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ABSTRACT

Currently popular feature extraction tools (e.g., Gabor, wavelet

analysis) do not economically represent edges in images. As a step

towards solving this problem, the wedgelet transform was recently

proposed [1]; this transform provides nearly optimal representa-

tion of objects in the Horizon model, as measured by the minimax

mean-squared error. However, there is no reason to assume that

the components useful for representing pixel values must also be

useful for discriminating between regions in an image. Thus, hav-

ing the successful extraction of edges as our goal, we propose a

novel image analysis method—namely, multiresolution linear dis-

criminant analysis (MLDA). In MLDA, analogously to the wedge-

let transform, we seek directions that are efficient for discrimina-

tion. The MLDA framework comprises the following components:

the MLDA atom, dictionary, tree, graph, and MLDA-based algo-

rithms. In this paper, we explain these components and demon-

strate the powerful expressiveness of MLDA, which gives rise to

fast geometrical-structure-analysis algorithms.

1. INTRODUCTION

For years now, active research has been conducted in the area of

wavelet-based image processing. However, recent findings on hu-

man vision and natural image statistics [2, 3] provide a host of

arguments which seem to undermine the popularity of wavelets. It

has been reported that cortical cells are not only highly sensitive to

the location and scale, but also to the orientation and elongation of

stimuli. Moreover, the basis elements which best “sparsify” nat-

ural scenes are highly direction-specific, unlike wavelets. Finally,

it is well known that wavelets do not economically represent even

straight edges, let alone more complicated geometrical structures

in images. Therefore, all the aforementioned arguments suggest

that there is a need for new image analysis methods that should

exhibit, aside from the multiscale and localization properties of

waveletes, also, characteristics that account for concepts beyond

the wavelet framework.

Recently, the wedgelet transform has been proposed [1], as a

step toward improved extraction and representation of edges in

images. The wedgelet transform is a harmonic analysis method

for nearly optimal representation of binary images consisting of

piecewise constant regions separated by smooth boundaries (i.e.

the Horizon model). A wedgelet is a piecewise constant function

on either side of a line that intersects a dyadic square. The mul-

tiscale wedgelet representation of an image consists of a set of

wedgelets supported by dyadic squares of varying sizes that par-

tition the analyzed image. The wedgelet recursive partitioning is

optimized over multiple criteria [1, 4] which essentially minimize

the complexity-penalized mean-squared error. Clearly, the wedge-

let representation seeks a projection that best represents an image

in a least-squares sense. However, there is no reason to assume

that the components useful for representing pixel values must also

be useful for discriminating between regions in an image. There-

fore, we propose a substantially different image analysis method

which maximizes the distance between the means of the two re-

gions while minimizing the variance within each region. Thus, we

implement multiscale linear discriminant analysis (MLDA) which

seeks for directions that are efficient for discrimination.

Despite its similarity to the wedgelet transform, we introduce a

new name (i.e., MLDA) to emphasize the fundamental difference

between the two approaches. Minimizing the mean-squared error,

a wedgelet represents the most coherent regions in the correspond-

ing dyadic square, that is, the regions with the minimal variance.

On the other hand, an MLDA atom, supported by a dyadic square,

represents not only the most coherent regions but also the regions

with the maximum mean distance. One can easily imagine cases

where minimizing the variances solely is insufficient for correct

edge detection, especially for appearances in images that cannot

be modeled with the Horizon model. In Fig. 1, we illustrate such a

case where regions have almost identical means but different vari-

ances. Unlike the wedgelet transform designed for binary images,

MLDA is capable of performing analysis of images represented

in a multidimensional feature space (e.g., the RGB color space).

In a more general setting of multidimensional data analysis, the

MLDA extracts an “edge” between clusters of data, projecting the

multidimensional data space onto the lower-dimensional MLDA

representation.

MLDA exhibits the multiscale and localization properties of

waveletes, but also offers additional information on alignments

and spatial interrelationships among the extracted linear discrim-

inants. In the following sections we explain these properties and

demonstrate them with MLDA-based algorithms for analyzing ge-

Fig. 1. The wedgelet transform fails to detect the edge correctly:

(left) original image, (center) wedgelet, (right) MLDA atom
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ometrical structures in images.

2. MLDA FRAMEWORK

The MLDA framework consists of the following components:

1. The MLDA atom w is a piecewise constant function on

either side of a linear discriminant that intersects the perimeter of

a dyadic square S in vertices vi and vj . The discriminant (vi, vj)
divides S into two regions R0 and R1, in which w takes values

µ0 and µ1 equal to the mean vector of pixel values1in R0 and R1,

respectively.

