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Abstract

We propose a Bidirectional Alignment for domain adap-
tive Detection with Transformers (BiADT) to improve cross
domain object detection performance. Existing adversarial
learning based methods use gradient reverse layer (GRL)
to reduce the domain gap between the source and target
domains in feature representations. Since different image
parts and objects may exhibit various degrees of domain-
specific characteristics, directly applying GRL on a global
image or object representation may not be suitable. Our
proposed BIiADT explicitly estimates token-wise domain-
invariant and domain-specific features in the image and ob-
ject token sequences. BIiADT has a novel deformable at-
tention and self-attention, aimed at bi-directional domain
alignment and mutual information minimization. These
two objectives reduce the domain gap in domain-invariant
representations, and simultaneously increase the distinc-
tiveness of domain-specific features. QOur experiments
show that BiADT achieves very competitive performance
to SOTA consistently on Cityscapes-to-FoggyCityscapes,
Sim10K-to-Citiscapes and Cityscapes-to-BDDI00K, out-
performing the strong baseline, AQT, by 2.0, 2.1, and 2.4
in mAPs, respectively. The implementation is available at
https://github.com/helq2612/biADT

1. Introduction

This paper focuses on cross-domain object detection — an
important problem for vision applications which requires a
detector trained on source-domain images generalize well
on target-domain images. We say that there is a “domain
gap” (or “domain shift’) between the source and target do-
mains, since their respective images significantly differ in
appearance and texture, while they do share the same object
classes of interest. Despite recent advances in standard ob-
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Figure 1. The proposed BiADT is a transformer that consists
of the encoder and decoder (for clarity, we only show 2-encoder-
layer and 2-decoder-layer). At the input, the encoder takes image-
level entangled features (black-white pattern) as image tokens and
gradually disentangles them into domain-specific features (marked
black for the source and white for the target) and domain-invariant
features (marked gray). The decoder decodes object queries on
the image, and similarly disentangles the features. We say that
the encoder and decoder perform bidirectional feature alignment.
This means that they both seek to align domain-invariant features
and increase distinctiveness of domain-specific features, at their
respective image and object levels.

ject detection [33, 27, 2, 50, 26], their direct application in
the cross-domain settings typically yields poor results.

We address cross-domain object detection within the un-
supervised domain adaptation (UDA) framework, where
training of a detector has access to images of both source
and target domains, but object annotations are only avail-
able for the source images. A common approach is to learn
a domain agnostic feature space in which feature distribu-
tions from the source and target domains are aligned by met-
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ric learning [30, 16] or adversarial learning [47, 8, 31, 4].
However, we find that this unified feature alignment, at the
image and object levels, may be not appropriate for non-
trivial domain shifts which characterize most real-world set-
tings. For example, when appearance of objects is the same
in the source and target domains', these approaches tend
to over-align features of such objects [22]. Also, enforc-
ing domain alignment of both image and object features in
a unified manner often leads to feature misalignments [22],
which could remove critical contextual cues for detection.

To address the above limitation, in this paper, we present
a Bidirectional Alignment for domain adaptive Detection
with Transformers — BiIADT. As shown in Fig. 1, it effec-
tively disentangles features into domain-invariant (Z) and
domain-specific (D) features, and performs bidirectional
alignment, which indicates BiADT seeks to align Z-features
(i.e., reduce the domain gap in Z-features), and simultane-
ously increase distinctiveness of D-features. Architecture-
wise, BiADT leverages the recent successful family of
transformer-based detectors — namely, Dab-Deformable-
Detr [26] and Deformable-Detr [50] — and extends these
architectures with the proposed bidirectional feature align-
ment in the deformable-attention and self-attention compo-
nents. The former exists in both the encoder and decoder of
the transformer, while the latter exists in the decoder only.

In addition to the above mentioned feature disentangle-
ment and bidirectional feature alignment, BIADT has a do-
main embedding component in each unit of the image and
object-query token sequences. This component seeks to in-
tegrate D-features from the image and object embeddings,
and can be easily supervised as the domain label of each
training image is known.

The closest prior work that also uses the transformer
architecture for domain-adaptive object detection is AQT
[18]. AQT aligns features via three adversarial tokens
space-wise, channel-wise and instance-wise. The corre-
sponding attention modules in AQT guide the three adver-
sarial tokens to align features for the entire image and the
entire object sequence. Importantly, AQT does not dis-
entangle features into the domain-invariant and domain-
specific ones. Not only do we explicitly disentangle fea-
tures, but we also do so for each token individually, at both
the image level and the object level. Moreover, not only do
we align Z-features, but also increase discriminativeness of
D-features for each token.

