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Abstract

This paper presents a statistical approach to 3D texture ;
classification from a single image obtained under unknown
viewpoint and illumination. Unlike in prior work, in which
texture primitives (textons) are defined in a filter-respons ~ Figure 1. Sample 4 from CUReT database [3]:
space, and texture classes modeled by frequency histograms uUnder various imaging conditions the images
of these textons, we seek to extract and model geometric S€€m to represent different surfaces.
and photometric properties of image regions defining the
texture. To this end, texture images are first segmented by

a multiscale_ sggmeqtation g_lgorithm, and a universal S?t 3D effects. Textons have been defined as cluster centers of
of texture primitives is specified over all texture classes i o1 rasnonses over a stack of images with representative
the domain of region geometric and photometric proper- e ynoints and lighting. However, in their approach, a set

tI'IE'};.B-l[lh?n,l for ea:jch chlass, a (t;ee-structured fellef networ q of registered images with known imaging parameters of the
.( . )is earned, where nodes rgpresgntt € Correspontsame unknown texture must be presented for classification.
ing image regions, and edges, the|.r.stat|s.t|cal dependecie . similar approaches have been proposed in [2,9], where
A given unknown teé(.tur(.ab|s.clas?|f|r(]ad Ws'th respect 10 the 5 ayions are extracted as cluster centers in filter-respon

maximum posterior distribution of the TSBN. Experimen- space, while their frequency histogram is expressed as a

tﬂl results on thehbenchrr;ark Cl;ReT datasz;\]se demOSqSt:jatQ/ector function of imaging parameters. Thereby, they have
that our approach outperiorms the state-of-the-art metho accomplished a computationally simpler texture represen-

tation, capable of classifying single images without any

priori information, unlike in [5].
1. Introduction Our approach draws from prior work the ideas to build a

universal set of primitives, and to learn their joint distri

Textured surfaces in natural scenes are usually charaction. Also, in this paper, we build a series of models for each
terized by variations in local height, color and reflectance texture class over a set of images parameterized by varying
and hence referred to as 3D texture. Analysis of imagesillumination and viewpoints. Here, to reduce the number of
of 3D texture is a challenging task, since different liggtin models per class, we employ the standard K-Medoid algo-
and viewing conditions give rise to significant changes in rithm, following the approach in [9]. In the classification
texture appearance, due to, for example, shadowing, fore-stage, a given unknown texture, obtained under unknown
shortening, and occlusion, as illustrated in Fig. 1. viewing and lighting directions, is recognized with respec
Several recent studies on texture have addressed the ddo the maximum posterior distribution of the learned tegtur

pendence of texture appearances on imaging conditiongnodels.
[2-5,9]. In [3, 4], parametric models based on surface The twofold novelty of our approach stems from the
roughness and correlation lengths have been developed fodomain in which we define texture primitives, and from
classification of textures in the Columbia-Utrecht (CUReT) the specification of their joint distribution. Unlike in pri
database, which contains texture images over a wide rangavork, where texture features are extracted by a bank of pre-
of systematic changes in illumination and viewpoint. Fur- selected filters, we seek to capture geometric and photomet-
ther, in [5], a universal set of textons (texture primitivasd ric properties defining the texture, in unsupervised manner
their frequency histogram have been proposed to addres§o this end, we perform a multiscale segmentation of an
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age processing and computer vision [6,8]. The TSBN of an
image consists of hidden and observable random variables
organized in the same structure as that of the corresponding
segmentation tree of the image. Observables are the feature
vectors of geometric and photometric properties of the cor-
responding regions in the segmentation tree, and are mu-
tually independent given their corresponding hidden vari-
ables. Hidden variables are labels of the texture prinstive
specified in the first modeling stage, while connections be-
tween them represent parent-child statistical dependsenci
Note that unlike histograms in prior work the TSBN cap-
tures spatial dependencies among texture regions. Further
more, the ascendant-descendant (Markovian) connections
in the TSBN encode the statistical properties of pixel neigh
borhoods of varying size. All this makes TSBNs more ex-
pressive models than frequency histograms used in prior

Figure 2. Sample 35 from CUReT: marked re-
gions are nodes of the segmentation tree at
levels 8, 9 and 10, respectively.

