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Abstract

This paper addresses data augmentation for action seg-
mentation. Our key novelty is that we augment the origi-
nal training videos in the deep feature space, not in the vi-
sual spatiotemporal domain as done by previous work. For
augmentation, we modify original deep features of video
frames such that the resulting embeddings fall closer to the
class decision boundaries. Also, we edit action sequences
of the original training videos (a.k.a. transcripts) by in-
serting, deleting, and replacing actions such that the result-
ing transcripts are close in edit distance to the ground-truth
ones. For our data augmentation we resort to reinforce-
ment learning, instead of more common supervised learn-
ing, since we do not have access to reliable oracles which
would provide supervision about the optimal data modifica-
tions in the deep feature space. For modifying frame embed-
dings, we use a meta-model formulated as a Markov Game
with multiple self-interested agents. Also, new transcripts
are generated using a fast, parameter-free Monte Carlo tree
search. Our experiments show that the proposed data aug-
mentation of the Breakfast, GTEA, and 50Salads datasets
leads to significant performance gains of several state of
the art action segmenters.

1. Introduction
This paper presents a new data augmentation frame-

work for fully supervised action segmentation of untrimmed
videos. Action segmentation is a basic vision problem.
Despite recent tremendous advances in terms of new ac-
tion segmenters and learning strategies, there is relatively
slow progress in increasing the size of existing benchmark
datasets. In comparison with peer datasets for action recog-
nition or image classification, available benchmarks for ac-
tion segmentation are significantly smaller. This presents
challenges in training of recent action segmenters which
show tendency to overfit on small datasets [11, 43, 40].
However, compiling large datasets is difficult, due to, in
part, high costs of manual annotation of action segments.

We propose to augment existing datasets with newly gen-

erated video sequences, such that the resulting data aug-
mentation enables more robust training and hence improves
performance of action segmenters. Our approach is agnos-
tic of a particular model for action segmentation, and ex-
pects that the segmenter has been pre-trained on the original
training dataset to predict action classes of video frames.

Augmentation of video data has been mostly considered
in the spatiotemporal, visual domain [38, 25, 19], where
a human expert would heuristically specify the amount and
type of data manipulation (e.g., subsampling, cropping, flip-
ping of video frames) that are useful in training. While these
approaches show great success, it is hard to formalize them
in a principled manner. Others learn to generate new videos
[9, 8, 42, 41], but the results are not sufficiently realistic yet,
and hence would require domain adaptation if used for data
augmentation in action segmentation.

Our key novelty is that we augment the original train-
ing videos directly in the deep feature space, unlike most
previous work. As shown in Fig. 1 (top left), for augmen-
tation, we modify original deep features of video frames
at the input, such that the resulting embeddings fall closer
to the class decision boundaries. Thus, by construction,
we enforce that the augmented features be more chal-
lenging for learning, and in this way subsequently enable
more robust training of the action segmenter. In addition,
Fig. 1 (top right) illustrates that we also edit action se-
quences of the original training videos (a.k.a. transcripts)
by inserting, deleting, and replacing actions, such that the
resulting transcripts are close in edit distance to the ground-
truth ones. Since the generated transcripts are kept similar
to the originals, they are expected to be meaningful (i.e., le-
gal) and provide a greater variety of legal action sequences
than seen in the original training set. This is especially
important for those application domains where some tran-
scripts of interest are naturally rare and hence underrepre-
sented in the original training dataset.

For the proposed augmentation of frame embeddings in
the deep feature space, we specify a deep residual meta-
model, as shown in Fig. 1 (bottom left). The meta-model
takes deep features of frames at the input and predicts an
optimal amount of feature modifications – i.e., offset fea-



Figure 1. The proposed two-pronged data augmentation: (top and
bottom left) Original deep features of frames at the input of a meta-
model are modified to fall closer to class decision boundaries of
the pretrained action segmenter. Alternative frameworks are con-
sidered for training the meta-model, including Gaussian noise, or
supervised learning of a Temporal CNN, or reinforcement learn-
ing of an Actor-Critic network. (top and bottom right) The original
action transcripts of training videos are modified by inserting, re-
placing, and removing actions, while ensuring a small edit distance
between the newly generated transcripts and the originals. For
training the meta-model for transcript augmentation, we consider
supervised learning and alternatively a Monte Carlo tree search.

tures which are added to the original frame features, result-
ing in augmented embeddings. For training the meta-model,
we consider both RL (Fig. 1 (bottom left)) and supervised
learning. From our experiments, RL proves to be a more
reliable paradigm.

Supervised learning of the proposed meta-model faces
a fundamental challenge. As a direct consequence of
performing data augmentation in the deep feature space,
there is no reliable oracle which would provide supervi-
sion for the optimal amount of feature modifications. The
only available oracle is the pre-trained action segmenta-
tion model which could predict action labels of the aug-
mented frame embeddings, and the incurred loss could be
used for training the meta-model. The action segmentation
model provides only pseudo-labels for generated data – not
ground-truth labels – and hence a fully-supervised training
of our meta-model could suffer from noisy pseudo-labels.