2. The MLDA dictionary is a collection of all possible MLDA

atoms w at a finite range of locations, orientations and scales.

MLDA is performed searching through the MLDA dictionary for

atoms that best represent the analyzed image with respect to mul-

tiple criteria. The search keys are the location and scale of S and a

discriminant (vi, vj). Computational complexity requires that the

set of vertices {vk} on the perimeter of each S be finite (e.g., a

number of pixels apart). In our implementation, the distance be-

tween two adjacent vertices is constant, which results in a different

number of linear discriminants for squares at different scales.

3. The MLDA tree T consists of MLDA atoms generated

in MLDA. Starting from S of size equal to the analyzed image,

MLDA decomposes the image into children dyadic squares until

optimization criteria are met. The MLDA tree T is incomplete,

because generating atoms stops at different scales for different lo-

cations in the image. The leaf nodes of T store the final MLDA

representation of an image, as illustrated in Fig. 2.

4. The MLDA graph is a graph plot of the MLDA representa-

tion of an image, where edges are linear discriminants and nodes

are their corresponding vertices, as depicted in Fig. 2.

5. MLDA-based algorithms exploit information stored in the

MLDA tree and graph. The tree structure gives rise to a host of

multiscale analysis methods that account for µ0 and µ1 values of

each w at various scales—the algorithms already introduced in the

wavelet literature [5]. On the other hand, MLDA algorithms that

use the MLDA graph go beyond the wavelet framework. These

algorithms are capable of examining spacial interrelationships of

linear discriminants, such as connectedness, collinearity and other

properties of curves in an image.

We propose that the most important optimization criteria for

MLDA are discrimination and parsimony. The pattern recogni-

tion literature abounds with various criterion functions for comput-

ing the best linear discriminant. In our implementation, we seek

a direction (vi, vj), characterized by the maximum Mahalanobis

distance between R0 and R1 in S, as

(vi, vj) : d = max
(vi,vj)

{(µ0−µ1)
T (Σ0+Σ1)

−1(µ0−µ1)}, (1)

where Σ0 and Σ1 denote covariance matrices of R0 and R1, re-

spectively. The computational cost of an exhaustive search over a

finite set of linear discriminants {(vi, vj)} can be reduced by up-

dating the relevant statistics only with pixel values of delta regions

(areas between two consecutive candidate linear discriminants).

As the size of S decreases, we achieve better piece-wise lin-

ear approximation of boundaries between regions in an image.

1In this paper we assume that the analyzed image is represented in
multidimensional feature space, where a feature vector is assigned to each
pixel.

Fig. 2. (left) The MLDA graph: the dashed line depicts the actual

curve; (right) the corresponding MLDA tree

Therefore, an analyzed image is decomposed into dyadic squares

of varying sizes which results in the MLDA tree T . To control

the generation of children dyadic squares, we impose the next op-

timization criterion, parsimony, as a counter-balance to accuracy.

We define a cost function to measure the parsimony of T as

R(T ) =
∑

r(wℓ) + α|T | , (2)

where r(wℓ) is the inverse of the Mahalanobis distance computed

for the corresponding leaf node wℓ, r(wℓ) = 1/d, |T | denotes

the number of terminal nodes in T , and α represents the com-

plexity cost per terminal node. Clearly, an exhaustive search in

tree space for the minimum cost function is computationally pro-

hibitive. Therefore, we implement the one-step optimal procedure

analogous to the algorithm proposed in [6].

Our experimental results suggest that no single stopping rule,

which limits the size of T , yields a satisfactory image represen-

tation. Therefore, instead of stopping at different terminal nodes,

we continue MLDA image decomposition until all leaf squares are

small in size, resulting in a large tree. Then, we selectively prune

this large tree upward using the cost function R(T ). From ex-

pression (2), it follows that we can regulate the pruning process by

increasing α to obtain a finite sequence of subtrees with progres-

sively fewer leaf nodes. First, for each node w ∈ T , we determine

αw for which the cost of a subtree Tw is higher than the cost of its

root node w, as follows:

R(Tw) ≥ R(w) ⇒
∑

r(wℓ) + αw |Tw| ≥ r(w) + αw · 1

⇒ αw =
r(w) −

∑
r(wℓ)

|Tw| − 1
. (3)

Then, the whole subtree Tw under the node w with the minimum

value of αw is cut off. Repeatedly, we recalculate αw values and

trim off the weakest links until the actual number of leaf nodes is

equal to or less than the desired number of leaf nodes.

