK WV
CW 93.1 0 0 0 0 1.7 0 3.4 0 0 0 1.7
CA 3.4 89.7 0 0 0 0 0 1.7 0 0 0 5.2
GU 0 0 100 0 0 0 0 0 0 0 0 0
KI 0 0 0 100 0 0 0 0 0 0 0 0
PU 0 0 0 0 98.3 0 0 0 1.7 0 0 0
PT 0 0 0 0 0 86.2 8.6 0 1.7 0 0 3.4
PC 0 0 0 3.4 0 3.4 93.1 0 0 0 0 0
SH 1.7 1.7 0 0 0 0 0 89.7 0 0 0 6.9
SD 0 0 0 0 0 0 0 0 100 0 0 0
TA 0 0 0 0 1.7 0 0 0 0 96.6 1.7 0
WK 0 0 0 0 0 0 0 0 0 0 100 0
WV 1.7 3.4 0 0 0 1.7 0 1.7 0 0 0 91.4

Table 4: The confusion matrix of LTML for the IXMAS action
classes. CW=CheckWatch, CA=CrossArms, GU=GetUp, KI=Kick,
PU=PickUp, PT=Point, PC=Punch, SH=ScratchHead, SD=SitDown,
TA=TurnAround, WK=Walk, WV=Wave. The values are in [%]

CW CA GU KI PU PC SH SD TA WK WV
CW 79.3 8.6 0 0 0 5.2 3.4 0 0 0 3.4
CA 6.9 75.9 0 0 0 3.4 6.9 0 0 0 6.9
GU 0 0 89.7 0 3.4 0 0 6.9 0 0 0
KI 0 0 0 93.1 0 5.2 0 0 1.7 0 0
PU 0 0 5.2 0 94.8 0 0 0 0 0 0
PC 1.7 0 0 6.9 0 91.4 0 0 0 0 0
SH 0 5.2 0 0 0 1.7 82.8 0 0 0 10.3
SD 0 0 6.9 0 3.4 0 0 89.7 0 0 0
TA 0 0 0 1.7 0 0 0 0 93.1 5.2 0
WK 0 0 0 0 0 0 0 0 0 100 0
WV 0 3.4 0 1.7 0 0 5.2 0 0 5.2 84.5

Table 5: Confusion matrix of LMTL on IXMAS(new) ac-
tion classes. CW=CheckWatch, CA=CrossArms, GU=GetUp,
KI=Kick, PU=PickUp, PC=Punch, SH=ScratchHead, SD=SitDown,
TA=TurnAround, WK=Walk, WV=Wave

BD HS HW JF JP PL RN RF RJ SS WK WS
BD 96.6 0 0 0 0 0 0 0 0 3.4 0 0
HS 0 65.5 0 0 0 0 0 0 1.7 0 24.1 8.6
HW 0 0 100 0 0 0 0 0 0 0 0 0
JF 0 0 0 91.4 0 0 8.6 0 0 0 0 0
JP 0 0 0 0 100 0 0 0 0 0 0 0
PL 3.4 5.2 0 10.3 0 67.2 3.4 1.7 0 8.6 0 0
RN 0 0 0 0 0 0 96.6 1.7 0 0 1.7 0
RF 0 0 0 0 0 0 5.2 93.1 1.7 0 0 0
RJ 0 0 0 15.5 0 0 8.6 3.4 70.7 0 0 1.7
SS 6.9 0 0 0 0 0 0 0 0 93.1 0 0

WK 0 0 0 0 0 0 0 0 0 0 100 0
WS 0 0 0 0 0 0 1.7 0 0 0 20.7 77.6

Table 6: Confusion matrix of LMTL on I3DPost action classes.
BD=Bend, HS=HandShake, HW=HandWave, JF=JumpForward,
JP=Jump-In-Place, PL=Pull, RN=Run, RF=Run-Fall, RJ=Run-Jump-
Walk, SS=Sit-Standup, WK=Walk, WS=Walk-Sit

I3DPost datasets which contain occlusion and structured ac-
tions. This shows the merit of our accounting for action
parts. We also see performance improvement by grouping
viewpoints, LMTL(g=3), over using a single group. In sum-
mary, we perform 10% − 26% better than the baselines on
the benchmark datasets.