An alternative is to resort to reinforcement learning (RL)
due to the following advantages. First, it allows us to
sequentially modify frame features, where previous mod-
ifications define a state in which RL estimates an opti-
mal modification of the next frames. Learning of the pro-
posed sequential feature augmentation is expected to be
more reliable, especially for long video sequences, than
learning how to optimally modify all frame embeddings at
once. RL produces an optimal policy which would account
for temporal dependence between frame embeddings, and
hence make them suitable for action segmentation models
with large temporal receptive fields (like MS-TCN or AS-
Former). Second, RL is expected to provide for a more sta-

ble training of our meta-model by optimizing the expected
reward over a policy of feature modifications, in compari-
son with the aforementioned minimization of the unreliable
loss of the pretrained action segmenter on particular feature
modifications. Third, RL is known to be very effective for
problems with a large, continuous, output space, as is our
case of predicting offset features in the deep feature space.
Finally, RL is known to successfully address non-stationary
environments with the distribution shift between training
and test sets [37], which exactly characterizes our problem
statement where data augmentation is aimed at bridging the
distribution shift.

Within the RL framework, for modifying frame embed-
dings, we formulate the meta-model as a Deep Actor-Critic
Network for learning policies of two self-interested agents
in a Markov Game. Also, for generating new transcripts,
we use a fast, parameter-free Monte Carlo tree search.
We call our approach Markov Game Video Augmentation
(MVGA).

Our experimental evaluation shows significant perfor-
mance gains of recent convolutional and transformer-based
action segmenters when our MVGA is used to augment
the Breakfast, GTEA, and 50Salads datasets. Interestingly,
MVGA enables the convolutional model MS-TCN [11, 27]
achieve close performance to that of the significantly more
complex (and more recent) ASFormer [43].

In the following, Sec. 2 reviews closely related work,
Sec. 3 gives an overview of MVGA, Sec. 4 specifies
our transcript augmentation, Sec. 5 formalizes our frame-
feature augmentation, and Sec. 6 presents our results.

2. Related Work
This section reviews closely related work on fully super-

vised action segmentation and video data augmentation.
A family of temporal convolution models [10, 23, 24,

11, 40, 27, 34] have been studied for action segmentation.
Some of these models use gradual temporal pooling for
overcoming oversegmentation [10, 23, 24, 34], and others
integrate reasoning about action boundaries [40, 18]. As
representatives of this family, in our experiments, we con-
sider MS-TCN [11, 27] and boundary-aware BCN [40] both
of which consist of multiple stages of temporal convolution
layers. Recent transformer-based models [43, 31, 39, 2] out-
perform temporal convolution models. Among these trans-
formers, for evaluation, we consider ASFormer [43]. Both
MS-TCN and ASFormer use standard I3D deep features
[5]) of video frames as input. We also study a version of
ASFormer with more informative frame embeddings [26].

Video augmentation in the visible space-time domain,
such as, e.g., temporal cropping of frames [38, 25] or
random cropping/removing/flipping of frames in a train-
ing mini-batch [19] have become standard practice in ac-
tion recognition, person re-ID, and hand gesture recogni-



tion. Other data augmentation methods have also been used,
including pooling frame features within a window of vari-
able length [34]. For video augmentation, some approaches
generate simulated videos with video-game engines [9, 8],
or GANs [14, 42, 41, 33]. However, there is still a large
domain gap between such simulated and real videos, which
limits the utility of these methods for data augmentation.

Reinforcement learning has been used for addressing
various vision problems, including 3D image segmentation
[28, 32], image classification [29], object detection [3, 4],
and tracking [6, 16]. To the best of our knowledge, video
data augmentation for action segmentation has never been
formulated within the reinforcement learning framework.

3. Overview of MVGA
In this and following two sections, we focus on our

reinforcement learning formulation of the proposed data
augmentation. The supervised learning formulation is de-
scribed in Sec. 6. Fig. 2 shows an overview of our approach
which consists of the following four steps. The first step
pre-trains an action segmenter on a given training dataset
D. A training video of length T in D is given by its deep
features for every frame X = {xt : t = 1, ..., T}, where
xt ∈ Rdin (din = 2048 for standard I3D features [5]), and
the ground-truth action classes Y = {yt : t = 1, ..., T},
where yt ∈ Y and Y is a set of action classes. After pre-
training, the action segmenter fθ can be used to predict ac-
tion classes of video frames Ŷ = f(X ; θ).

The second step generates new transcripts and their cor-
responding videos. We use the UCT algorithm [20] to first
efficiently construct a tree, whose paths from the root to
leaves represent legal transcripts, and then select optimal
paths. For every new transcript, a new video is constructed
by copying appropriate action segments from real videos in
D to the new video following the action sequence of the
new transcript.

