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Abstract

This paper presents a statistical approach to 3D texture
classification from a single image obtained under unknown
viewpoint and illumination. Unlike in prior work, in which
texture primitives (textons) are defined in a filter-response
space, and texture classes modeled by frequency histograms
of these textons, we seek to extract and model geometric
and photometric properties of image regions defining the
texture. To this end, texture images are first segmented by
a multiscale segmentation algorithm, and a universal set
of texture primitives is specified over all texture classes in
the domain of region geometric and photometric proper-
ties. Then, for each class, a tree-structured belief network
(TSBN) is learned, where nodes represent the correspond-
ing image regions, and edges, their statistical dependecies.
A given unknown texture is classified with respect to the
maximum posterior distribution of the TSBN. Experimen-
tal results on the benchmark CUReT database demonstrate
that our approach outperforms the state-of-the-art methods.

1. Introduction

Textured surfaces in natural scenes are usually charac-
terized by variations in local height, color and reflectance,
and hence referred to as 3D texture. Analysis of images
of 3D texture is a challenging task, since different lighting
and viewing conditions give rise to significant changes in
texture appearance, due to, for example, shadowing, fore-
shortening, and occlusion, as illustrated in Fig. 1.

Several recent studies on texture have addressed the de-
pendence of texture appearances on imaging conditions
[2–5, 9]. In [3, 4], parametric models based on surface
roughness and correlation lengths have been developed for
classification of textures in the Columbia-Utrecht (CUReT)
database, which contains texture images over a wide range
of systematic changes in illumination and viewpoint. Fur-
ther, in [5], a universal set of textons (texture primitives) and
their frequency histogram have been proposed to address

Figure 1. Sample 4 from CUReT database [3]:
under various imaging conditions the images
seem to represent different surfaces.

3D effects. Textons have been defined as cluster centers of
filter responses over a stack of images with representative
viewpoints and lighting. However, in their approach, a set
of registered images with known imaging parameters of the
same unknown texture must be presented for classification.
Two similar approaches have been proposed in [2,9], where
2D textons are extracted as cluster centers in filter-response
space, while their frequency histogram is expressed as a
vector function of imaging parameters. Thereby, they have
accomplished a computationally simpler texture represen-
tation, capable of classifying single images without anya
priori information, unlike in [5].

Our approach draws from prior work the ideas to build a
universal set of primitives, and to learn their joint distribu-
tion. Also, in this paper, we build a series of models for each
texture class over a set of images parameterized by varying
illumination and viewpoints. Here, to reduce the number of
models per class, we employ the standard K-Medoid algo-
rithm, following the approach in [9]. In the classification
stage, a given unknown texture, obtained under unknown
viewing and lighting directions, is recognized with respect
to the maximum posterior distribution of the learned texture
models.

The twofold novelty of our approach stems from the
domain in which we define texture primitives, and from
the specification of their joint distribution. Unlike in prior
work, where texture features are extracted by a bank of pre-
selected filters, we seek to capture geometric and photomet-
ric properties defining the texture, in unsupervised manner.
To this end, we perform a multiscale segmentation of an
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Figure 2. Sample 35 from CUReT: marked re-
gions are nodes of the segmentation tree at
levels 8, 9 and 10, respectively.

Figure 3. TSBN has irregular structure of
the segmentation tree; black nodes represent
observables, and white, hidden variables.

image by using an algorithm discussed in [1,7], which out-
puts a segmentation tree. The segmentation tree contains
all segmentations that can be identified in the image, cor-
responding to all different degrees of saliency, e.g., defined
as color homogeneity. Nodes at upper levels correspond
to more salient regions, whereas any cutset of the tree pro-
vides a 2D layout of the segmented regions, as illustrated in
Fig. 2. Each node of the segmentation tree is characterized
by a feature vector that includes geometric and photometric
properties of the corresponding region–namely, region area,
boundary shape, and color mean and variance. The number
of tree levels and the homogeneity values associated with
them, as well as the number of children of each node are
a priori unknown, and are dynamically determined by the
image at hand.