work.
Figure 3. TSBN has irregular structure of The joint distribution of hidden and observable variables
the segmentation tree; black nodes represent fully characterizes the TSBN model of a given texture class,
observables, and white, hidden variables. and allows for texture classification within the Bayesian

framework, i.e., with respect to the maximum posterior dis-
tribution, computed here by the standard belief propagatio

image by using an algorithm discussed in [1, 7], which out- algorithm [6]. Experiments of texture classification are-pr
puts a segmentation tree. The segmentation tree contain§ented on 20 samples from the CUReT databaS(_a [4] . The
all segmentations that can be identified in the image, cor- results demonstrate that our approach offers a viable solu-

responding to all different degrees of saliency, e.g., eefin 10N 10 3D texture classification.
as color homogeneity. Nodes at upper levels correspond
tq more salient regions, whereas any c_utset of f[he tree Proo Opservables and Texture Primitives
vides a 2D layout of the segmented regions, as illustrated in
Fig. 2. Each node of the segmentation tree is characterized
by a feature vector that includes geometric and photometric  In this paper, images are represented by segmentation
properties of the corresponding region—namely, regioa,are trees [1, 7], where each region (node} associated with
boundary shape, and color mean and variance. The numbea feature vectory;, comprising the intrinsic geometric and
of tree levels and the homogeneity values associated withphotometric properties of region Let u; and¥? denote
them, as well as the number of children of each node arethe mean and covariance of regiorcolor values. Also,
a priori unknown, and are dynamically determined by the let A; denote the region area. To describe the boundary
image at hand. shape ofi, we parse the image intb pie slices, each of
The segmentation tree serves as a rich description ofwhich begins at the centroid ¢fand subtends the the same
the image for deriving texture models, which in this pa- angle2r/L. Next, we compute the normalized histogram
per comprises two stages. First, the segmented regions if;={h;({)}{,, of the number of pixels of regioithat fall
the training images of all texture classes are clustereudn t in pie slicel. Clearly, the region feature vector, specified as
aforementioned feature space of geometric and photometriqy: = [, X4, Ai, h;], can be easily extended, as dictated by
properties. Then, a texture primitive is specified as a vec-the requirements of a particular application. These featur
tor containing the mean and variance of the feature vectorsvectors represent observable random variables in the TSBN.
of regions in a cluster. These texture primitives form a fi-  In the first stage of learning, segmented regions of
nite universal dictionary of texture “words” charactengi  the training images of all texture classes are clustered
all texture classes. Note that supervision in prior workhwi by the standard<-Means algorithm in the feature space
respect to pre-selecting an optimal filter bank, is elinédat  determined byy; values. TheK-Means producesk’
in this paper by the segmentation algorithm, which dynam- clusters, {C}#_;, each of which defines the associ-
ically determines the optimal domain of texture primitives ated texture primitive. A texture primitivess, is
In the second modeling stage, for each texture class, wespecified as a vector containing the mean and variance
build a tree-structured belief network (TSBN), depicted in of the feature vectors of regions in a cluster, =
Fig. 3. TSBNs are very popular statistical models in im- [mear{{y;}icc, ), var{y; }icc,)]-
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3. TSBNs, Model Reduction and Classification identified as an individuaP(X |7, V,Z) point, which, in
turn, determines the most representative TSBN model with
In this paper, texture class is modeled with a TSBN V' andZ values. Note that the outlined procedure yields a
parameterized over viewpoinis and illuminationZ. The different number of representative models per texturesclas
TSBN is fully specified by its joint distribution of hid- To classify an unknown image, we select the tex-
den,X={z;}, and observable/={y;} random variables, ture class, 7, for which the posterior distribution
vicT, wherei denotes a node in the segmentation ffee P(T,V,7I,X|Y) is maximum:
A hidden variable;x;, represents the label of a texture
primitive. The label of nodé is conditioned on the label 7 =arg max P(T,V,I, X|Y)~arg max P(X,Y|T,V,I).

of its parentj, and is specified by the conditional probabil- 7,X I,X

ity tables, P(z;|x;). The joint probability ofX of a given _ (4)

texture clasg is specified as In Eq. (4), the priot?(7,V, I) is assumed uniform over all
possible values df , V, andZ. Moreover,P(Y") is assumed