The third step augments features of the original and new
videos with the Actor and Critic networks, which gives the
augmented dataset D′. The Actor predicts how much and
where to modify features in the input video. The Critic es-
timates the expected rewards for the Actor. Both Actor and
Critic are learned using the pre-trained fθ as oracle.

The fourth step fine-tunes fθ such that every mini-batch
consists of videos from both D and D′.

In the following, we specify the second and third steps.

4. New Transcript and Video Generation
From D, we generate new transcripts and their corre-

sponding new videos. The new transcripts should be se-
mantically meaningful, i.e., legal. This is enforced by re-
quiring that the new transcripts have: (i) similar lengths as
the original transcripts; and (ii) high likelihoods of consec-

utive pairs of action classes. Our experiments suggest that
auto-regressive models – e.g., a recurrent-neural network
(RNN) or Transformer network [35] – provide poor tran-
script generation, since they require large training datasets
and hence have limited utility for our target settings where
data augmentation is needed to address lack of data. There-
fore, in this section, we focus on an alternative framework
– parameter-free Monte-Carlo Tree Search (MTCS), where
the space of transcripts is efficiently represented by a tree.
We first construct the tree, and then identify its optimal path.

4.1. MTCS for New Transcript Generation

In the tree of transcripts, the root represents the dummy
“start” of action sequences. The root’s descendants sequen-
tially add action classes to the transcripts until leaf nodes,
which represent the dummy “end”. A node v represents
the last action class of the path πv from the root to v,
πv = {“start”, y1, ..., yv}, where yv ∈ Y or yv = “end”
if v is a leaf node. Each node is assigned a weight, w(v),
specified as the joint likelihood of the corresponding path:

w(v) = p(|πv|)
∏

(u,u′)∈πv

p(yu′ |yu), (1)

where p(|πv|) is a prior of the transcript length, u′ is a child
of u along πv , and p(yu′ |yu) denotes the transition probabil-
ity of consecutive actions. In the special case, p(yu′ |“start”)
and p(“end”|yu) represent the priors that the transcript be-
gins and ends with classes yu′ , yu ∈ Y. Both p(|πv|) and
p(yu′ |yu) are estimated from D. For p(|πv|) we learn the
Poisson distribution, and for p(yu′ |yu) we estimate the fre-
quency of the corresponding class transitions in D.

The tree is constructed iteratively using the well-known
UCT algorithm [20] which balances a trade-off between ex-
ploitation and exploration. In each iteration, the root is
sequentially expanded with a path of optimal descendants
until the dummy “end” leaf or the maximum tree depth is
reached. We do not allow illegal expansions, i.e., a path is
guaranteed to consist of class transitions seen inD. Suppose
a path has reached node u without meeting the stopping cri-
terion. Then, UCT adds to the path the optimal node u′ from
a subset of children, ch(u)⊂Ch(u)={u′ : p(yu′ |yu)>0}:

u′ = arg max
v∈ch(u)

[
w(v) + c

√
2 log n(u)

n(v)

]
(2)

where ch(u) is randomly sampled 50% of Ch(u) to enable
exploring alternative paths; w(v) is given by (1); c = 1√

2
is

the exploration-exploitation trade-off parameter; and n(v)
is the number of paths in the current tree that include node
v. As the tree iteratively grows, the value of n(v) keeps
changing for every node, which enables exploring less vis-
ited nodes in the space of transcripts even if w(v) is small.



Figure 2. Our MVGA consists of four steps. 1–An action segmentation model is pre-trained using the original training set. 2–New
transcripts are generated by selecting optimal paths in a UCT tree [20] of legal transcripts. For every new transcript, a new video is
constructed by copying instances of action classes in the new transcript from real videos. 3- Features of the original and constructed new
videos are augmented with the Actor and Critic networks. The Actor predicts the amount and location of feature modifications in the video.
The Critic estimates the expected rewards for the Actor’s two predictions. Both Actor and Critic are learned using the pre-trained action
segmenter as oracle. 4- The action segmenter is fine-tuned on the original and augmented training videos.

After 1000 tree-growing iterations, the node v∗ with the
highest likelihood v∗ = argmaxv w(v) in the tree uniquely
identifies the newly generated transcript πv∗ . For generating
another transcript, we construct another tree anew.

4.2. Generating New Videos of New Transcripts

Given a new transcript, π, we sequentially construct a
new video with deep features (e.g., I3D [5]) following the
ordering of action classes in π. It is worth emphasizing
that our video generation occurs directly in the deep fea-
ture space. We begin by selecting a video X0 ∈ D whose
ground-truth transcript has the smallest edit distance to π.
From X0, we remove all action segments that are not rep-
resented in π, resulting in our initial new video X ′0. For
action classes that are present in π but missing in X ′0, we
identify the second closest video X1 ∈ D with these miss-
ing actions, and copy their respective temporal intervals to
the appropriate locations in the new video, resulting in X ′1.
This is repeated until the entire π is fully represented byX ′g ,
g = 0, 1, 2, . . . . Note that X ′g keeps the original lengths of
action instances found in real videos, which ensures tempo-
ral coherence of every action in X ′g . A pseudo-code of the
proposed video generation is given in the supplement.