Recently, the teacher-student self-training (TSST) has
been extended to address cross-domain object detection
with adversarial learning and data augmentation [24, 14,

]. TSST relies on generating reliable pseudo-labels, and
model learning involves complex multi-stage training pro-
cedures. As our experiments demonstrate, our BIADT can

I'See Fig. 5: the roads in the source image and the foggy target image
look similar, so there is less need to align their features.

be easily integrated in the TSST framework.

Below, we summarize our key contributions:

1) We are the first to seamlessly integrate token-wise
domain alignment in the standard attention module of the
transformer architecture. Specifically, we propose new de-
signs of the deformable attention and self-attention in the
transformer that explicitly disentangle features into domain-
invariant and domain-specific features, as well as perform
their bidirectional alignment.

2) We propose a new token-wise domain embedding, at
both the image- and object-token sequences in the trans-
former, for predicting the domain label of images and ob-
jects. This facilitates extraction of domain-specific features.

3) Our experiments demonstrate that BIADT produces
very competitive performance to SOTA on three benchmark
cross-domain datasets:  Cityscapes—FoggyCityscapes,
Sim10K—Citiscapes and Cityscapes—BDD100K. We also
test different ablations and variants of BiADT, including its
integration with the AQT alignments and self-training.

2. Related Work
2.1. Transformer based Object Detection

Recently, Carion et al. [2] proposed an end-to-end de-
tection model DETR that breaks new ground for object de-
tection. DETR is composed of a CNN backbone followed
by a Transformer encoder-decoder [38]. The encoder ap-
plies a series of transformer layers on 2D flattened image
features from the CNN backbone, while the decoder takes
a set of learnable object queries as input and tries to fill the
queries with the encoding features from detected objects.
DETR does not rely on anchors, and there is no need for
non-maximum suppression. This makes the whole frame-
work end-to-end optimizable. These attractive properties
inspired many following researches to further improve its
performance. For example, conditional DETR [28] decou-
ples the query into two parts of content and position, enforc-
ing a correspondence between a query and a specific spatial
embedding. Deformable-Detr [50] directly treats 2D refer-
ence points as queries to perform cross-attention. DESTR
[13] splits cross attention into a classification branch and
regression branch. DAB-Detr [26] interprets queries as 4-D
anchor boxes and optimize them progressively. In this pa-
per, the combined Dab-Deformable-Detr is used as our base
detector.

2.2. UDA based Object Detection

UDA effectively bridges the “domain gap” between la-
beled training data and unlabeled target data. Adversarial
learning uses a domain classifier to predict which domain
the input comes from, and uses a gradient reverse layer to
confuse the classifier and extract domain invariant features.
Adversarial-learning based UDA has been widely used in



recent approaches to tackle cross domain object detection
[34, 15, 46, 17, 40, 18]. For example, [4] first uses Faster
R-CNN as a detector and applies image and object domain
classifiers to align cross-domain features via adversarial-
learning. Other kinds of feature alignments have also been
proposed, including e.g., multi-scale [15], contextual [11],
spatial attention [5], topological relation [10], local proto-
types [29], object localizer [25, 21], semantic adaptation
[45], category-consistency [460], domain-specific suppres-
sion [40], strong-weak alignment [34], multi-level align-
ments [15, 17], and teacher-student self-training [3, 14, 24].
With the emergence of transformer-based detectors, DETR
family of models have also been applied to UDA. For ex-
ample, AQT [18], SFA [39], O2Net [9] and MTTrans [19]
aggregate and align features from the entire token sequence
of the two domains.

2.3. Domain Feature Decomposition

Domain feature decomposition has been explored in re-
cent cross-domain object detection. For example, VDD
[44] disentangles CNN deep features into domain-invariant
and domain-specific features via an orthogonal constraint.
PDN [43] designs a progressive disentangled convolutional
network to extract instance-invariant features with a three-
stage training mechanism, and uses a mutual information
based loss for feature disentanglement. Single-DGOD [42]
uses a cyclic-disentangled module in a CNN to decouple
domain-invariant and domain-specific features with a con-
trastive loss, and improves object detection accuracy with a
self-distillation module. Feature disentanglement has also
been used in other domain-adaptive tasks, e.g., semantic
segmentation [4 1] and depth estimation [36]. Our main dif-
ference to existing works is that our feature disentanglement
is done individually for each image and object token in their
respective sequences with transformers, resulting in differ-
ent intensities of alignment on distinct image parts. We also
modify the mutual-information loss from [43] to account for
the difference in channel size of our domain-invariant and
domain-specific features.

