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Abstract

Our goal is to detect boundaries of objects or surfaces
occurring in an arbitrary image. We present a new ap-
proach that discovers boundaries by sequential labeling of
a given set of image edges. A visited edge is labeled as
on or off a boundary, based on the edge’s photometric and
geometric properties, and evidence of its perceptual group-
ing with already identified boundaries. We use both local
Gestalt cues (e.g., proximity and good continuation), and
the global Helmholtz principle of non-accidental grouping.
A new formulation of the Helmholtz principle is specified
as the entropy of a layout of image edges. For boundary
discovery, we formulate a new, policy iteration algorithm,
called SLEDGE. Training of SLEDGE is iterative. In each
training image, SLEDGE labels a sequence of edges, which
induces loss with respect to the ground truth. These se-
quences are then used as training examples for learning
SLEDGE in the next iteration, such that the total loss is
minimized. For extracting image edges that are input to
SLEDGE, we use our new, low-level detector. It finds salient
pixel sequences that separate distinct textures within theim-
age. On the benchmark Berkeley Segmentation Datasets
300 and 500, our approach proves robust and effective. We
outperform the state of the art both in recall and precision
for different input sets of image edges.

1. Introduction

This paper addresses a basic vision problem, that of de-
tecting boundaries of objects or surfaces occurring in an ar-
bitrary image. Shape is widely recognized as one of the
most categorical object features [6]. Thus, boundary detec-
tion is often used as input to a wide range of higher-level vi-
sion tasks, including object recognition [9, 8, 22], scene re-
construction from stereo [55, 70], and tracking [27]. Aimed
as an initial step of diverse vision systems, boundary de-
tection in this paper is not informed about specific objects
present in the scene, i.e., about their photometric, geomet-
ric, and structural properties. Also, it is not based on any

assumptions about number, scale, and layout of objects in
the scene.

We make a distinction between boundaries and edges.
An edge is defined as a sequence of contiguous pixels pass-
ing through a ramp of relatively abrupt changes of low-
level image properties, such as brightness, or variations of
brightness. A boundary, instead, represents the change in
subimage ownership between two distinct objects or sur-
faces present in the image. Since visible boundaries co-
incide with a subset of edges in the image, we parse the
problem of boundary detection into two subproblems: (a)
detecting edges, and (b) identifying which of these detected
edges represent object boundaries. Thus, two critical ideas
lie at the foundation of our approach, as explained below.

First, we use edges as mid-level image features, since
they offer a number of advantages over other feature types,
such as patches [4] or regions [19], often used in previous
work. Edges are dimensionally matched with object bound-
aries, and thus naturally facilitate boundary detection. Other
types of features typically require additional processingfor
their mapping to boundaries. A set of extracted edges pro-
vides rich information about the spatial extent, and local and
global spatial interactions among objects occurring in the
image. We formalize this information by using the Gestalt
principles of grouping [53, 38].

Second, we build on previous work that shows that it
is possible to learn to detect boundaries in arbitrary im-
ages (e.g., [51, 57]). Given manually annotated training
images, our goal is to learn how to optimally combine
perceptual-groupingcues with intrinsic properties of theex-
tracted edges for boundary detection. This is challenging
because the relative significance of global vs. local image
properties, as well as the priority ordering of Gestalt laws
significantly varies across different scenes.

Our approach consists of the following major steps.
Given a set of training images, we first extract edges from
each image. To this end, we use our new salient edge detec-
tor that finds contiguous pixel sequences that separate dis-
tinct textures within the image. A classifier is then learned
to sequentially label the edges as on or off a boundary. All
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decisions made before visiting an edge are used to provide
perceptual-grouping evidence for classifying that edge. For
example, an edge will more likely be classified as bound-
ary if it is close to, and continues well previously identi-
fied boundaries. The classifier is learned so as to minimize
detection error with respect to manually annotated ground
truth. When a new image is encountered, its edges are ex-
tracted, and then sequentially labeled. Empirical results
presented in this paper demonstrate that our approach out-
performs the state of the art on benchmark datasets, includ-
ing the Berkeley segmentation datasets (BSD) 300 and 500
[50, 4], Weizmann Horses [7], and LabelMe [59].

1.1. Motivation

Psychophysical studies have long demonstrated that
early human vision strongly favors certain shapes and con-
figurations over others without high-level recognition [53].
Among many theories of perceptual organization that ad-
dress this phenomenon, Gestalt theory [38], Helmholtz’s
likelihood principle [29], and Minimum description length
(MDL) [ 30] have had major impact on computer vision
[46]. Gestalt theory provides a number of descriptive prin-
ciples for grouping parts into whole, but does not specify a
computational process for achieving this percept. The more
formal Helmholtz’s likelihood principle specifies the prob-
ability of grouping of a set of elements that is low if the
placement of the elements is likely to be accidental. MDL
provides another related formalism that the grouping should
achieve the shortest coding length.