5. Augmentation of Frame Features
Features of both original and new videos are augmented

by a Markov Game (MG) [15, 30, 37]. Since MG is a
well-studied framework and we do not claim novelty in our
particular formulation, below we rely that the reader is al-

ready familiar with the motivation and main concepts of
MG. Our MG consists of two agents which sequentially
take independent actions causing state changes of a fully
observable environment. The environment at step k is de-
fined by state sk = (Xk,Mk), where Xk = {xk,t : t =
1, . . . , T} is the set of current video frame features, and
Mk = {mk,t : t = 1, . . . , T} is a binary mask assigned
to the video frames, mk,t ∈ {0, 1}, for keeping the record
which frames have been already modified. Given sk, the
two agents follow their respective policies, µ1 and µ2, to
take actions a1k = µ1(sk) ∈ A1 and a2k = µ2(sk) ∈ A2.
A1 is a continuous action space of agent 1, where a1k =
{a1t,k ∈ Rdin : t = 1, . . . , T} represents the amount of
feature augmentation, i.e., offset features. A2 is a discrete
action space of agent 2 for selecting video frames for aug-
mentation, a2k ∈ {0, 1}T , where a2t,k = 0 means that the
frame t will not be augmented in step k. a1k and a2k cause
the environment to change to next state sk+1, which in-
curs the respective two rewards R1

k = R1(sk, sk+1, fθ) and
R2
k = R2(sk, a

k
2). Our goal is to learn µ1 and µ2 so as to

maximize the agents’ action-value functions given by:

Qi(s, a) = E
[∑
k≥0

(γ)kRik

∣∣∣µi, ai0=a, s0=s], i={1, 2}
(3)

where E[·] denotes expected value, γ = 0.99 is the discount
factor raised to the power of k, s ∈ S, and a ∈ Ai.

For a given video, MG starts from the initial state s0 =
(X0,M0), with the original frame features and all-zero



mask, X0 = X andM0 = {0}T . In state sk, the two agents
take their respective actions, which gives sk+1 specified as

Xk+1 = {xt,k + a2t,k(a
1
t,k + ε) : t = 1, ..., T}, (4)

Mk+1 = Mk ∨ a2k , (5)

where ∨ is the logical OR operator, and ε ∈ Rdin is noise
sampled from the zero-mean and unit-variance Gaussian
distribution. ε enables an exploration of A1 and provides a
way to generate multiple, distinct, augmented features from
the same initial state s0. From (4), only frames selected
by a2k get updated with the corresponding offset features
(a1k + ε). Also, from (5), mask Mk keeps the record of
previously selected frames for augmentation.

MG stops as soon as one of the following happens (ex-
perimentally optimized): after k = 10 steps, or when 95%
of the video has been augmented,

∑T
t=1mt,k ≥ 0.95T .

5.1. Two Rewards for Feature Augmentation

The policy of agent 1, µ1, is learned to augment orig-
inal features, such that they become more challenging
for the pre-trained action segmenter, fθ, and thus pro-
vide for a more robust subsequent training of fθ on the
augmented training dataset. This is enforced by specify-
ing the following reward R1

k = R1(sk, sk+1, fθ). Let
ŷt and ŷ′t denote the top two scoring class predictions
for xt,k by fθ, ŷt = argmaxy∈Y p(y|xt,k; θ) and ŷ′t =
argmaxy∈Y\{ŷt} p(y|xt,k; θ). We penalize agent 1 with a
negative reward whenever a1k causes fθ to make a wrong
prediction, ŷt 6= yt. We assign a positive reward to agent 1
when fθ’s prediction is equal to the ground truth, ŷt = yt,
and reduce this positive reward if the feature augmentation
is not challenging enough for fθ. The positive reward re-
duction is proportional to fθ’s confidence in its prediction,
specified as a difference between its top two scoring pre-
dictions, κ = [p(ŷt|xt,k; θ) − p(ŷ′t|xj,k; θ)], 0 < κ ≤ 1.
Hence, when confidence κ is large and close to 1, the posi-
tive reward for agent 1 is maximally reduced as

R1
k =

1

‖a2k‖
∑

t∈T (a2k)

r1(xt,k+1, fθ),

r1(xt,k, fθ) =


1−[p(ŷt|xt,k; θ)−p(ŷ′t|xt,k; θ)] , if ŷt = yt

−1 , if ŷt 6= yt

(6)
where T (a2k) returns the set of frames where a2t,k=1.