3. BiIADT

BiADT seeks to decompose input features of either the
source domain, S, or the target domain, 7, into domain-
invariant Z features and domain-specific D features, pro-
gressively layer-by-layer of its transformer-based architec-
ture, as illustrted in Fig. 1. BiADT consists of the encoder
and decoder. The encoder incorporates long-range visual
information into each image token, and the decoder decodes
objects on the image context and outputs predictions. As
shown in Fig. 1, the feature decomposition occurs at both
image level, Y, and object level, X, resulting in Z-features
and D-features for images from the encoder, as well as Z-
features and D-features for objects from the decoder. We
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Figure 2. Three losses used for our bidirectional feature align-
ment. For each image/object token represented by entangled fea-
tures at the input, we use a GRL (gradient reverse layer) followed
by a domain head (DH) to reduce the domain gap, resulting in the
domain-invariant feature Z (bottom left). We pass the entangled
features to a DH to increase the domain gap, resulting in domain-
specific features D (bottom right). We also use a mutual informa-
tion (MI) loss to further disentangle these two types of features.

make two changes in the standard transformer, as follows.

First, we design a new token-wise domain-specific em-
bedding D at the image level in the encoder and at the object
level in the decoder. This means that the standard content
and position embedding (c, p) in an image (or object) to-
ken is disentangled into Z and D components:(cz, p7) and
(cp, pp)- Second, we propose two new attention modules
in the transformer: (1) DABA — deformable-attention with
bi-alignment present in the encoder and decoder; and (2)
SABA - self-attention with bi-alignment present in the de-
coder only.

As shown in Fig 2, the proposed bi-alignment is driven
by minimizaing three losses, £, £, and mutual informa-
tion Ly between Z-features and D-features. L. is aimed
at minimizing the domain gap with GRL, and £, at maxi-
mizing the domain gap, using a domain discriminator (do-
main head). By minimizing mutual information between Z-
features and D-features, our goal is to make them indepen-
dent and thus improve their disentanglement. Importantly,
the three losses are used token-wise at both the image and
object levels, instead of globally for the entire image and
entire object sequence in [18, 39].

3.1. Review of Deformable Attention

BiADT uses Dab-Deformable-Detr [26] as a base detec-
tor. Deformable attention modules [50] in Dab-Deformable
-Detr attend only to a small set of key sampling points
around a reference. This enables fast convergence in train-
ing. Also, Dab-Deformable-Detr lends itself for a seamless
extension with our own design. Before we introduce our
DABA and SABA attention modules, we briefly review de-
formable attention.

For a given image token sequence Y € RY*Z with
the length N = H - W and the number of feature chan-



nels Z, deformable attention module aggregates features
from a subset of Y. Specifically, for every query token
[cq:p,]. where ¢, € R**Z is the query content embed-
ding, and p, € R'*Z is the query positional embedding,
the deformable attention is defined as:

DeformAttn (¢4, p,, Y) = [ag -V JW° (1)

where V. = Y W denotes the value embeddings of Y with
the learnable projection matrix W*eRZ*%" VqE]R"I xZz"
is a subset of V' sampled at n’ <N positions at certain off-
sets A, from the query position, i.e., (z,y),+A,. The off-
sets are adaptively computed by a learnable linear projec-
tion function FOffset a5

Aq _ Foffsel(cq +pq) c Rn’x2. 2)

The attention weights a, in Eq. (1) are estimated by another
learnable linear projection function F"en:

a, = F*""(c?+p7) € RIXn' 3)

Finally, the attention weights a, is used to aggregate fea-
tures from the sampled value embeddings of V. Also, the
learnable projection matrix W° € R%v*Z in Eq. (1) is used
to compute the final deformable attention feature.

Transformers usually have a multi-head architecture for
the above attention computing, and we have reviewed only
one deformable attention head, for simplicity. Our Bi-
ADT actually uses multi-head deformable attentions, as
Dab-Deformable-Detr [26].

3.2. Feature Disentanglement and Alignment

A standard token in the DETR family of transformers
consists of content embedding ¢ and position embedding
p. where ¢ = [¢;,¢,] € R* and p = [p,,p,] € R*
(d = 128). The indices x and y represent the correspond-
ing two image axes along which c is estimated. As intro-
duced earlier, we propose to extend the standard token with
explicit domain-invariant and domain-specific embeddings,
cr € R* and ¢p € R? and p; € R?! and pp € RY,
resulting in:

ez, epl, [Pz, Pp]l- “4)

Since the image’s domain is known, we can readily assign
the p3 = {—1}¢ for the source domain S, and p}, = {1}¢
for the target domain 7.