Based on the above theories of perceptual organization,
prior work has argued that the key to detecting boundaries
in the image is to model the underlying probability distri-
bution governing the ensemble of boundaries and their con-
figurations (e.g., [73, 57]). Such a model would be able
to provide quantifiable definitions of perceptual-grouping
laws, and their relative significance for boundary detection.
To this end, prior work typically resorts to graphical mod-
els, such as, Markov Random Fields (MRF) [73], or Condi-
tional Random Fields (CRF) [57]. These graphical models
are characterized by: (i) the number of random variables
(nodes) and their statistical dependencies (graph connec-
tivity), jointly referred to as the model structure, and (ii)
parameters of probability density functions (pdfs) associ-
ated with the random variables in the model. While this
framework is principled, in practice, various simplification
and approximation steps are implemented in inference and
learning to handle their computational complexity. First,the
model structure is typically manually specified (e.g., pair-
wise connectivity among neighboring image features). This
simplifies the learning problem to estimating only model
parameters. However, since the parameters depend on the
model structure, such learning may be suboptimal. Also,
in inference, it might happen that wrong connectivity of

image features to their spatial neighbors may overpower
correct evidence provided by other far away features. For
example, an edge is very likely classified as background
when it is connected in a MRF (or CRF) only to background
edges. The issues related to hand-picking MRF/CRF struc-
ture have already been studied in the object recognition
community (e.g., [33, 1]). Second, tractable inference of
MRFs/CRFs typically requires approximations, e.g., Loopy
Belief Propagation, or relatively slow Markov Chain Monte
Carlo (MCMC) sampling.

We here depart from the above line of thinking. Our the-
sis is that sequential perceptual grouping is a valid frame-
work for boundary detection. Our motivation comes from
the well-recognized processes of human perception, where
attention is directed to certain salient locations, sequen-
tially, rather than uniformly to all locations at once [32]. We
classify one edge at a time based on its properties and the
previous sequence of decisions. The ordering in which the
edges are visited is data-driven, where edges with higher
confidence in decision have proportionally higher prior-
ity, and thus help make decisions in subsequent ambigu-
ous cases. Thus, we use a greedy, policy iteration algo-
rithm, and still achieve better results than the state of the
art, MRF/CRF-based approaches.

1.2. Overview of Our Approach

The main steps of our approach are illustrated in Fig.1.
Step 1: Given an image, we use an edge detector (e.g.,

Canny) to extract image edges. Step 1 may use any avail-
able edge detector, as long as it yields high recall of true
boundaries. Our subsequent steps are expected to improve
precision of boundary detection. In addition to off-the-shelf
edge detectors, we also use our new salient edge detector.
It detects contiguous pixel sequences that separate distinct
image textures. The extracted edges are then organized in a
graph whose nodes correspond to the edges, and arcs cap-
ture their spatial relations. The main purpose of this graph
is to facilitate computation of Gestalt cues in the subsequent
steps, since the graph stores all relevant spatial relations
among the edges. When the edge detector produces a hier-
archy of edges, then our graph is accordingly hierarchical,
where ascendant-descendant arcs capture the recursive em-
bedding of smaller edges within larger ones, and lateral arcs
represent neighbor relations of sibling edges (Fig.1). The
root of this hierarchical graph is a virtual node, conveniently
introduced to indicate that the longest edges in the image are
siblings. Nodes and arcs in the graph are characterized by
descriptors of edge properties (e.g., saliency, repeatability
in the image, collinearity with neighbors, symmetry, etc.).

Step 2: Nodes in the graph (i.e., edges) are sequen-
tially labeled as boundary or non-boundary, based on their
descriptors and perceptual-grouping cues. At each edge,
both pairwise and global Gestalt cues (e.g., collinearity and
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Figure 1. Overview: (a) The input image. (b) Low-level edge detectors, typically output a probability map of occurrenceof edges.
Analyzing this map at an exhaustive range of values yields a set of distinct edges, at different scales, where some edges may cover
the same pixels. (c) The resulting edges are organized in a graph that captures their hierarchical (part-of) and neighbor relationships.
SLEDGE sequentially labels each node (i.e., edge) as being on (green) or off (red) an object boundary. (d) The identified boundaries are
characterized by SLEDGE’s confidence in labeling (darker means higher confidence).

Helmholtz principle) are re-estimated relative to the previ-
ously identified boundaries. This is made efficient by utiliz-
ing the hierarchical graph structure. Forsequentiallabeling
of edges we use our new algorithm, called SLEDGE. Train-
ing of SLEDGE is iterative. In each iteration, SLEDGE la-
bels a sequence of edges, extracted from each training im-
age as in Step 1. This induces loss with respect to the manu-
ally provided ground truth. The training sequences are then
used as training examples for learning SLEDGE in the next
iteration, such that the total loss is minimized.

Step 3: When a new image is encountered, its edges are
sequentially labeled by SLEDGE.

Paper organization: Sec.2 explains our relationships
to prior work, and points out our main contributions. Sec.3
describes intrinsic, pairwise, and global layout properties
of image edges that we use for identifying the evidence
of Gestalt laws of grouping. Sec.4 specifies SLEDGE.
Sec.5 describes our new edge detector that provides input
to SLEDGE. Finally, Sec.6, and Sec.7 present our experi-
mental evaluation, and concluding remarks.