For the policy of agent 2, µ2, we specify the following
three requirements: (i) µ2 should not select frames which
have already been augmented in the previous MG steps; (ii)
frame selection should be local at each MG step and focus
only on a very few action instances in the video (and in this
way make learning of µ1 easier); and (iii) selected temporal

intervals should maximally overlap the ground-truth action
instances. These three requirements are enforced by speci-
fying the following reward:

R2
k=


∑
τ

|τ ∩ a2k|
|τ |

, if
∑
t

a2t,kmt,k<α and ‖a2k‖<
T

2

−1 , otherwise

(7)
τ is the ground-truth mask of actions over frames, and en-
forces that each iteration of the video augmentation covers
the entire time interval of an action rather than randomly
scattered frames. α = 0.4T is an experimentally optimized
threshold which allows a flexible frame selection of up to
40% of the pastMk. From (7), agent 2 is penalized when
selects more than a half of the video for augmentation.

5.2. Learning the Policies for Feature Augmentation

To learn µ1 and µ2, we design an Actor-Critic model
with a decentralized-actor deep network for computing the
agents’ actions, and a centralized-critic deep network for
efficiently estimating action-value functions Q̂1 and Q̂2,
as shown in Fig. 3. The Actor-Critic framework has been
demonstrated effective for continuous agent-action spaces
and when the agents have individual rewards [17], as in our
case. In general, decentralizing the actor network helps
increase stationarity of environments with self-interested
agents [37]. The centralized critic network is suitable be-
cause it allows relevant information from all of the agents to
be shared toward estimating each agent’s expected reward.

As can be seen in Fig. 3, the input to the actor network,
sk = (Xk,Mk), is passed through a backbone, specified as
a multi-stage temporal convolutional neural network (TCN)
[11], in order to estimate the latent (deep) representation
of sk. Then, two distinct 1-stage TCNs take this latent
representation as input and compute the frame selection

Figure 3. Actor-Critic model for learning policies µ1 and µ2 con-
sists of several stages of temporal convolution network (TCN). The
actor network predicts feature augmentation, and the centralized
critic estimates the expected rewards for each policy.



ak2 and feature offsets of the selected frames a1k. Finally,
the predicted a1k, ak2 , and latent feature of sk are passed
to the centralized critic – specifically, a 2-stage TCN – to
estimate the expected rewards Q̂1

k = Q̂1(sk, a
1
k, a

2
k) and

Q̂2
k = Q̂2(sk, a

1
k, a

2
k) of µ1 and µ2.

Parameters of the proposed actor-critic deep architecture
are learned using the standard temporal difference learning
[21]. The critic learns to iteratively simulate the action-
value function, Q̂ik, i = {1, 2}, which is later used to update
parameters of the actor network. To this end, we minimize
the following loss of the critic network:

LC =
∑

i∈{1,2}

(
Rik + γQ̂ik+1 − Q̂ik

)2
, (8)

where Rik is given by (6) and (7), and γ is the discount fac-
tor. The actor network is learned with the following loss:

LiA = ‖aik‖22 ·
(
Rik + γQ̂ik+1 − Q̂ik

)2
, i = {1, 2}. (9)

A proof in [37] shows that minimizing LC and LA in (8)
and (9) optimizes µ1 and µ2 so they manage to achieve max-
imal rewards R1 and R2 given by (6) and (7), as desired.

6. Results
Datasets include three benchmarks: Breakfast [22],

GTEA [12], and 50Salads [36]. For each dataset, we pre-
compute the standard I3D frame features without any self-
supervision, fine-tuning, or data augmentation, as in [11].
Breakfast has 1712 videos with 48 action classes, GTEA
shows 7 complex activities, each specified in terms of 11
action classes including the background class. 50Salads
consists of 50 videos with 17 action classes. For Break-
fast, GTEA, and 50Salads, we perform the standard 4-fold,
4-fold, and 5-fold cross validation, respectively.

Metrics. Mean-of-Frame (MoF) is the average frame-
wise classification accuracy. Edit score counts edit oper-
ations to make the predicted and ground-truth sequences
equivalent. F1 score counts true positives when a tempo-
ral intersection between the predicted and ground-truth seg-
ments is 10%, 25% and 50%, denoted as F1@10,25,50.

Implementation details. The Actor-Critic has the same
layers as MS-TCN [11]. One stage consists of 10 convolu-
tion layers with an increasing dilation rate and feature maps
with size 128. The mask backbone and feature backbone
each represents a 1-stage TCN. Their outputs are, first, con-
catenated, then, passed to a 4-stage MS-TCN, and, finally,
input to the agents’ heads. Agent 1’s head is a 2-stage MS-
TCN. Agent 2’s head is a 1-stage TCN. The critic network
is a 2-stage MS-TCN. The learning rate for the actor-critic
training is 0.0001. Our training of the meta-model is run for
30 epochs. The NMS threshold is set to 0.5, and the min-
imum IOU is set to 0. The discount factor γ = 0.99. The