This pruning is computationally fast and requires only a small

fraction of the total tree construction time. Starting with a com-

plete tree, the algorithm initially trims off large subtrees with many

leaf nodes. As the tree becomes smaller, the procedure tends to cut

off fewer nodes at a time. In Fig. 3, we illustrate the efficiency in

image representation of the fully optimized MLDA tree, as com-

pared to the unpruned MLDA tree. While there is almost no degra-

dation in accuracy with complexity-cost pruning, we achieved sig-

nificant reduction in the number of terminal MLDA atoms.

With additional optimization criteria, it is possible to meet var-

ious application specific requirements. For instance, in [4], the au-

thors assume that curves in images appear smooth and connected,

and therefore they impose a geometrical model as an optimization
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Fig. 3. The MLDA representation: (left) original image, (center) no pruning 1024 leaf nodes, (right) with pruning 253 leaf nodes

criterion for deriving the wedgelet image representation. Never-

theless, keeping in mind that the human visual system is capable of

integrating scattered image constituents into coherent global struc-

tures [2], we let the MLDA representation provide all the richness

of the underlying geometrical structures and assign the role of “in-

tegrating” (e.g. analysis of the smoothness and connectedness of

curves) to MLDA-based algorithms.

3. ALGORITHMS AND RESULTS

MLDA is particularly suitable for extracting perceptually impor-

tant features such as edges, singularities, and periodic patterns

through a range of scales. Herewith, we focus only on the problem

of extracting curves in an image, since a more thorough treatment

is beyond the scope of this paper.

The vision-based horizon tracking for flight control and sta-

bility of micro air vehicles (MAV), as described in [5], is based

on the assumption that the horizon is a straight line. Thus, the

crucial part of the horizon detection algorithm is extracting candi-

date lines in an image—a task almost impossible to achieve using

wavelets for noise-degraded images. In Fig. 4, we show two typ-

ical flight images, captured from an on-board camera of a MAV,

where the video noise introduced edges and ripples that may mis-

lead the wavelet-based edge detection. In this case, the MLDA

framework offers an efficient solution without any need for image

denoising. First, the MLDA image representation is found. Then,

straight lines in the image are extracted analyzing exhaustively all

possible directions, determined by a finite set of points V along the

perimeter of the image. Each pair of points (vi, vj) ∈ V defines

a direction with a slope aij along which MLDA atoms are exam-

ined. If slopes a of linear discriminants of the examined atoms

satisfy

|a − aij | < ∆ , (4)

where ∆ denotes a slope step between two neighboring directions

and can be computed as

∆ = min{|aij − akl|/(1 − aijakl)} , k, l ∈ {i, i ± 1} , (5)

then that linear discriminant is extracted as a part of the analyzed

direction (vi, vj). Finally, comparing µ1 and µ2 values of the ex-

tracted MLDA atoms with the prior statistical models of sky and

ground [5], the list of horizon candidates is reduced to the horizon

solution, as illustrated in Fig. 4.

In order to justify our claim that MLDA-based algorithms for

edge extraction outperform wedgelet and wavelet-based approaches,

Fig. 4. Noise degraded MAV flight images

Table 1. Percentage of misclassified pixels for noisy flight images

MLDA wedgelets wavelets

5% - 17% 8% - 24% 12% - 31%

especially in the presence of video noise, we carried out a compar-

ative study of the three algorithms2 for horizon detection on the

same dataset comprising more than 1000 noisy MAV flight im-

ages. By visual inspection, we marked the “correct” position of the

horizon for each image and then computed the percentage of erro-

neously classified pixels by the MLDA, wedgelet, and wavelet-

based algorithms, which we present in Table 1. It seemed to us

inappropriate to average the classification results, because it was

only for a small number of test images that the error increased.

Finally, it is note worthy that the MLDA-based horizon detection

algorithm is capable of processing a video stream of flight images

in real time.

Further, we apply the described algorithm to solve the prob-

2For more details on the wavelet-based horizon tracking, the interested
reader is referred to [5].
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(a) original image (b) extraction of lines (c) extraction of curves

Fig. 5. A noise degraded MAV flight image

lem of detecting man-made structures in air images. Suppose, for

example, that artificial structures appear as long straight edges, as

the road in Fig. 5a. Thus, given this prior knowledge, the recogni-

tion problem can be solved implementing the MLDA-based edge

detection. First, we exhaustively analyze all directions determined

by a finite set of points along the perimeter of the image, extract-

ing linear discriminants. The directions most effectively covered

with the extracted linear discriminants are candidate lines for the

shapes of man-made objects. Criteria to choose the solution from

the candidates can be based on examining various properties, such

as: whether the lines are parallel or perpendicular. The two jagged

white lines in Fig. 5b represent the two longest directions that are

also most effectively covered with the extracted linear discrimi-

nants. It is most likely that these lines represent the road in the

image.