2. Prior Work and Our Contributions

This section reviews prior work and outlines our contri-
butions. Our review is organized with respect to the three
major contributions of this paper—namely, we first point
out the novelty of our approach to boundary detection, then,
explain our relationships to previous work on sequential la-
beling, and, finally, describe our contributions in formaliz-
ing the Helmholtz principle of perceptual organization.

2.1. Boundary Detection

Prior work has addressed the problem of boundary detec-
tion using low-, mid-, and high-level visual cues. Since this
paper considers boundary detection with no prior knowl-
edge about objects in the scene, we focus our literature re-
view only on methods that use low- and mid-level features.

Methods based on low-level features typically classify
small patches, centered at each pixel location, as on or off
an object boundary. They use a bank of filters to identify
abrupt changes in image texture [58, 52, 11, 54, 67], and
seek the right scale at which these changes occur [45, 25].
Recent work focuses on learning how to classify descrip-
tors of image patches from manually segmented, training
images [41, 42, 51, 18, 39]. However, unlike image edges
that we use as basic features, patches are not dimensionally
matched to boundaries. As a result, image patches provide
only limited, local information about boundary presence.
The key difference from our approach is that they clas-
sify fixed, precomputed descriptors associated with patches,
independently of one another. Instead, we sequentially
classify dynamically changing descriptors associated with
edges, where both the descriptor values and classification at
each step are based on the previous decisions.

Motivated by the Gestalt theories of grouping in human
perception [53, 38], another family of methods use mid-
level image features, such as edges and regions, for bound-
ary detection. Edge-based approaches, first, extract a clutter
of image edges, and then use the Gestalt principles of group-
ing to select and link a subset of the edges into boundaries
[68, 73, 60, 47, 72, 56, 57, 40]. Region-based methods, first,
identify image regions using, e.g., Normalized-cut, Mean-
shift, or Maximally stable extremal regions, then, conduct
Gestalt grouping of these regions, and finally take contours
of the mergers as boundaries [66, 71, 3, 19]. Due to ac-
counting for more global information in the image carried
by mid-level features, these methods typically outperform
the patch-based approaches.

Our approach differs in two key aspects. First, some of
these methods (e.g., [40]) detect boundaries by iterating two
separate steps – namely, classifying each image edge inde-
pendently based on fixed edge descriptors, and grouping de-
tected boundaries for the next iteration. By contrast, group-
ing and classifying image edges are not two separate steps
in our approach.

Second, the other methods in this family make the as-
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sumption that edges (or regions) and their interactions mini-
mize the total energy of a MRF or CRF (e.g., [68, 73, 60, 47,
72]), and thus unify edge classification and grouping under
the MRF/CRF inference. One can also view our approach as
a simple form of MAP inference on an MRF (or CRF) over
image edges, using relaxation labeling. The labels of some
nodes in such a hypothetical MRF/CRF are fixed to sequen-
tially classify another node, until all nodes are labeled. We
may iteratively continue relaxation re-labeling of the image
edges until certain convergence criterion is met (similarly to
Loopy Belief Propagation). The main difference from the
aforementioned MRF/CRF-based methods is that they typi-
cally conduct the MAP inference of only node labels, given
a fixed MRF/CRF graph and fixed unary and pairwise po-
tential functions. By contrast, labeling of each edge, in our
approach, dynamically modifies both the connectivity and
potential functions of the (hypothetical) MRF/CRF. Thus,
in our inference, we estimate both the MAP graph structure
and node labels.

More sophisticated MRF/CRF models with adaptive
graph structures [24] have recently been used for bound-
ary detection. For example, in [57], CRF inference accom-
modates dynamic changes of the CRF connectivity during
loopy belief propagation. They define pairwise potentials
only for neighboring boundaries, i.e., edges that are turned
“on” in the previous iteration. However, they account only
for pairwise Gestalt cues. They ignore important global per-
ceptual grouping cues, which would amount to incorporat-
ing higher-order cliques in their CRF.

As our key novelty, using the terminology of the
MRF/CRF community, we sequentially re-estimate a
higher-order clique of boundaries and their associated po-
tential function. We define this higher-order potential as the
Helmholtz likelihood of perceptual organization. Another
important difference is that [57] uses a weighted sum of the
CRF’s clique potentials, i.e., a linear function of potentials,
to label edges. By contrast, our decision function for label-
ing edges is non-linear, learned by the decision-tree classi-
fier. The advantages of using non-linear decision functions
vs. log-linear ones for boundary detection are largely unex-
plored, and deserve a more thorough investigation, beyond
the scope of this paper. Our results demonstrate that even
without accounting for global cues of perceptual grouping,
we achieve very similar performance (marginally above) to
that of [57].