Deformable Attention with Bi-Alignment. Details of
our DABA and SABA modules are shown in Fig. 3. The
figure also illustrates our key differences from AQT [18].
LetY = [Y7,Yp] € RV*34 denote the image token se-
quence, and C = [Cz,Cp| € R34 P = [P7,Pp| €
R™*3¢ denote the content and positional embeddings of the
query token sequences. Since the deformable attention is

used in both encoder and decoder, the query token sequence
can be either the image token sequence Y (in the encoder)
or the object token sequence X = [X 7, X p] (in the de-
coder). As shown in Fig. 3 (middle), BIADT computes
AC = [ACz,ACp] in every DABA module.

From Fig. 3 (middle), the residual of alignable part AC' ¢
can be estimated as

ACZ = DeformAttn (C‘I7 PI, Yz) = [AI . VI} W%, (5)

where V7 € R™ *24 is a subset of the image value em-
beddings YWY € RV*24 sampled at n’ < N posi-
tions at offsets A from the query positions (ref to Eq.(2));
Az € R™ " is the attention matrix between 7 queries and
n' < N sampled points given by (3); and W35, W5 €
R24%2d are both learnable linear projection matrices.

Also from Fig. 3 (middle), the residual of domain-
specific part can be estimated as

ACp = DeformAttn (C,P,Y) = [Ap - Vp| WS, (6)

where Vp € R" %34 is a subset of the image value em-
bedding [GRL(Y 1), Y p]W3 € RY*3? with n’ < N.
W3, € R34%3d and W9, € R34%4 are both learnable linear
projection matrices. V p is sampled at n’ < N positions at
the same offsets A from the query positions as in (5).

Note that GRL operates as an identity function in the
feed forward computation, and reverses the gradient in
backpropagation. In this way, it “fools” the domain dis-
criminator and reduces the domain gap in C'z.

The domain-specific attention matrix Ap is as

Ap = F&*([GRL(Cz + Pz),Cp + Ppl), (1)

where the function F3'*" is given by (3). With this design,
we want to distill domain-specific features from C'z into
C'p. In turn, this facilitates learning of C'z to be more do-
main invariant.

Self-Attention with Bi-Alignment. SABA module ex-
ists in the transformer decoder only, and is shown in
Fig. 3 (right). Let X = [X7,Xp| € RV*34 denote
the object token sequence, and C = [C’I , C’D] e Rnx3d,
pP= [PI , PD] € R™*34 denote the content and positional
embeddings of the object query token sequences.

The architecture of SABA 1is similar to that of DABA.
Since SABA aims to capture the objects relationships in
the object-query sequence, it does not use deformable at-
tention but uses a complete attention instead, as the stan-
dard self-attention in the Detr-family of transformer detec-
tors [2, 28, 50]. Again, BiADT also attempts to compute
AC = [ACz,ACp] in every SABA module, and splits
the embedding features [C'z, Cp)] at object level.

From Fig. 3 (right), the domain-invariant self-attention
residual features are computed as

o

ACr = (AV)W; ®)
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Figure 3. Differences between AQT [18] and our BiADT. (Left) Space-alignment in AQT aligns features over all image tokens. (Middle)
Our DABA module is used in the encoder for self-attention and in the decoder for cross-attention. (Right) Our SABA module in the decoder
captures inter-object relationships in the object-query sequence. Notice that the top regions (colored as light blue) are standard deformable
attention and self attention, to which our proposed DABA and SABA are seamlessly integrated to align features of every token.

N AT
where A = softmax Q\I/;idz is a standard self-attention ma-

trix, and QI, K 7 are standard projected embeddings of the
queries and keys the same as in [28, 50]; VI = C’IW;
is the projected value embeddings for the domain-invariant
features with W, € R24%2d being the projection ma-
trix. Similar to DABA, we directly use the attention ma-
trix generated by the domain-invariant features Cz to both
branches, so as to encourage the feature exchanges based on
similarity of objects’ domain-invariant characteristics.

Also from Fig. 3 (right), the domain-specific residual
feature of objects is computed as:

ACp = (AVp)Wr, )

with the linear projection matrix Wg e R3?*4. In (9),
the domain-specific value embedding Vopis computed from
the entire object feature as [GRL(C'z), Cp] - VV;}D, where
W, € R3@x34 g the projection matrix, and GRL serves
to reduce the domain gap for the domain-invariant object
feature C'7 in backprogagation. . .

Finally, the residual feature AC = [AC7z, ACp] is
used to update C in each SABA module.

3.3. Loss Functions

BiADT uses multi “domain heads”, GRL and mutual in-
formation constraint to optimize the image token sequence
in encoder, i.e., C¥ = [CY,CY] € RV*34_and object to-
ken sequence in decoder, i.e., C** = [CF,Cp] € R"*34,
Driven by such multiple forces, the features at both image
and object level can be well decomposed.