Finally, we present an MLDA-based algorithm for extracting

the minimum length curve between two fixed points in an image.

Here, we implement the iterative-deepening A∗ (IDA∗) search

algorithm to optimize a path in the MLDA graph. It is well-known

[7] that iterative-deepening search finds minimal cost paths with

memory requirements that grow only linearly with the depth of the

goal. Outward propagation from the starting point in the MLDA

graph (i.e. the generation of new nodes in the IDA∗ search tree)

is controlled by a function

f(n) = g(n) + h(n) , (6)

where g(n) denotes the cost of the minimal cost path from the

start node n0 to the examined node n, and h(n) denotes the actual

cost of the minimal cost path between n and the goal node ng .

Recall that the exact positions in an image of all nodes (i.e. MLDA

atoms) are known. Hence, we can estimate the true h(n) with the

following heuristic function:

ĥ(n) = d(n, n + 1) + dℓ(n + 1) + d(n + 1, ng) , (7)

where n + 1 denotes a new node generated from the node n (i.e.,

a neighboring MLDA atom), then d(n, n + 1) stands for the mini-

mum distance between the vertices of n and n+1, further, dℓ(n+
1) denotes the length of the linear discriminant of n + 1, and fi-

nally d(n + 1, ng) stands for the minimum distance between ver-

tices of the n + 1 and ng MLDA atoms. The controlling func-

tion f̂(n) = ĝ(n) + ĥ(n) is an accumulative sum of distances

and, hence, a monotone nondecreasing function, assuring that the

IDA∗ search results in the minimum-length path.

The IDA∗ algorithm executes a series of depth-first searches

controlled by a cost cut-off value. We expand nodes in a depth-first

fashion, backtracking whenever the f̂(n + 1) value of a successor

exceeds the cut-off. If this depth-first search does not terminate at

the goal node ng , then the cost cut-off value must be increased to

start another depth-first search. The new cut-off value is set to the

minimum f̂(n) value of the nodes visited but not expanded in the

previous depth-first search.

Repetitive expansion of nodes in IDA∗ hinders real-time im-

plementation. On the other hand, the algorithm reduces mem-

ory requirements and improves implementation efficiencies of the

depth-first search. In Fig. 5c, we illustrate the extraction of the

minimum-length curve between two fixed points of interest. In

this example, the start point is on the bottom left and the end point

is on the upper right side of the image.

For space reasons, we left out substantial details as well as fur-

ther examples of applied MLDA algorithms.

4. CONCLUSION

Currently well established image analysis approaches do not ex-

hibit sufficient precision in detection and also do not provide sparse

representation of image features. To deal with these problems, we

proposed MLDA, a novel image analysis method, in this paper.

We discussed the MLDA framework and showed that MLDA ef-

ficiently represents location, scale, orientation and elongation of

image elements. We presented several MLDA-based algorithms

for extracting curves in images as one application of the MLDA

framework. Comparative study of the MLDA, wedgelet, and wavelet-

based horizon detection in noisy images showed that MLDA out-

performed the other two methods.

5. REFERENCES

[1] D.L.Donoho, “Wedgelets: Nearly-minimax estimation of

edges,” Annals of Statistics, vol. 27, no. 3, 1999.

[2] Spec. issue, “Natural Stimulus Statistics,” Network: Compu-

tation in Neural Systems, vol. 12, 2001.

[3] D.J.Field, “Relations between the statistics of natural images

and the response properties of cortical cells,” J. of Optical

Soc. of America, A, vol. 4, 1987.

[4] J.K.Romberg, M.Wakin, and R.G.Baraniuk, “Multiscale

wedgelet image analysis: fast decompositions and modeling,”

in IEEE ICIP 2002, Rochester, NY, 2002.

[5] S.Todorovic and M.C.Nechyba, “Sky/ground modeling for

autonomous MAV flight,” in IEEE ICRA 2003, Taiwan, 2003.

4



in Proc. IEEE Int. Conf. on Image Processing (ICIP), vol. 1, pp. 1029–1032, Barcelona, Spain, 2003

[6] L.Breiman, J.Friedman, R.Olshen, and C.Stone, Classifica-

tion and Regression Trees, Wadsworth, Belmont, CA, 1984.

[7] N. J. Nilsson, Artificial Intelligence: a New Synthesis, Morgan

Kaufmann, San Francisco, CA, 1998.

5