Tables 4, 5 and 6 show the confusion tables of our ap-
proach for action classes on the IXMAS, IXMAS(new) and
i3DPost datasets. Although we do not model structured ac-
tions and actions with more than one actor explicitly in our
model, results on the i3DPost dataset show a reasonable ac-
curacy for these set of actions.

Figure 3: Accuracy in [%] of LMTL across different
viewpoints on IXMAS.

CAM0 CAM1 CAM2 CAM3 CAM4
CAM0 81.8 12.7 3 1.8 0.6
CAM1 16.4 81.2 1.8 0.6 0
CAM2 0.6 3 84.8 11.5 0
CAM3 3.6 3.6 8.5 83.6 0.6
CAM4 1.8 4.8 7.3 7.9 78.2

Table 7: The confusion matrix of viewpoints estimated by LMTL on
IXMAS. The values are in [%]

CAM0 CAM1 CAM2 CAM3 CAM4
CAM0 82.4 1.8 9.7 1.2 4.8
CAM1 1.2 87.9 2.4 7.9 0.6
CAM2 4.2 0.6 83.6 1.8 9.7
CAM3 1.2 8.5 1.8 86.1 2.4
CAM4 5.5 1.2 7.3 2.4 83.6

Table 8: Confusion matrix of estimated viewpoints for LMTL on
IXMAS(new). Values are in [%]

Studying recognition accuracy per viewpoint is impor-
tant, because it shows how well an approach performs in
different viewpoints. Fig. 3 shows our average accuracy
per viewpoint on the IXMAS dataset. We can see that
our recognition accuracy is consistent across different view-
points.

Table 7 shows the confusion matrix of our viewpoint es-
timation on the IXMAS dataset. Our average viewpoint es-
timation accuracy is 82%. Confusion matrices of our view-
point estimation on the IXMAS(new) and i3DPost datasets
are shown in tables 8 and 9 respectively.

In the second setting, we fix the number of source view-
points, and evaluate the sensitivity of LMTL to a varying
fraction of target samples in training. Fig. 4 shows the aver-
age accuracy of LMTL for different fractions of target views
in the IXMAS datasets. For 0% fraction of target views,
LMTL does not perform as good as [11] on IXMAS. This is
because LMTL is a supervised approach, and needs at least
some fraction of target examples for classification. Starting

CAM0 CAM1 CAM2 CAM3 CAM4 CAM5 CAM6 CAM7
CAM0 88.7 6.7 4.6 0 0 0 0 0
CAM1 3.6 90.3 5.6 0 0 0 0.5 0
CAM2 0 0 90.3 0 1.0 8.7 0 0
CAM3 6.7 4.1 0 88.7 0 0.5 0 0
CAM4 0 0 0.5 0 86.7 0 2.1 10.8
CAM5 0 0 7.7 0 0 91.3 1.0 0
CAM6 0 0 0 0 3.6 0 91.8 4.6
CAM7 0 0.5 0 0 8.7 0 6.2 84.6

Table 9: Confusion matrix of estimated viewpoints for LMTL on
I3DPost. Values are in [%]

Figure 4: Average accuracy in [%] based on the fraction of
target examples in the IXMAS training dataset.

Figure 5: Average accuracy in [%] for different numbers
of viewpoints in the IXMAS, IXMAS(new) and i3DPost
datasets.

from one-fourth of target samples, we get better accuracy
compared to [11].

In the second setting, we also test our sensitivity to the
number of source viewpoints. This is important, because
not all methods result in significant performance increase
by using multiple source views (e.g. [11]). Fig. 5 shows
the effect of using multiple source views on our average ac-
curacy for three datasets. We have averaged over all dif-
ferent combinations of source views. In addition to the
source view videos, we also use one-third of videos of the
target viewpoint in learning. Note that the total number of
groups of viewpoints is limited by the number of the source
views, which is 5 in IXMAS, and 8 in both IXMAS(new)
and i3DPost.