Our work is also related to research on tracking edges
for boundary detection. This tracking extracts either one
boundary given its starting point [26, 12], or multiple
boundaries without knowing their starting points [61, 28,
69, 34, 47, 21]. The edge tracking is typically based on
the likelihood that a boundary passes through a particular
location in the image, using different edge saliency mea-
sures and affinities between them as a function of proxim-

ity, curvilinear continuity, and closure [28, 61, 68, 69]. In
general, these methods resort to different heuristics: (i)as-
sumptions about the total number of boundaries; (ii) pro-
tocols for tracking (e.g., how to start); and (iii) definitions
of edge affinities (e.g., using a few Gestalt principles with
equally weighted relevance for tracking). Once estimated,
these affinities are kept fixed while tracking the edges. For
example, in [21], the boundary finding algorithm starts from
short edge fragments, and iteratively expands “promising”
boundaries, such that their total number is small, and that
a total cost of assigning the edges to the boundaries versus
background is minimum. Our work differs in several as-
pects. We use training examples to learn how to estimate
affinities between pairs of edges by optimally combining a
number of Gestalt cues with intrinsic edge properties. Dur-
ing the course of our sequential edge labeling, the Gestalt
cues are adaptively re-estimated with respect to the previ-
ously identified boundaries, and thus our edge affinities are
continually changing. Also, we use training examples to
learn how to optimally track edges under their dynamically
changing affinities.

2.2. Sequential Labeling

Sequential edge labeling can be viewed as an instance
of the structured prediction problem, where the goal is to
predict a (large) collection of related output variables for
a given input. A number of structured-prediction formula-
tions are popular in computer vision, including, e.g., CRF
[43], SVM-struct [64], and M3N [62]. Recently a new com-
putational framework, called SEARN, has been presented
in [31]. SEARN is aimed at integrating search and learning
for solving complex structured prediction problems. This
general framework is particularly well-suited for our ob-
jectives, because it transforms a structured prediction prob-
lem into a sequential classification problem, and provides a
strong theoretical guarantee that good performance on the
derived sequential classification implies good performance
of the original structured prediction. As a major advantage
over the above formulations, SEARN makes no assump-
tions about the underlying structure and statistical depen-
dencies of the output variables (e.g., no need for factorizing
the joint probability distribution of the output variables, as
in CRF). In our case, this means that SEARN will allow
relaxing the assumptions (i)–(iii), frequently made by pre-
vious work, reviewed in Sec.2.1, about the total number
and layout of boundaries in the image. For these reasons,
we use the general framework of SEARN to develop a new
algorithm for sequentiallabeling of imageedges, called
SLEDGE.

2.3. Helmholtz Principle of Grouping

Most methods in computer vision focus on Gestalt laws
of grouping, whereas other theories of perceptual organiza-
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tion have received scant attention. This is, in part, due to the
well-known difficulties associated with formalizing quan-
tifiable models of these theories. For example, only a few
approaches to object boundary detection use the Helmholtz
likelihood principle [15, 14, 16]. It states that a grouping as
a whole is perceptually “meaningful” if it rarely occurs in a
random situation. To define “meaningfulness” of a spatial
configuration of edges, existing work typically defines an a
priori distribution of edge layouts (e.g., binomial distribu-
tion [15]), under the assumption that the edges are statisti-
cally independent. They declare a specific configuration as
ε-meaningful if the expectation of this configuration is less
thanε. In this paper, we relax the independence assumption,
and use the entropy of the spatial configuration of edges
to globally characterize their layout as a whole. As shown
in this paper, relatively low values of this entropy indicate
“meaningful” layouts of edges, whereas higher entropy val-
ues are obtained for spatial configurations of edges belong-
ing to background clutter. This allows efficient and robust
classification of edge layouts as “meaningful” or clutter by
our SLEDGE. Thus, instead of committing to the relatively
harder task of estimating the prior of edge layouts, as in
[15, 14], we formalize the Helmholtz principle within the
discriminative framework of our SLEDGE.

2.4. Our Contributions

1. We formulate a new policy iteration algorithm, called
SLEDGE, and use it for labeling edges. SLEDGE in-
troduces a number of modifications to the original
SEARN framework, presented in [31], including the
use of: (i) iteratively changing classifier confidence for
ordering image edges for their sequential labeling, in-
stead of a deterministic ordering used by SEARN; and
(ii) voting classifier decisions, instead of probabilisti-
cally sampling a classifier from the ensemble of itera-
tively learned classifiers by SEARN.

2. We account for both pairwise local cues and global
evidence of perceptual organization. We exploit the
Helmholtz likelihood principle. It states that whenever
some large deviation from randomness occurs, a struc-
ture is perceived. We formalize the Helmholtz prin-
ciple as the entropy of the edge layout. The smaller
the entropy of a spatial configuration of the edges, the
more likely they jointly represent object boundaries.