# Transcripts Train. set size F1@10,25,50 Edit MoF
1× 1× 87.3 84.9 72.4 82.0 78.0

1.1× 1× 85.2 81.1 69.7 80.0 74.9
1× 2× 89.8 88.5 77.6 86.8 79.5

1.1× 2× 90.5 88.6 77.9 87.1 78.9
1.2× 3× 90.9 88.2 79.2 88.8 79.6
1.2× 4× 89.1 87.7 78.9 89.0 79.7
1.2× 5× 89.0 87.0 75.6 85.7 78.2

Table 1. MS-TCN performance on GTEA as a function of the num-
ber of training transcripts, and the number of original and aug-
mented videos used for training –both expressed as the increase
factor of the original training set. When our augmentation triples
the set of training videos such that there are 20% of newly gener-
ated transcripts, MS-TCN achieves the best performance. The top
row is without any augmentation, and the second from the top row
is for only feature augmentation without new transcripts.

policy training on Tesla-V100s for GTEA takes 3 hours.
The MCTS algorithm runs 1000 node expansions in a cou-
ple of seconds. The maximum tree width is 200. The max-
imum tree depth is λ̂ + 2

√
λ̂ where λ̂ is the average tran-

script length of the training set. The number of epochs in the
fine-tuning on the original and augmented data is 50 epochs
for MS-TCN, 100 epochs for ASFormer, and 50 epochs for
BCN. The meta-training of the meta-model increases com-
plexity compared to baseline approaches. It is important to
separate the time for training an action segmentation model,
and the time for our meta-training. Our meta-training can
be viewed as a part of the dataset preparation, which takes
significantly less time than manually collecting and anno-
tating real videos.

6.1. Ablation Studies of MS-TCN on GTEA

The training dataset size. Tab. 1 reports how MS-TCN
performance on GTEA changes as a function of two vari-
ables: (i) the number of training transcripts; and (ii) the total
number of original and augmented videos – both expressed
as the increase factor of the original set. Tab. 1 shows
that when the original set of training videos is tripled such
that there are 20% of new transcripts, MS-TCN achieves
the best performance for all of the metrics, and this setting
is used in the sequel. Too many augmentations using the
same input video leads to similar data outputs, and con-
sequently to overfitting in training of an action segmenta-
tion model.Note that testing the transcript augmentation as a
standalone contribution is inappropriate and reduces perfor-
mance (second row), since new transcripts need to be real-
ized as new videos. These new videos are Frankenstein-like
constructs from multiple real videos, and hence have highly
unrealistic action transitions, and incoherent and sometimes
impossible human motions. Therefore, the new videos re-
quire additional frame-feature augmentation to provide use-
ful data augmentation.

Alternatives for generating transcripts. Tab. 2 com-



Method Edit dist. (%) Edit dist. (%) Likelihood
Top 10% Top 20% Top 20%

Auto-regression 19.5 22.0 0.59e-4
UCT 14.0 15.2 1.41e-4
Ground truth - - 1.45e-4

Table 2. Comparison of two alternative transcript generation meth-
ods – auto-regression by a Transformer Network [35], and our pro-
posed UCT – in terms of an average edit distance between the gen-
erated and ground-truth transcripts for GTEA, and their average
likelihood given by (1). The two metrics are averaged over the top
10% and 20% of generated transcripts closest to the ground-truth.

Frame Augmentation F1@10,25,50 Edit MoF
No augmentation [11] 85.8 83.4 69.8 79.0 76.3
Noise 85.7 83.2 71.9 79.6 77.5
Non-RL (Seq) 83.1 80.9 69.1 76.2 76.5
Non-RL (All) 83.9 81.5 70.4 77.6 77.7
Our RL-based 90.9 88.2 79.2 88.8 79.6

Table 3. MS-TCN performance on GTAE, when using the best data
augmentation setting given in Tab. 1, and for alternative strategies
of frame-feature augmentation. Supervised learning in “Non-RL”
decreases the performance of MS-TCN.

Policies F1@10,25,50 Edit MoF
µ1/10 88.5 85.0 74.7 83.8 78.2
µ1/20 87.4 84.8 74.1 84.5 77.8
µ1/µ2 90.9 88.2 79.2 88.8 79.6

Table 4. MS-TCN performance on GTAE for the proposed multi-
agent (µ1/µ2) and the alternative single-agent (µ1/10 or µ1/20).

pares two alternative methods for generating transcripts –
namely, auto-regression and our UCT – in terms of: (i) edit
distance to the ground-truth transcripts, and (ii) expected
reward given by (1). The two metrics are averaged over
the top 10% and 20% of generated transcripts that are the
closest to the ground-truth transcripts. The auto-regressive
model is a Transformer Network [35] trained with the cross-
entropy loss to predict the next action class given an input
sequence of action classes. From Tab. 2, our UCT generates
transcripts which are more similar to the ground-truth ones
than those produced by auto-regression. Also, the average
likelihoods for UCT and ground truth are nearly the same.