DyHinge loss — Existing adversarial learning methods
usually make use of BCE (binary cross-entropy) and GRL

to reduce the domain gap in features. For example, AQT
uses BCE on the domain label prediction of the three align-
ment tokens. Similarly, we apply BCE loss on the C'p
branch that aims to absorb domain-specific features and in
turn reduce the domain gap in the domain-invariant features.
In some cases, we notice it is hard to distinguish the domain
from certain local area of the image, e.g. the middle part of
the road in Fig. 5. Hence, applying BCE loss on C'z branch
may be too strict for certain tokens, causing an excessive
alignment for some of the the domain-invariant features in
C'z branch. We propose a more relaxed dynamic hinge loss:

z, if zer =0

max {0,m — z}, ifzgr=1 (10)

EDyHinge(Z) = {

where m = max(F} (C5)39,0.5) is the dynamic margin.
It is derived from the domain confidence score of the Cp
branch (see 12, 14) representing the intensity of “domain
shift”. A smaller value of m thus indicates milder align-
ment on the corresponding C'7 feature and vice versa. SG
is the stop-gradient operation to optimize the two branches
independently. zg7 is the ground truth, O for source and
1 for target. Please note when the domain label prediction
on C'p branch is as confident as 1, the above DyHinge loss
becomes standard hinge loss with margin of 1.

Losses for Bi-Alignments. As shown in the bottom part
of Fig. 2, we define four distinct losses for supervising the
domain invariant and specific parts in each token sequence.
As shown in the equations below, F'7 and F'p denote the do-
main heads implemented as MLP layers. GT is the ground
truth of the domain class, GT=0 for source and GT=1 for
target domains. Lgcg is the binary cross-entropy loss, and
LpyHinge 1s the hinge loss. The “+/-” signs denote increase



or decrease the domain gap in respective features.

LY = Loyminge (FY (GRL(CY)), GT), (11)
LY = Lyce(FY(CL),GT)), (12)
LX = Loyhinge(F2 (GRL(CY)), GT), (13)
LY = Lace(Fp (C3),GT)), (14)

The overall adaptation loss, Lg,, is the summation of the
two bi-alignment losses at X and Y:

L= ALY +0YLY) + NS L8 + 2525 (5)

where A\Y, A A\X and A\ are four positive coefficients.

Mutual Information Minimization. Along with the bi-
alignment losses previously defined, we also minimize the
mutual information (MI) loss between C'7 features and C'p
features, making them more independent. We follow [43]
and use the Mutual Information Neural Estimator (MINE)
[1] to compute the MI loss based on the Monte-Carlo inte-
gration [32]:

Lmi(Cz,Cp) = 2 " Ty(ez, ep) —log(L 3 eTolezen))
=1 j=1
(16)

where (cz, ¢p) is sampled from the joint distribution of the
image token sequence or the object token sequence, and ¢/,
is sampled from the marginal distribution. T} is a network
consisting of three fully-connected layers.

Total Loss. The final training objective is defined as:

Liinal = Laet + Laa + ALl (17)

where L4 is the detection loss from Deformable-Detr [50],
L4, is the domain bi-alignment loss given by Eq.(15), and
Ly is the mutual information constraint loss.

3.4. Differences from AQT

Differences between our BiADT and AQT [18] — our
strong baseline that achieves competitive performance —
are illustrated in Fig. 3. The key differences include: (1)
AQT uses 2d-dim features cz to represent domain-invariant
image/object features, and we create additional d-dim fea-
tures cp associated to each of them to represent its domain-
specific feature. (2) AQT uses three alignment queries (also
known as adversarial tokens), i.e., spatial, channel and in-
stance queries, to reduce the domain gap via extra atten-
tion modules. The domain specific patterns in the overall
token sequences are loosely captured by such three adver-
sarial tokens without considering the individual difference.
In contrast, our bi-alignments can be seamlessly integrated
into the standard attention layers, so every image/object to-
ken is explicitly split into the domain-invariant and domain-
specific parts, resulting more fine-grained token-wise do-

main alignment for object detection. BIADT has compara-
ble model complexity to AQT. The overall number of pa-
rameters of inference in BIADT model is 45.4M, whereas
AQT is 46.6M. As mentioned earlier, the three AQT align-
ments can be readily integrated in our model as well.

4. Experimental Results

Datasets and Metrics. Evaluation is conducted on pub-
lic benchmark datasets with significant domain gaps. For
each dataset, we follow the same protocol of existing works
[18, 14, 24], and report the average precision (AP5() of each
class and the mean AP over all classes for object detection.