3. The Graph of Image Edges

Our approach discovers boundaries by sequential label-
ing of a given set of image edges. In Step 1, we use a low-
level detector to identify the image edges, and then extract
their intrinsic and layout properties. In Step 2, SLEDGE se-
quentially labels edges as boundary or non-boundary, based
on their descriptors and perceptual grouping cues. In Sec.5,

(a) (b) (c)
Figure 2. The graph of edges: (a) Large edges detected at a cer-
tain scale. (b) Smaller edge fragments detected at another scale
that coincide with larger ones in (a). (c) Ascendant-descendant
arcs in the graph represent the embedding of smaller edges within
larger ones. Lateral arcs connect all edge pairs that are estimated
as neighbors in the image via Delaunay triangulation (Fig.4). The
figure shows lateral arcs only between sibling nodes, for better vis-
ibility. The root node is a virtual node that defines that the largest
edges in the image are siblings.

we give more details on particular edge detectors that we
use. In this section, we assume that the edges are already
given, and focus on describing their intrinsic andlocal lay-
out properties (Sec.3.2). Sec.3.3 then continues with the
description of theirglobal layout properties.

Given a set of image edges, they are represented as nodes
in a graph whose connectivity is image- and edge-detector-
dependent. The main purpose of this graph is to organize
spatial information about the edges in a manner that will
make efficient the iterative re-estimation of Gestalt cues
during the sequential edge labeling, in Steps 2 and 3. To
this end, arcs of the graph capture hierarchical (part-of)
and neighbor relationships between the edges, as further ex-
plained in subsections3.1and3.2. As one of our key contri-
butions for boundary detection, we also use a global char-
acterization of the spatial configuration of edges. Specif-
ically, we formalize the Helmholtz principle of perceptual
organization, and use it as a global grouping evidence for
boundary detection. This is discussed in subsection3.3.

3.1. Building the Graph of Image Edges

When the edge detector outputs a hierarchy of edges
(e.g., gPb [49]), ascendant-descendant arcs are established
between the graph nodes representing larger (parent) edges
and their constituent, smaller edge fragments (children),as
shown in Fig.2. An illustrative example of this embed-
ding is shown in Fig.3. The root node is a virtual node
that defines that the largest edges in the image are siblings.
Otherwise, the graph is not hierarchical, but captures only
pairwise spatial adjacency of the edges.

Lateral arcs in the graph are established between neigh-
boring edges. We first define the neighbor relations for
sibling nodes (i.e., edges) under the same parent, and then
neighbor relations for all other non-sibling nodes. Two sib-
ling edges are called neighbors if there is no other edge that
intersects the shortest line connecting their endpoints, and
if their endpoints are near each other and sufficiently far
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Figure 3.Multiple layers of the graph of edges. (a) Original image. (b,c,d) Edges present in the first, second and third layers of the
hierarchical graph. We see that long edges break up into multiple edges - see the shadow of the starfish ((c) and (d) in top row) or the right
edge of the foreground house ((c) and (d) in bottom row). Isolated edges do not generate children nodes - see the many smalledges in the
green texture (top row) or the edges on the jeans of the man (bottom row).

from endpoints of the other edges. This is formalized using
the standard Delaunay triangulation (DT), as illustrated in
Fig. 4. DT is the unique triangulation of a set of vertices
in the plane, such that no vertex is inside the circumcircle
of any triangle. DT (and its dual Voronoi diagram) conve-
niently accounts for both local and global spatial interac-
tions among vertices, and thus has been extensively used
in the literature to define layout properties of image fea-
tures [57]. To find the neighbors, we traverse the graph,
node by node, and, for each group of sibling edges, we con-
struct the DT of their endpoints. If a pair of endpoints gets
connected in the DT, this means that they satisfy the above
stated requirements of simultaneous nearness and isolation
from the others. If these endpoints are also directly “visi-
ble” to each other in the image, then their edges are declared
as neighbors. Regarding any other pair of edges, we say
that non-sibling edges recursively inherit neighbor relations
from their respective parents, i.e., two non-sibling edgesare
neighbors if their corresponding parents are neighbors. The
recursion ends with the virtual root node in the graph. Note
that we do not specify a heuristic minimum distance be-
tween edges to define neighbors. This allows us to estimate
proximity and good continuation between even fairly dis-
tant edges in the image, as sometimes is indeed necessary.

3.2. Attributes of Nodes and Arcs

In the previous subsection, we have explained how to
build the graph,G = (V,E, ψ, φ), from a given set of im-
age edges. Nodesi ∈ V , and arcs(i, j) ∈ E in the graph
are characterized by descriptor vectors,ψ : V → R

2
+, and

φ : E → R
5
+. The node and arc descriptors are defined in

terms of intrinsic and spatial layout properties of the corre-

Figure 4. Delaunay triangulation (thin lines) of the endpoints of an
example set of edges (bold curves). Delaunay triangulation(DT) is
aimed at capturing the evidence of Gestalt grouping among image
edges. Two edges are called neighbors if at least one pair of their
respective endpoints are connected in the DT, and this connection
is not intersected by any edge. For example, the DT correctlyfinds
that only the pair (c,d) are neighbors, reducing the complexity of
estimating Gestalt cues for all possible pairs of edges.

sponding image edges. In the sequel, we first specify the
node attributesψi, and then define the arc attributesφij .