For a fair comparison with the state of the art, we use

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg
[11] 62.0 65.5 64.5 69.5 57.9 63.9
[26] 86.1 93.1 73.6 80.6 - 83.3
LMTL 89.2 87.7 86.8 90.5 79.6 86.8
LMTL 89.2 87.7 86.8 90.5 - 88.6

Table 10: Average accuracy in [%] of LMTL, and the state of
the art on IXMAS in unbalanced labeling mode.

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg
[9] 74.8 74.5 74.8 70.6 61.2 71.2
[12] 86.6 81.1 80.1 83.6 82.8 82.8
[26] 95.1 89.6 91.7 90.3 - 91.7
LMTL 95.9 96.8 94.5 96.9 89.9 94.8
LMTL 95.9 96.8 94.5 96.9 - 96

Table 11: Average accuracy in [%] of LMTL and the state of
the art on IXMAS in balanced labeling mode.

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg
[24] 87.0 88.3 85.6 87.0 69.7 83.5
LMTL 90.2 91.4 88.7 88.1 84.4 88.6

Table 12: Average accuracy in [%] of LMTL and the state of
the art on IXMAS(new) in balanced labeling mode.

two different modes of tests: 1) Unbalanced labeled mode,
where we use one-third of videos from the target views in
training, and 2) Balanced labeled mode, where we use two-
thirds of videos from the target views in training. The state-
of-the-art approaches include [9] and [11, 12] as represen-
tatives of view-invariant features and transfer learning ap-
proaches. [11] uses multi-kernel SVM. We also compare
with another latent structured model [27]. A comparison
with geometric-based approaches to view-invariant recog-
nition is not possible, because they do not report their ac-
curacy per viewpoint. Table 10 shows the comparison on
IXMAS in the unbalanced labeled mode. Tables 11 and 12
show the comparison using fully labeled training data on the
two IXMAS datasets. LMTL outperforms the state-of-the-
art approaches by 4.5–6%.

The best average accuracy on the simple action classes of
i3DPost, reported in [8], is 90.88%. From Table 3, LMTL
outperforms the approach of [8] by 5.4% for the same set
of actions. Our evaluation on i3DPost shows that the DPM
representation of action classes is capable of handling more
complex, structured actions.

Implementation is done in C++. We perform our ex-
periments on a core-i7 cpu and 8GB RAM PC. The infer-
ence running time is O(m logm), where m is the number
of overlapping 2D+t windows in the video.

8. Conclusion
We have formulated a new approach to view-invariant

action recognition. Our novelty is two-fold. We have for-
malized viewpoints of a given set of action classes as learn-
ing tasks, which can be jointly learned within the Multitask
Learning (MTL) framework. To express that some view-
points may not be correlated, and that discriminative action
parts are subject to occlusion across the views, we have ex-
tended the standard MTL to latent MTL (LMTL). Thus, our
LMTL identifies groupings of correlated viewpoints, lever-
aging a multiclass deformable parts model of actions.

Our evaluation on the benchmark IXMAS, IX-
MAS(new), and i3DPost datasets shows that account-
ing for parts and grouping viewpoints in LMTL leads
to significant performance improvements over MTL, and
other knowledge-transfer approaches to view-invariant ac-
tion recognition.

Acknowledgement
The support of the National Science Foundation under

grant NSF IIS 1018490 is gratefully acknowledged.

References
[1] A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task

feature learning. Machine Learning, 73:243–272, 2008. 3, 5
[2] R. Caruana. Multitask learning. Machine Learning,

28(1):41–75, 1997. 1
[3] A. Farhadi and M. K. Tabrizi. Learning to recognize activi-

ties from the wrong view point. In ECCV, 2008. 1
[4] A. Farhadi, M. K. Tabrizi, I. Endres, and D. A. Forsyth. A

latent model of discriminative aspect. In ICCV, 2009. 1
[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-
based models. PAMI, 32(9):1627–45, 2010. 2, 4