The segmentation tree serves as a rich description of
the image for deriving texture models, which in this pa-
per comprises two stages. First, the segmented regions in
the training images of all texture classes are clustered in the
aforementioned feature space of geometric and photometric
properties. Then, a texture primitive is specified as a vec-
tor containing the mean and variance of the feature vectors
of regions in a cluster. These texture primitives form a fi-
nite universal dictionary of texture “words” characterizing
all texture classes. Note that supervision in prior work, with
respect to pre-selecting an optimal filter bank, is eliminated
in this paper by the segmentation algorithm, which dynam-
ically determines the optimal domain of texture primitives.

In the second modeling stage, for each texture class, we
build a tree-structured belief network (TSBN), depicted in
Fig. 3. TSBNs are very popular statistical models in im-

age processing and computer vision [6,8]. The TSBN of an
image consists of hidden and observable random variables
organized in the same structure as that of the corresponding
segmentation tree of the image. Observables are the feature
vectors of geometric and photometric properties of the cor-
responding regions in the segmentation tree, and are mu-
tually independent given their corresponding hidden vari-
ables. Hidden variables are labels of the texture primitives,
specified in the first modeling stage, while connections be-
tween them represent parent-child statistical dependencies.
Note that unlike histograms in prior work the TSBN cap-
tures spatial dependencies among texture regions. Further-
more, the ascendant-descendant (Markovian) connections
in the TSBN encode the statistical properties of pixel neigh-
borhoods of varying size. All this makes TSBNs more ex-
pressive models than frequency histograms used in prior
work.

The joint distribution of hidden and observable variables
fully characterizes the TSBN model of a given texture class,
and allows for texture classification within the Bayesian
framework, i.e., with respect to the maximum posterior dis-
tribution, computed here by the standard belief propagation
algorithm [6]. Experiments of texture classification are pre-
sented on 20 samples from the CUReT database [4] . The
results demonstrate that our approach offers a viable solu-
tion to 3D texture classification.

2. Observables and Texture Primitives

In this paper, images are represented by segmentation
trees [1, 7], where each region (node)i is associated with
a feature vector,yi, comprising the intrinsic geometric and
photometric properties of regioni. Let µi andΣ2

i denote
the mean and covariance of regioni color values. Also,
let Ai denote the region area. To describe the boundary
shape ofi, we parse the image intoL pie slices, each of
which begins at the centroid ofi, and subtends the the same
angle2π/L. Next, we compute the normalized histogram
hi={hi(l)}

L
l=1

, of the number of pixels of regioni that fall
in pie slicel. Clearly, the region feature vector, specified as
yi = [µi, Σi, Ai, hi], can be easily extended, as dictated by
the requirements of a particular application. These feature
vectors represent observable random variables in the TSBN.

In the first stage of learning, segmented regions of
the training images of all texture classes are clustered
by the standardK-Means algorithm in the feature space
determined byyi values. TheK-Means producesK
clusters, {Ck}

K
k=1

, each of which defines the associ-
ated texture primitive. A texture primitive,πk, is
specified as a vector containing the mean and variance
of the feature vectors of regions in a cluster,πk =
[mean({yi}i∈Ck

), var({yi}i∈Ck
)].
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3. TSBNs, Model Reduction and Classification

In this paper, texture classT is modeled with a TSBN
parameterized over viewpointsV and illuminationI. The
TSBN is fully specified by its joint distribution of hid-
den,X={xi}, and observable,Y ={yi} random variables,
∀i∈T , wherei denotes a node in the segmentation treeT .