RL vs Non-RL for frame-feature augmentation.
Tab. 3 compares the proposed reinforcement learning and
an alternative supervised learning for frame-feature aug-
mentation, when using the best data augmentation setting
given in Tab. 1. We consider several baselines. “Noise”
refers to simply adding Gaussian noise with zero mean and
0.01 variance to the original deep features of frames, as the
original I3D features have an average value of 0.2 and vari-
ance 0.06. From Tab. 3, such a frame-feature augmentation
with Gaussian noise barely has any effect on MS-TCN’s
performance. “Non-RL” is another baseline that uses su-
pervised learning for training the meta-model, as depicted

Class transition 2, 5 2, 7 5, 9 8, 10 10, 4

# Original dataset 1 1 2 3 3
# Augmented dataset 2 2 3 5 5

Table 5. Count of the least represented action transitions in the
original and augmented training sets of GTEA.

in Fig. 1 (bottom left). In “Non-RL” the meta-model is a
1-stage TCN which outputs the offset feature for a given
original feature at the input. As shown in Fig. 1 (bot-
tom left), the resulting augmented feature is then passed to
the pre-trained action segmenter. The meta-model is trained
based on the cross-entropy loss of the pre-trained action
segmenter, which serves as an oracle to ensure that the aug-
mented feature remains in the action class of the original
frame feature. For “Non-RL”, we also regularize the result-
ing augmented feature to be different from the original fea-
ture with the standard contrastive loss. Moreover, we study
two versions of “Non-RL” – one where all features of the
entire video are modified at once, called “Non-RL (All)”;
and the other with a sequential modification of frame fea-
tures one action segment at a time, called “Non-RL (Seq)“.
From Tab. 3, both “Non-RL (All)” and “Non-RL (Seq)” de-
crease MS-TCN’s performance. More details on “Non-RL”
are presented in the supplement.

Policy. Tab. 4 compares MS-TCN performance on
GTAE for our multi-agent formulation and an alternative
single-agent feature augmentation. The latter does not learn
frame masking, and hence does not have our agent 2. The
single-agent, denoted as µ1/10 or µ1/20, uses only policy
µ1 for augmenting frame features. The values 10 and 20 in-
dicate the percent of video randomly selected for augmen-
tation at each policy iteration. Our multi-agent, denoted as
µ1/µ2, uses both µ1 and µ2 policies. Tab. 4 shows that
adding the second agent significantly improves the results.

Improving transcripts variability. Generating new
transcripts modify the total count of action transition ini-
tially present in the original set of transcripts. The advan-
tage of our MCTS based generation approach is the empha-
sis on exploration. The number of poorly represented action
transitions are increased with the new transcripts in train-
ing. Tab. 5 shows some example action transitions that are
the least represented in the original training set get at least
one new instance when adding the generated transcripts.

6.2. Impact of MVGA on SOTA

The top of Tab. 6 reports results of state-of-the-art
(SOTA) fully supervised methods that do not use video aug-
mentation in training (some of them use sophisticated post-
processing, which we do not have). Tab. 6 also shows how
MVGA affects performance of SOTA approaches – includ-
ing: MS-TCN[11], BCN [40], ASFormer [43], and Bridge-
Prompt [26] – on Breakfast, GTAE, and 50Salads. As can
be seen, for all of the four SOTA approaches, data augmen-



Dataset Breakfast GTEA 50Salads
Method F1@10,25,50 Edit MoF F1@10,25,50 Edit MoF F1@10,25,50 Edit MoF
MSTCN++ [27] 64.1 58.6 45.9 65.6 67.6 87.8 86.2 74.4 82.6 78.9 80.7 78.5 70.1 74.3 83.7
ASRF [18] 74.3 68.9 56.1 72.4 67.6 89.4 87.8 79.8 83.7 77.3 84.9 83.5 77.3 79.3 84.5
HASR [1] 74.7 69.5 57.0 71.9 69.4 89.2 87.2 74.8 84.5 76.9 86.6 85.7 78.5 81.0 83.9
SSTDA [7] 75.0 69.1 55.2 73.7 70.2 90.0 89.1 78.0 86.2 79.8 83.0 81.5 73.8 75.8 83.2
G2L [13] 74.9 69.0 55.2 73.3 70.7 89.9 87.3 75.8 84.6 78.5 80.3 78.0 69.8 73.4 82.2
UVAST [2] 76.7 70.0 56.6 68.2 86.2 77.1 69.7 54.2 90.5 62.2 81.2 70.4 83.9 77.1 69.7
MSTCN [11] 52.6 48.1 37.9 61.7 66.3 85.8 83.4 69.8 79.0 76.3 76.3 74.0 64.5 67.9 80.7
MSTCN (Ours) 58.1 54.6 44.4 63.4 66.8 87.3 84.9 72.4 82.0 78.0 75.8 73.8 66.8 68.2 82.7
MSTCN + MVGA 68.9 66.1 55.8 68.1 71.1 90.9 88.8 79.2 88.2 79.6 80.1 77.9 71.2 74.1 83.2
BCN [40] 68.7 65.5 55.0 66.2 70.4 88.5 87.1 77.3 84.4 79.8 82.3 81.3 74.0 74.3 84.4
BCN + MVGA 70.8 67.7 57.3 68.3 71.8 91.3 90.0 80.6 86.7 80.5 83.7 82.4 75.8 77.2 85.6
ASFormer [43] 76.0 70.6 57.4 75.0 73.5 90.1 88.8 79.2 84.6 79.7 85.1 83.4 76.0 79.6 85.6
ASFormer + MVGA 75.6 72.1 59.7 76.8 74.2 91.3 90.5 79.3 86.4 80.3 86.3 84.9 78.7 81.3 86.0
Bridge-Prompt [26] 94.1 92.0 83.0 91.6 81.2 89.2 87.8 81.3 83.8 88.1
Bridge-Prompt + MVGA 95.2 93.4 84.8 92.1 82.6 90.8 89.4 83.2 86.1 88.9