3.2.1 Node Attributes

The descriptor of intrinsic edge properties,ψi=[ψi1,ψi2],
associated with every nodei ∈ V , includes: (a) measure
of edge saliency, and (b) measure of edge repeatability in
the image. Since object boundaries are usually salient, the
information about edge saliency is recorded asψi1. Typ-
ically, this information can be directly obtained from the
low-level edge detector, used in Step 1. For example (see
Fig. 1), the detector gPb [49]) outputs a probability map
of boundary occurrence in the image,Pb, whose mean
value along an edge we use as the saliency of that edge,
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ψi1 = meani(Pb). In the case that the low-level detector
does not output saliency (e.g., Canny), for each image edge,
we estimate its saliency as the mean of magnitude of inten-
sity gradient along the edge,ψi1 = meani(gradient).

We also want to identify repeating edges in the image,
because they are likely to arise from image texture, rather
than representing object boundaries. To this end, we match
all edge pairs in the image. Then, we estimate the degree
of repetition of an edge as a function of its total similarity
to and number of best matches. This is formalized using
the standard link analysis algorithm Page Rank, used by
the Google Internet search engine [10]. All image edges
are first linked, and the associated similarity,sij , between
the corresponding pair of image edges(i, j) is computed as
sij = exp(−‖SCi − SCj‖2), whereSC denotes the stan-
dard shape descriptor Shape Context [5]. Log-polar bins of
the Shape Context descriptor are scaled so as to cover the
entire edge, which makessij scale invariant. Note thatsij

is purposefully not rotation invariant, because our goal isto
identify edges within image textures. Since image texture
is usually characterized by texture elements (a.k.a. textons)
which have similar orientation, it is likely that the textons
will give rise to edges with similar orientations, and thus
sij should not be rotation invariant. After linking all im-
age edges and computing their similarities, Page Rank is
used to iteratively estimate the degree of repetition of each
edge asψi2 = (1 − ρ) + ρ

∑

j

ψj2
P

j
sij

, whereρ is the resid-

ual probability, set in our experiments toρ = 0.85. Simi-
lar Page-Rank based approaches to estimating the degree of
repetition of image features have been used in [36, 44].

3.2.2 Arc Attributes

Pairwise layout properties between image edges are used to
specify the descriptor,φij = [φij1, . . . ,φij5]. By defini-
tion, we setφij = 0 for all edge pairs(i, j) that are not
neighbors. For neighbors,φij includes the standard formu-
lations of Gestalt principles of grouping [46, 73, 57].

Let Qi andQj denote the 2D coordinates of two end-
points of neighboring edgesi andj. If i andj are siblings
thenQi andQj are those points based on whichi andj are
found to be neighbors in the Delaunay triangulation, as ex-
plained in Sec.3.1. Otherwise,Qi andQj are the closest
pair of endpoints. We estimate:

1. Proximity asφij1 =
2π‖Qi−Qj‖

2

min(len(i),len(j))2 , where len(·)
measures the length of an edge.

2. Collinearity asφij2 = |dθ(Qi)
dQi

−
dθ(Qj)

dQj
|. θ(Q) ∈

[0, 2π] measures the angle between the x-axis and the
tangent of the edge at endpointQ, where the tangent
direction is oriented towards the curve.

3. Co-Circularity asφij3 = |d
2θ(Qi)
dQ2

i

−
d2θ(Qj)

dQ2

j

|.

Figure 5. (a) The line between symmetric pointsq1 andq2 lying
on two distinct edges subtends the same angle with the respective
edge normals. (b) Constant distancer between symmetric points
of two distinct edges indicates parallelism of the edges.

4. Symmetry asφij5 = meanq∈i

∣

∣

∣

d2r(q)
dq2

∣

∣

∣
. As illustrated

in Fig. 5(a), two pointsq1 ∈ i andq2 ∈ j are symmet-
ric iff anglesα1 = α2, whereα1 is subtended by line
(q1, q2) and normal toi, andα2 is subtended by line
(q1, q2) and normal toj.

5. Parallelism as the mean of distance variationsr(q) be-
tween pointsq along edgei and their symmetric points

on edgej, φij4 = meanq∈i

∣

∣

∣

dr(q)
dq

∣

∣

∣
. Fig. 5(b) shows

two parallel edges. The distance between symmetric
points remains constant.

Below, we explain in greater detail how to find corre-
sponding symmetric points(q1, q2) between two edges, and
then estimate the above defined symmetry and parallelism.
For each edge, we extract salient, high curvature points, us-
ing the standard, scale-invariant algorithm of [63]. To find
the symmetric points on two contours, we consider all pairs
of salient points(q1, q2), whereq1 belongs to the first edge,
andq2 belongs to the second edge, and compute their sym-
metry cost matrix. The symmetry cost is defined as the ab-
solute difference between the anglesα1 andα2, depicted
in Fig. 5(a). If q1 andq2 are symmetric,α1 = α2 and the
cost is equal to 0. After building a symmetry cost matrix
for all possible pairs(q1, q2), we then use the standard Dy-
namic Time Warping algorithm to obtain the best symmetric
points of the two edges.