Cityscapes— FoggyCityscapes (C2F): Cityscapes [0]
data set consists of 2,975 training images and 500 validation
images of urban street scenes under normal weather condi-
tions from 50 cities. Foggycityscapes [35] is synthesized by
adding artificial fog to the Cityscapes images. So, they have
the same training-validation split. The Cityscapes training
set and the unlabeled Foggycityscapes training set are used
for training and the validation set of FoggyCityscapes is
used for evaluation. In this setting, the domain adaption
is from normal to foggy weather conditions.

Sim10K— Cityscapes (S2C): Sim10K[20] data set con-
sists of 10,000 synthetic images, used as the source dataset.
The target dataset is Ciytscapes. Following AQT [ 18], only
the object “car” is considered. In this setting, the domain
adaption is from synthetic to real world images.

Cityscapes—BDDI100k daytime (C2B): BBD100k [48]
is a large-scale, ego-centric dataset. Its daytime subset in-
cludes 36,278 and 5,258 images for training and validation,
respectively. In this setting, the Cityscapes training set is
used as a smaller source domain, and the daytime subset of
BBDI100K is used as a large unlabeled target set. This set-
ting evaluates our domain adaptation between two datasets
with different visual attributes and different dataset sizes.
Following existing methods [ 18, 3], we report results on the
seven object classes shared by both datasets.

Implementation Details. Our object detector is Dab-
Deformable-Detr [26] with ResNet50 [1 2] as backbone pre-
trained on ImageNet [7]. It has 6 encoder layers and 6 de-
coder layers. In training, we use the same detection loss as
in [26]. In the C2F setting defined above, we set AY / AX to
10~2; and \Y / A¥ to 10~L. In the other two settings, S2C
and C2B, we set \Y /A\X to 1072 and 10~%; and Y / AX to
101 and 10~%. Ay is set to 5e-5. The learning rate for the
backbone and the transformer are set to 2e-5 and 2e-4, re-
spectively, and the batch size is set to 8 and each randomly
include one source image and one target image. The learn-
ing rate decay is set to 0.1, and applied after 40 epochs for
the 50-epoch training schedule.



Method Backbone | Detector Pseudo-Label | person | rider | car | truck | bus | train | motor | bike | mAP
MTTrans [19] gceyrao R50 Deform-Detr Yes 477 | 499 [ 652 | 25.8 |459|33.8 | 32.6 |46.5| 434
PT [3] jcmr/ 22 V16 Faster R-CNN Yes 432 | 524 [ 634|334 566|378 | 41.3 |48.7| 47.1
TDD [14] cyprroz R50 Faster R-CNN Yes 50.7 | 53.7 | 68.2 | 35.1 | 53.0 [ 45.1 | 38.9 |49.1 | 49.2
AT [24] cyprro2 V16 Faster R-CNN Yes 455 | 55.1 | 64.2] 35.0 563|543 | 385 |51.9] 50.9
AT* [24] cyprroa Vie Faster R-CNN Yes 44.1 | 542 | 62.7| 33.6 | 544|519 | 392 [49.2| 495
PDN [43] 7papsrr 21 R101 Faster R-CNN No 32.8 | 444 |49.6 | 33.0 | 46.1 [ 38.0 | 299 | 353 | 38.6
ICCR-VDD [44] jeevran R50 Faster R-CNN No 334 | 440 |51.7 | 339 |52.0 |34.7 | 342 |36.8 | 40.0
SFA [39] acm mmr21 R50 Deform-Detr No 46.5 |48.6.]62.6 | 25.1 |46.2|29.4 | 283 |44.0| 41.3
MGADA [49] cyprra2 R101 FCOS No 43.1 | 473 | 61.5] 30.2 | 532|503 | 279 | 369 | 43.8
SIGMA [23] cyprroa R50 FCOS No 44.0 | 439 |60.3 | 31.6 | 504 |51.5| 31.7 |40.6 | 44.2
O2Net [9] acy mm’ 22 R50 Deform-Detr No 48.7 | 51.5 [ 63.6 | 31.1 |47.6 |47.8 | 38.0 | 459 46.8
AQT [18] jycar o2 R50 Deform-Detr No 49.3 | 523 | 644 | 27.7 | 53.7 1465 | 36.0 | 46.4 | 47.1
AQT* [18] ycaro2 R50 DAB-Deform-Detr No 49.8 | 54.2 [ 65.8 | 29.0 | 562|375 | 389 |48.2]| 474
BiADT R50 DAB-Deform-Detr No 50.7 | 56.3 | 67.1 | 28.8 | 53.7 | 49.5 | 38.8 |50.1 | 494
BiADT+AQT R50 DAB-Deform-Detr No 52.0 | 553 685|292 (579|459 | 40.1 |49.6 | 49.8
BiADT+TS R50 DAB-Deform-Detr Yes 522 | 589 ]69.2 | 31.7 |55.0]45.1| 42.6 |51.3 ] 50.8

Table 1. Comparison to the SOTA in the Cityscapes—FoggyCityscapes setting. The symbol * denotes our results using the official Github
repository. For fair comparison, our BiADT is also trained for 50 epochs the same as AQT [18].