Table 6. Impact of MVGA on SOTA methods on Breakfast, GTEA and 50Salads, and comparison with the other SOTA approaches that do
not use data augmentation.

Dataset Breakfast GTEA 50Salads
Method F1@10,25,50 Edit MoF F1@10,25,50 Edit MoF F1@10,25,50 Edit MoF
MSTCN + C2F[34] 58.2 55.0 47.8 62.9 66.5 86.2 83.5 78.1 78.8 76.5 77.3 74.2 65.5 67.3 80.8
MSTCN + Speed 55.0 52.7 41.9 60.1 65.9 84.8 80.8 66.1 78.8 75.7 77.3 75.9 67.8 68.8 81.2
MSTCN + MVGA 68.9 66.1 55.8 68.1 71.1 90.9 88.8 79.2 88.2 79.6 80.1 77.9 71.2 74.1 83.2
ASFormer + C2F [34] 75.8 72.3 57.5 75.2 72.9 90.3 88.0 78.8 84.2 78.9 84.5 82.6 76.1 78.7 84.0
ASFormer + Speed 75.2 69.1 56.9 74.8 71.9 89.3 87.2 77.7 85.2 78.5 84.4 82.9 75.1 77.2 85.1
ASFormer + MVGA 75.6 72.1 59.7 76.8 74.2 91.3 90.5 79.3 86.4 80.3 86.3 84.9 78.7 81.3 86.0

Table 7. Comparison of different data augmentation methods on Breakfast, GTEA and 50Salads.

tation by MVGA consistently produces performance gains
relative to their respective performance without data aug-
mentation. For instance, MSTCN+MVGA outpeforms both
MSTCN [11] and its more advanced relative MSTCN++
[27] without data augmentation. MVGA also improves
the original ASFormer [43] producing the new state of
the art performance on Breakfast. Applying MVGA on
the features provided by Bridge-Prompt [26] and follow-
ing the same training procedure as for the ASFormer gives
the method Bridge-Prompt+MVGA with the best results
on GTAE and 50Salads. In Tab. 6, we could not report
Bridge-Prompt+MVGA performance on Breakfast, since
the Bridge-Prompt model for action segmentation on Break-
fast is not publicly available, and our own training of
Bridge-Prompt on Breakfast gave poor results.

Video augmentation has been considered in the con-
text of self-supervised learning (typically as a part of pre-
training). However, a comparison with such methods is be-
yond our scope, because MVGA directly allows for the uni-
fied fully supervised training on a larger, augmented train-
ing dataset. In Tab. 7, we compare MVGA with some base-
line video augmentation methods which also directly en-
able fully supervised learning, including Speed and C2F
[34]. The former randomly selects certain action instances
in each original training video, and performs “speeding-up”
(i.e., frame subsampling) or “slowing-down” (i.e., frame
upsampling with interpolation) of their temporal intervals,
and thus doubles the original training set. C2F randomly se-

lects certain time intervals in every original training video.
Then, for each selected interval, C2F assigns the dominant
ground-truth action class with the largest temporal support
in that interval, and also replaces all frame features within
the interval with their max-pooled feature. As can be seen
in Tab. 7, MVGA provides for better data augmentation for
MS-TCN and ASFormer than Speed and C2F.

7. Conclusion

We have specified video data augmentation for action
segmentation within the reinforcement learning framework.
Our approach generates new action transcripts and their cor-
responding new videos, as well as modifies the feature em-
bedding of video frames. The transcript generation uses the
efficient Monte-Carlo Tree Search to produce new, legal,
high-likelihood action sequences. Optimal amount and tem-
poral locations of feature changes in the video are learned
with a two-agent actor-critic network. Our video augmen-
tation in training of representative, state-of-the-art, con-
volutional and transformer-based action segmenters leads
to their significant performance gains on the benchmark
Breakfast, GTEA, and 50salads datasets, in comparison to
their original training without video augmentation.
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