P(X|T,V,T) =11 P(z;|z;, T,V,1), (1) a smooth, slow changing function, which seems reasonable
. ] considering our premise that texture appearances undergo
where for the roots we use priof¥z;|7,V,T). Sincewe  considerable variations, i.e., a wide rangeYof/alues are
assume that observablgs are conditionally independent equally likely.
given the corresponding, the joint likelihood ofY” can be Thus, in the classification stage, a given image is first
expressed as segmented to obtail values, thenP(X,Y|T,V, ) val-
. . ues are computed using the belief propagation forMall

PYIX, TV 1) = [Lier Pyilzi=k, .V, 1), (2) representative models of all texture classes, and, firthlly,
where P(y;|z;=k,-) is modeled as the Gaussian distribu- image is classified as in Eq. (4).
tion with parameters encoded in the texture primitiye It
follows that the TSBN for textur@” and imaging parame- 4, Experiments
tersV andZ is fully characterized by

i,j€T

P(yilzi, ) P(xilzy,-) . (3) For experimental vaIida_tion of our approach, we use the
' CUReT database [4], which contains images of 61 real-

The parameters of likelihoodB(y;|z;,-) can be learned  world 3D textures, each imaged under 205 different combi-
by using the ML algorithm over the clustef€’s } X, ob- nations of viewing and illumination directions. As in [2,9]
tained in the first modeling stage. Next, the transition prob the same subset of 20 textures is selected—specifically, sam
abilities, P(z;|z;, -), can be learned by the standard belief ples: 1, 4,6, 10, 12, 14, 16, 18, 20, 22, 25, 27, 30, 33, 35, 41,
propagation algorithm [6, 8], the details of which are omit- 45, 48, 50, and 59. Out of the existing 205 images per class,
ted for space reasons. Despite the irregular structureeof th only 92 are chosen that contain a sufficiently large texture
TSBN, the computational complexity of the belief propaga- region (whose viewing angle is less then 60 degrees). These
tion is polynomial in time, since its structure is known and 92 images are then manually cropped, to ensure that they
equal to that of the segmentation tree. contain only texture information, and randomly dividedint

Note that in the above formulation the number of mod- two distinct sets of 46 training and 46 test images. The clas-
els per class is the same as the number of training imagesification results are averaged over a set of 5 experiments,
that differ in) andZ parameters. For the purposes of tex- each conducted for different random partitioning of images
ture classification, this represents a modeling redundancyinto the training and test set. Each experiment consists of
since even considerable variations in texture appearance ofour stages: (i) Segmentation @6 x20=920 training im-
one class may not reduce the classification accuracy if theages and finding their segmentation trees, (ii) Generafion o
other classes are sufficiently different from it. To reduce the dictionary of texture primitives, (iii) Learning TSBNs
the number of models per texture class, we employ thefrom the training images and reducing the total number of
standard K-Medoid algorithm [9]. In particular, the set of the learned models, and (vi) Classification9@b test im-
P(X|7T,V,T) values, over all texture classésand param-  ages. For describing the boundary shape of a segmented
eters) andZ, may be clustered by the K-Medoid infd region, we usd. = 40 histogram bins.
clusters, and represented by cluster centers. The update Fig. 4 presents the classification results over a range of
rule of the K-Medoid always moves the cluster center to values for the number of texture primitives, for the aver-
the nearest data point in the cluster, but does not integrateage number of representative models per class, and for the
over the points as the K-Means algorithm. Indeed, in the number of available uniformly sampled training images per
K-Medoid, the cluster centers are always data points them-class from the training set. For comparison, when one pa-
selves. Therefore, a selected cluster center can be ugiquelrameter is varied, the other two are fixed to the same values

PX YTV, I) =11, jer
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Figure 4. Contrasting our averaged global classification re

reported in [2,9]; (left) 46 models per class on average and 9
images and 200 texture primitives; (right) 46 models per cla

4
average number of models per class

number of training images per class

sults for all 20 texture classes with those
20 training images; (middle) 920 training
ss on average and 100 texture primitives.

as reported in [2,9], and given in the caption of Fig. 4. When cies among texture regions of varying size, which makes
46 models per class on average, and 200 texture primitiveghem more expressive than frequency histograms used in
are learned from 920 training images, our recognition rate prior work.

averaged over 5 experiments and over 20 classes is 98.09%,

outperforming 97.83% in [9], and 96.08% in [2]. From Acknowledgment
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recognition rate exceeds those of [2,9]. In the right plot of
Fig. 4, the global recognition rate increases as the number
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