Method Backbone Detector P-L | car mAP
PT[3] V16 Faster R-CNN Yes 55.1
MTTrans[19] R50 Deform-Detr Yes 57.9
TDD [14] Vie Faster R-CNN Yes 63.3
MGADA [49] R101 FCOS No 54.1
SFA [39] R50 Deform-Detr No 52.6
SIGMA [23] R50 FCOS No 53.7
AQT [18] R50 Deform-Detr No 534
AQT* [18] R50 DAB-Deform-Detr | No 53.7
O2Net [9] R50 Deform-Detr No 54.1
BiADT R50 DAB-Deform-Detr | No 55.8
BiADT + AQT R50 DAB-Deform-Detr | No 56.6

Table 2. Comparison to the SOTA in the Sim10K—Cityscapes.

4.1. Comparison with the State-of-the-art

Tables 1, 2, and 3 compare our BiADT to the state of
the art methods (SOTA) in the three domain-adaptation set-
tings — C2F, S2C, and C2B. The SOTA uses the follow-
ing detectors: Faster R-CNN [33], FCOS[37], Deformable-
Detr[50], and Dab-Deformable-Detr[26]. As for AQT, other
than the accuracy reported in AQT [18] using Deformable-
Detr, we also compare with an accuracy obtained by our
own using the official AQT github repository with using
Dab-Deformable-Detr as the detector for a fair comparison,
named AQT*. As explained in Section. 3.4, we can add the
three AQT alignments to our BiADT easily, which gives
the approach called BIADT+AQT. Finally, when we inte-
grate BiADT into the teacher-student learning framework
(i.e., TSST) with strong data augmentation, we get the ap-
proach called BIADT+TS.

Table | shows the experimental results of the C2F set-
ting, our BiIADT achieves 49.4 mAP, which outperforms
most of the recent works, even the ones with using pseudo-
label. It only slightly lower than AT [24] (mAP=>50.9, top-1
in literature to our best knowledge, our reproduction of AT
is mAP=49.5), but if combining with pseudo-label, our Bi-

ADT+TS also achieves comparable accuracy at mAP=50.8.
Compare to AQT or AQT*, both are not using pseudo-
label, our BiADT achieves a higher mAP with a clear mar-
gin >= 2.0. Besides, adding the AQT alignments to Bi-
ADT further improves this margin to 2.4. For the S2C and
the C2B settings, Tables 2 and 3 show that our BiADT and
BiADT+AQT give the best results in comparison to the
SOTA methods without using pseudo-labeling in training.

4.2. Ablations and Detectors

Ablations. Table 4 evaluates the contribution of each
proposed module in BiADT. The experiment is based on
the C2F setting. In the first row, all of the proposed do-
main alignments are disabled except for the backbone align-
ment. Such a most basic version gives the mAP at 38.3.
Adding the object level domain alignments (rows 2-4 in Ta-
ble 4) improves mAP to 41.2, 42.3 and 42.9, indicating that
the proposed object alignments indeed reduce the domain
gap in the object domain-invariant features. Adding the
image-level alignments (rows 5-7 in Table 4) gives better re-
sults than using only the object-level alignments, improves
mAP to 43.4, 43.3 and 44.4, respectively. This suggests
that the image alignments are more important for cross-
domain detection. While the domain-specific and domain-
invariant features are further disentangled with the proposed
DyHinge loss and the mutual information loss (MI), Bi-
ADT achieves the best mAP to 49.4, indicating all the de-
signs are not overlap but complement to each other.

Transformer Detectors. Table 5 compares the accuracy
numbers using Deformable-Detr, Dab-Deformable-Detr, or
Conditional-Detr as the base object detector. For both AQT
and BiADT, Dab-Deformable-Detr gives the best results.
This could be explained that Dab-Deformable-Detr uses dy-
namic anchor boxes to learn the object query position. Both
AQT and BiADT perform worse using Conditional-Detr,