A hidden variable,xi, represents the label of a texture
primitive. The label of nodei is conditioned on the label
of its parentj, and is specified by the conditional probabil-
ity tables,P (xi|xj). The joint probability ofX of a given
texture classT is specified as

P (X |T ,V , I) =
∏

i,j∈T P (xi|xj , T ,V , I) , (1)

where for the roots we use priorsP (xi|T ,V , I). Since we
assume that observablesyi are conditionally independent
given the correspondingxi, the joint likelihood ofY can be
expressed as

P (Y |X, T ,V , I) =
∏

i∈T P (yi|xi=k, T ,V , I) , (2)

whereP (yi|xi=k, ·) is modeled as the Gaussian distribu-
tion with parameters encoded in the texture primitiveπk. It
follows that the TSBN for textureT and imaging parame-
tersV andI is fully characterized by

P (X, Y |T ,V , I) =
∏

i,j∈T P (yi|xi, ·)P (xi|xj , ·) . (3)

The parameters of likelihoodsP (yi|xi, ·) can be learned
by using the ML algorithm over the clusters{Ck}

K
k=1

, ob-
tained in the first modeling stage. Next, the transition prob-
abilities,P (xi|xj , ·), can be learned by the standard belief
propagation algorithm [6, 8], the details of which are omit-
ted for space reasons. Despite the irregular structure of the
TSBN, the computational complexity of the belief propaga-
tion is polynomial in time, since its structure is known and
equal to that of the segmentation tree.

Note that in the above formulation the number of mod-
els per class is the same as the number of training images
that differ inV andI parameters. For the purposes of tex-
ture classification, this represents a modeling redundancy,
since even considerable variations in texture appearance of
one class may not reduce the classification accuracy if the
other classes are sufficiently different from it. To reduce
the number of models per texture class, we employ the
standard K-Medoid algorithm [9]. In particular, the set of
P (X |T ,V , I) values, over all texture classesT and param-
etersV andI, may be clustered by the K-Medoid intoM
clusters, and represented byM cluster centers. The update
rule of the K-Medoid always moves the cluster center to
the nearest data point in the cluster, but does not integrate
over the points as the K-Means algorithm. Indeed, in the
K-Medoid, the cluster centers are always data points them-
selves. Therefore, a selected cluster center can be uniquely

identified as an individualP (X |T ,V , I) point, which, in
turn, determines the most representative TSBN model with
V andI values. Note that the outlined procedure yields a
different number of representative models per texture class.

To classify an unknown image, we select the tex-
ture class, T̂ , for which the posterior distribution
P (T ,V , I, X |Y ) is maximum:

T̂ = argmax
T ,V,
I,X

P (T ,V , I, X |Y )≈ arg max
T ,V,
I,X

P (X, Y |T ,V , I).

(4)
In Eq. (4), the priorP (T ,V , I) is assumed uniform over all
possible values ofT ,V , andI. Moreover,P (Y ) is assumed
a smooth, slow changing function, which seems reasonable
considering our premise that texture appearances undergo
considerable variations, i.e., a wide range ofY values are
equally likely.

Thus, in the classification stage, a given image is first
segmented to obtainY values, thenP (X, Y |T ,V , I) val-
ues are computed using the belief propagation for allM
representative models of all texture classes, and, finally,the
image is classified as in Eq. (4).

4. Experiments

For experimental validation of our approach, we use the
CUReT database [4], which contains images of 61 real-
world 3D textures, each imaged under 205 different combi-
nations of viewing and illumination directions. As in [2,9],
the same subset of 20 textures is selected–specifically, sam-
ples: 1, 4, 6, 10, 12, 14, 16, 18, 20, 22, 25, 27, 30, 33, 35, 41,
45, 48, 50, and 59. Out of the existing 205 images per class,
only 92 are chosen that contain a sufficiently large texture
region (whose viewing angle is less then 60 degrees). These
92 images are then manually cropped, to ensure that they
contain only texture information, and randomly divided into
two distinct sets of 46 training and 46 test images. The clas-
sification results are averaged over a set of 5 experiments,
each conducted for different random partitioning of images
into the training and test set. Each experiment consists of
four stages: (i) Segmentation of46×20=920 training im-
ages and finding their segmentation trees, (ii) Generation of
the dictionary of texture primitives, (iii) Learning TSBNs
from the training images and reducing the total number of
the learned models, and (vi) Classification of920 test im-
ages. For describing the boundary shape of a segmented
region, we useL = 40 histogram bins.