[6] N. Gkalelis, H. Kim, A. Hilton, N. Nikolaidis, and I. Pitas.
The i3DPost multi-miew and 3D human action/interaction
database. CVMP, 2009. 4

[7] D. Gong and G. Medioni. Dynamic manifold warping for
view invariant action recognition. ICCV, 2011. 1

[8] A. Iosifidis, N. Nikolaidis, and I. Pitas. Movement recog-
nition exploiting multi-view information. In MMSP, 2010.
7

[9] I. N. Junejo, E. Dexter, I. Laptev, and P. Pérez.
View-independent action recognition from temporal self-
similarities. PAMI, 33(1):172–85, 2011. 1, 7

[10] Z. Kang and K. Grauman. Learning with whom to share in
multi-task feature learning. ICML, 2011. 2, 3, 4, 5

[11] R. Li and T. Zickler. Discriminative virtual views for cross-
view action recognition. CVPR, 2012. 1, 6, 7

[12] J. Liu, M. Shah, B. Kuipers, and S. Savarese. Cross-view ac-
tion recognition via view knowledge transfer. CVPR, 2011.
1, 7

[13] N. Loeff and A. Farhadi. Scene discovery by matrix factor-
ization. In ECCV, 2008. 1

[14] F. Lv and R. Nevatia. Single view human action recogni-
tion using key pose matching and viterbi path searching. In
CVPR, 2007. 1

[15] V. Parameswaran and R. Chellappa. View invariance for hu-
man action recognition. IJCV, 66(1):83–101, 2006. 1

[16] A. Quattoni, M. Collins, and T. Darrell. Transfer learning for
image classification with sparse prototype representations. In
CVPR, 2008. 1

[17] C. Rao, A. Yilmaz, and M. Shah. View-invariant representa-
tion and recognition of actions. IJCV, 50(2):203–226, 2002.
1

[18] Y. Shen and H. Foroosh. View-invariant action recognition
from point triplets. PAMI, 31(10):1898–905, 2009. 1

[19] T. F. Syeda-Mahmood, M. A. O. Vasilescu, and S. Sethi.
Recognizing action events from multiple viewpoints. In
IEEE Workshop on Detection and Recognition of Events in
Video, pages 64–, 2001. 1

[20] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing vi-
sual features for multiclass and multiview object detection.
PAMI, 29(5):854–869, 2007. 1

[21] H. Wang. Dense Trajectories. http://
lear.inrialpes.fr/people/wang/dense_
trajectories/, 2011. 4

[22] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action
Recognition by Dense Trajectories. In IEEE Conference on
Computer Vision & Pattern Recognition, pages 3169–3176,
Colorado Springs, United States, June 2011. 4

[23] D. Weinland, E. Boyer, and R. Ronfard. Action recognition
from arbitrary views using 3D Exemplars. ICCV, 2007. 1

[24] D. Weinland, M. Özuysal, and P. Fua. Making action recog-
nition robust to occlusions and viewpoint changes. ECCV,
2010. 4, 7

[25] D. Weinland, R. Ronfard, and E. Boyer. Free viewpoint
action recognition using motion history volumes. CVIU,
104(2):249–257, 2006. 1, 4

[26] X. Wu and Y. Jia. View-invariant action recognition using
latent kernelized structural svm. In ECCV, 2012. 1, 4, 7

[27] Y. Wu. Mining actionlet ensemble for action recognition
with depth cameras. In CVPR, 2012. 7

[28] P. Yan, S. M. Khan, and M. Shah. Learning 4D action feature
models for arbitrary view action recognition. ICCV, 2008. 1

[29] A. Yilmaz and M. Shah. Actions sketch : A novel action
representation. CVPR, 2005. 1

[30] C.-N. J. Yu and T. Joachims. Learning structural SVMs with
latent variables. ICML, 2009. 2, 4

[31] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust vi-
sual tracking via structured multi-task sparse learning. IJCV,
101(2):367–383, 2012. 1

http://lear.inrialpes.fr/people/wang/dense_trajectories/
http://lear.inrialpes.fr/people/wang/dense_trajectories/
http://lear.inrialpes.fr/people/wang/dense_trajectories/