This concludes our description of intrinsic and local lay-
out properties of edges.

3.3. A Global Grouping Cue

The Helmholtz principle of grouping describes a phe-
nomenon that “we immediately perceive whatever could not
happen by chance” [29]. We formalize this principle as the
entropy of a layout of edges in the image. When this entropy
is low, the edges are less likely to belong to background
clutter.
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To characterize the layout of a given set of image edges,
we use the generalization of the Voronoi diagram for point
patterns to edges, presented in [2]. This generalization has
been shown to accurately capture the global spatial interac-
tion among all edges in the image, as illustrated in Fig.6,
and, consequently, lead to performance improvements in
object recognition. The intuition underlying this general-
ization is that edges are exposed to each other via every
point that lies on them, and thus the edge-based Voronoi
tessellation can be derived from the classical point-based
Voronoi diagram. The Voronoi diagram of a point pattern
Q in 2D associates with each pointq∈Q a convex polygon
γq which is the region closer toq than to any other point
q′∈Q, γq = {q′′ : q′′∈R

2, ∀q′∈Q, ‖q− q′′‖2<‖q′− q′′‖2}.
Thus, for any nondegenerate distribution of points in 2D,
the Voronoi diagram tessellates the 2D space into a set of
convex polygons, each containing exactly one of the points
in the patternQ. The Voronoi diagram can be computed
very efficiently (forn points, complexity isO(n log n)).

Given a set of edges, we first compute the point-based
Voronoi tessellation for all pixels along the edges (Fig.6).
Then, for each edgei, we find the union of the Voronoi poly-
gons of the edge’s pixels, resulting in a generalized Voronoi
cell, Ui = ∪q∈iγq. The Voronoi cell of edgei defines
the relative area of its influence in the image, denoted as
Pi = area(Ui)/area(image). Forn image edges, we define
the entropy of their layout,H , as

H = −
∑n

i=1 Pi logPi (1)

Note thatPi depends on the length ofi, and its spatial po-
sition and orientation relative to the other edges in the im-
age. Since background clutter consists of edges of different
sizes, which are placed in different orientations, and at vari-
ous distances from the other edges,H of the clutter is likely
to take larger values thanH of object boundaries. This is
demonstrated in the following experiment on 300 natural
images of the Berkeley segmentation dataset (BSD) [50].
We have computedH for three distinct sets of edges in each
image. The first set of edges consists of only manually an-
notated object boundaries. The second set consists of edges
that are detected in the image (e.g., Canny), but do not co-
incide with true object boundaries, i.e., background edges.
Finally, the third set consists of all edges detected in the
image. Fig.7 shows the three histograms ofH values ob-
tained for these three sets across the entire BSD. As can be
seen, the histograms of object boundaries, and background
edges form two distinct peaks. The entropies of boundary
layouts are in general lower than those of background clut-
ter. This suggests that the entropy, defined in (1), allows
efficient learning of a classifier which can robustly sepa-
rate the spatial configurations of boundaries versus those of
background edges.

Image edges and their intrinsic and spatial layout prop-

Figure 6. The Voronoi diagram is computed for each pixel (black)
of each edge (colored bold curves with black points). Voronoi
polygons generated by pixels of an edge are marked with the same
color as that edge. A Voronoi cellUi is the union of all Voronoi
polygons generated by pixels on edgei.

Figure 7. We formalize the Helmholtz principle of grouping as
the entropyH of a layout of image edges. Three histograms
of H values are obtained for three different sets of edges from
all images in the Berkeley segmentation dataset [50]: (a) manu-
ally annotated object boundaries, (b) background edges, and (c)
all edges. TheH values of boundary layouts are in general
smaller than the entropies of spatial configurations of all edges
(objects+background). This allows a robust separation of bound-
ary vs. background-clutter layouts.

erties, described in Sec.3 and Sec.3.3, are used in the se-
quential labeling of edges toward boundary detection, as ex-
plained in the next section.

4. Sequential Labeling of Edges

This section presents Step 2 of our approach. We formu-
late boundary detection as a sequential assignment of binary
labels “on” or “off” an object boundary to every edge in the
image. LetX = (X1,X2, . . . ,Xn) denote a sequence
of descriptor vectorsXi associated with the image edges
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i ∈ V that are sequentially labeled in stepst = 1, . . . , n.
The set of all sequences of descriptors extracted from all im-
ages is denoted asX ∋ X. Also, letY = (y1, y2, . . . , yn)
denote their corresponding labels,yi ∈ {0, 1}. The set of
all structured predictions is denoted asY ∋ Y . Thus, we
specify boundary detection as mappingf : X → Y. We
below explain how to learnf .