Fig. 4 presents the classification results over a range of
values for the number of texture primitives,K, for the aver-
age number of representative models per class, and for the
number of available uniformly sampled training images per
class from the training set. For comparison, when one pa-
rameter is varied, the other two are fixed to the same values
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Figure 4. Contrasting our averaged global classification re sults for all 20 texture classes with those
reported in [2,9]; (left) 46 models per class on average and 9 20 training images; (middle) 920 training
images and 200 texture primitives; (right) 46 models per cla ss on average and 100 texture primitives.

as reported in [2,9], and given in the caption of Fig. 4. When
46 models per class on average, and 200 texture primitives
are learned from 920 training images, our recognition rate
averaged over 5 experiments and over 20 classes is 98.09%,
outperforming 97.83% in [9], and 96.08% in [2]. From
Fig. 4, a small number of models per texture class (less than
12) renders our approach inferior to both [2] and [9]; how-
ever, when that number is sufficiently large (above 24), our
recognition rate exceeds those of [2, 9]. In the right plot of
Fig. 4, the global recognition rate increases as the number
of training images per class becomes larger, where, interest-
ingly, ours is greater than the one reported in [2] for a very
small training set. This suggests that TSBNs are capable of
capturing more statistically significant information froma
few training images than frequency histograms used in [2].

5. Conclusion

The appearance of 3D texture varies significantly as the
viewpoint and lighting directions change, and must be ex-
plicitly accounted for, in order to accomplish a reason-
able classification accuracy on a single sample with un-
known imaging parameters. To this end, in this paper,
an optimal set of TSBNs per texture class is learned from
training images, represented as segmentation trees, and in-
dexed by the most significant viewpoints and illumination.
The presented experimental results obtained on the CUReT
database demonstrate that our approach yields higher recog-
nition rates than the state-of-the-art methods in the same ex-
perimental settings.

Two key factors, proposed in this paper, lead to the im-
proved classification performance. First, feature extraction
is done by the multiscale segmentation algorithm, which dy-
namically finds segmentations at all saliency scales present
in the image, instead of using a pre-selected filter bank, as in
previous work. Second, TSBNs capture spatial dependen-

cies among texture regions of varying size, which makes
them more expressive than frequency histograms used in
prior work.

Acknowledgment

The support of the Office of Naval Research under grant
N00014-06-1-0101 is gratefully acknowledged.

References

[1] N. Ahuja. A transform for multiscale image segmenta-
tion by integrated edge and region detection.IEEE TPAMI,
18(12):1211–1235, 1996.

[2] O. G. Cula and K. J. Dana. 3D Texture recognition using bidi-
rectional feature histograms.Int. J. Comput. Vision, 59(1):33–
60, 2004.

[3] K. J. Dana and S. Nayar. Correlation model for 3D texture.
In ICCV, volume 2, pages 1061–1067, 1999.

[4] K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koen-
derink. Reflectance and texture of real-world surfaces.ACM
Trans. Graph., 18(1):1–34, 1999.

[5] T. Leung and J. Malik. Representing and recognizing the vi-
sual appearance of materials using three-dimensional textons.
Int. J. Comput. Vision, 43(1):29–44, 2001.

[6] J. Pearl. Probabilistic reasoning in intelligent systems: net-
works of plausible inference, chapter 4, pages 143–236. Mor-
gan Kaufamnn, San Mateo, 1988.

[7] M. Tabb and N. Ahuja. Multiscale image segmentation by in-
tegrated edge and region detection.IEEE Trans. Image Pro-
cessing, 6(5):642–655, 1997.

[8] S. Todorovic and M. C. Nechyba. Dynamic trees for unsu-
pervised segmentation and matching of image regions.IEEE
TPAMI, 27(11):1762–1777, 2005.

[9] M. Varma and A. Zisserman. A statistical approach to tex-
ture classification from single images.Int. J. Comput. Vision,
62(1-2):61–81, 2005.

4