Method Backbone | Detector Pseudo-Label | person | rider | car | truck | bus | motor | bike | mAP
MTTrans [19] gecyrao R50 Deform-Detr Yes 44.1 |30.1 [61.5] 25.1 [269| 17.7 |23.0| 32.6
PT [3licpmrr22 V16 Faster R-CNN Yes - - - - - - - 34.9
TDD [14] cyprrao R50 Faster R-CNN Yes 579 | 474|745 | 315 |27.5| 32.0 |36.5| 439
ICR-CCR [46] cyprr20 Vie Faster R-CNN No 314 | 313|463 | 195 | 189 | 17.3 |23.8| 269
SFA [39] achm mm 21 R50 Deform-Detr No 402 | 27.6 |575| 19.1 | 234 154 | 19.2| 289
AQT [18] yycaro22 R50 Deform-Detr No 382 | 33.0(584 | 173 | 184 | 169 |23.5]| 294
AQT* [18] jycar 22 R50 DAB-Deform-Detr No 395 | 332|585 17.8 | 183 | 17.5 |23.3| 30.3
O2Net [9] acm mm’22 R50 Deform-Detr No 404 | 31.2|58.6| 204 [250]| 149 |22.7] 30.5
BiADT R50 DAB-Deform-Detr No 42.0 | 345 (599|172 | 19.2| 17.8 | 244 | 327
BiADT+AQT R50 DAB-Deform-Detr No 42.1 | 340|609 | 174 | 19.5| 182 |257| 33.6

Table 3. Comparison to the SOTA in the Cityscapes—BDD100k daytime setting. (please see the caption of Tab. 1 for *)

| BIADT

Target
A person|
% car

(c) Object domain-specific feature

Figure 4. The t-SNE visualization of object features that belong to
three object classes, i.e., person, car, and bike, of the test images in
the Cityscapes (source dark greens) and FoggyCityscapes (target
dark yellows) datasets.

Row | obj X4 | obj X — |img Y 4 | img Y — | DyHinge | MI | mAP
1 38.3
2 v 41.2
3 v 423
4 v v 42.9
5 v 434
6 v 433
7 v v 44.4
8 v v v v 48.2
9 v v v v v 48.7
10 v v v v v v | 494

Table 4. Ablations of the proposed components in BiIADT for the
Cityscapes—FoggyCityscapes setting.

i.e., a single scale transformer-based detector, than the other
two multi-scale detectors.

4.3. Visualizations

Object feature distribution: As the feature disentan-
glement shown in Fig. 4, the separated Z features in (b)
are well aligned cross two domains. In contrast, the D in

Detector ‘ Method ‘ mAP ‘ Method ‘ mAP
Conditional-Detr | AQT | 25.4 | BiADT | 27.8
Deform-Detr AQT | 47.1 | BiADT | 48.9
Dab-Deform-Detr | AQT | 47.4 | BiIADT | 49.4

Table 5. The effect of using different transformer-based detectors
for the Cityscapes —FoggyCityscapes setting.

r" e SRS
| : -y

PSS

Target image Target domain mask

Source domain mask

Source image
Figure 5. An example of the predicted domain mask by BiADT.
The top row shows an image from the target domain and the pre-
dicted domain mask (colored in yellow). The bottom row shows
the corresponding image from the source domain and the predicted
domain mask (colored in green). The predicted domain mask cor-
rectly identifies the cause of the domain gap — the foggy region.

(c) features show a clear margin for the two domains be-
tween domain-specific features. Besides, we observe that
the category-wise properties are preserved quite well in the
resultant feature space.

Domain prediction: Fig. 5 shows example test images
from two domains and their corresponding domain masks
predicted by BiADT from the encoder. As we can see, the
target domain mask (top right) is very similar to the source
domain mask (bottom right), and these masked regions in-
deed indicate the cause of the domain gap — the fog. The
middle part of the road is correctly predicted as being more
domain-invariant because of less fog. This also indicates
that the encoder feature disentanglement is more challeng-
ing, as it operates on the image token sequence, where most
of the tokens from background may lack domain-specific
characteristics (e.g., tokens related to “road” in Fig. 5).



5. Conclusion

We have specified BiADT for cross-domain object de-
tection. Our key contributions include: (1) decompos-
ing the image token and object token into their respec-
tive domain-invariant features and domain-specific features;
(2) deformable attention bi-alignment and self-attention bi-
alignment, in which their corresponding domain-specific
features are learned by attending all of the context in both
image and object token sequences, resulting in the reduced
domain gap in the domain-invariant features. Our Bi-
ADT significantly outperforms the strong baseline model
AQT, and achieves very competitive performance to state-
of-the-art on multiple benchmark domain shift scenarios.
In comparison to pseudo-label methods that usually require
complex multistage training, our training is just one stage,
giving a superior model than some latest pseudo-label ap-
proaches on the multiple cross-domain datasets. Moreover,
our experiments show that BIADT also can be trained with
the more complex training procedures of pseudo-label ap-
proaches, giving further performance improvements.

For limitations, relative to AQT, BiADT uses additional
features to represent domain-specific characteristics of the
image/object tokens. However, BiADT has the same com-
plexity as AQT in performing object detection. As any vi-
sion system, ours could be misused for malicious human
monitoring and violations of privacy.
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