Reinforcement Learning (RL) seems a suitable frame-
work to learnf . RL finds an optimal policy that mapsstates
of an environment to theactionsthat anagentought to take
in those states, so as to minimize a long-term loss [35]. In
our case, the agent is classifierf that takes an action of se-
lecting and labeling one of the unlabeled edges, given the
state defined in terms of previously identified boundaries,
and, then, receives a loss (e.g., 0 if the labeling is correct, or
1, otherwise). The goal of RL is to learn the optimal policy
f that will minimize the expected total loss over all loss-
sequences, observed during the sequential labeling of edges
in all training images. The optimal policy, in our case, is the
human annotation of object boundaries in training images.
Existing RL algorithms, however, are only tractable for en-
vironments with a few states and actions [35]. Therefore,
they cannot be used for our purposes, since we have an ex-
ponentially increasing number of states,3t, as edges may
have three possible labels: “on”, “off”, or unlabeled.

There is a large body of research aimed at developing
feasible RL algorithms. A review of this work is beyond our
scope. We here study one of the latest frameworks, called
SEARN [31]. It is aimed at integrating search and learning
for solving complex structured prediction problems, such
as RL. It transforms RL into a classification problem, and
shows that good classification performance entails good RL
performance. In SEARN, in every time step, a current state
of the environment is represented by a vector of observ-
able features, which is then input to a classifier to predict
the right action. Thus, learning the optimal policy within
SEARN amounts to learning a classifier over state feature
vectors so as to minimize a suitably defined loss function.

Within the SEARN framework, we formulate a new al-
gorithm for sequential labeling of edges, called SLEDGE.
Below, we briefly review SEARN and problems associated
with this framework, and thus set the stage for the later for-
mulation of SLEDGE, and description of our contributions.

4.1. A Review of the SEARN Framework

SEARN applies a classifier (e.g. Support Vector Ma-
chines or Decision Trees),f , to a sequence of interdepen-
dent data samples,X = (X1,X2, . . . ) ∈ X , and thus in-
fers their labelsY = (y1, y2, . . . ) ∈ Y. This framework
requires that the ordering of data inX is well-defined. To
learnf , SEARN uses an iterative batch-learning approach.
Specifically, in each iterationτ , the results of classification,
f (τ):X→Y (τ), are compared with the ground-truth labels,

denoted asŶ . This induces a loss (e.g., Hamming dis-
tance),l(Y (τ), Ŷ ), which is then used to learn a new classi-
fier h(τ+1). In the next iteration, SEARN appliesf (τ+1) to
X, wheref (τ+1) is defined as an interpolation of the new
classifierh(τ+1) with the old policyf (τ) as

f (τ+1) = βh(τ+1) + (1 − β)f (τ), (2)

whereβ ∈ (0, 1] is an interpolation constant. This in-
terpolation amounts to a probabilistic sampling of individ-
ual classifiersh(1), h(2), . . . , h(T ) learned in each iteration
τ = 1, 2, . . . , T . The classifier sampling is governed by the
multinomial distribution, where, from (2), the probability of
selecting classifierh(τ) in iterationT is

α
(τ)
T = β(1 − β)T−τ , τ = 1, 2, . . . , T. (3)

Sinceα(τ)
T decreases over time, SEARN iteratively moves

away from the initial policy,h(1), toward a fully learned
policy. After τ reaches the maximum allowed number
of iterations, T , the output of learning is the last pol-
icy f (T ) from which h(1) is eliminated, i.e., the output is
{h(2), h(3), . . . , h(T )} and their associated sampling prob-
abilities {κα

(2)
T , κα

(3)
T , . . . , κα

(T )
T }. Here, the constantκ

re-scales theα’s, such that
∑T

τ=2 κα
(τ)
T = 1.

Suppose thath(1) is an optimal policy. A theorem pre-
sented in [31] states thatf (T ) is “not much worse” than the
initial, optimal policy. SEARN is summarized in Alg.1.

Algorithm 1 : SEARN Framework
Input : Data sequencesX ∈ X and ground-truth labelŝY ∈ Ŷ;

Loss-sensitive classifierh, and initialh(1);
Loss functionl; Interpolation constantβ = 0.1;
Maximum number of iterationsT ;

Output : Learned policyf(T );
f(1) = h(1);1
for τ = 1 . . . T do2

for all X ∈ X do3

Compute predictionsY (τ) = f(τ)(X);4

Estimate lossl(Y (τ), Ŷ );5

end6

Learn a new classifierh(τ+1) ← h(X ; l);7

Interpolate:f(τ+1) = βh(τ+1) + (1 − β)f(τ)8

end9

Returnf(T ) without h(1).10

4.2. SLEDGE

To address 2D images and our particular problem of
boundary detection, in this section, we explore a num-
ber of modifications of the SEARN framework, origi-
nally formulated for 1D data (e.g., text). We formulate
SLEDGE within the SEARN framework by specifying the
following: (1) the generation of data samplesX from the
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intrinsic and spatial layout properties of image edges (ex-
plained in Sec.4.2.1) (2) two distinct ranking functions,
each providing an ordering ofX for the sequential label-
ing (described in Sec.4.2.2); (3) two loss functions for the
iterative learning of policyf (specified in Sec.4.2.3); and
(4) a new interpolation strategy for fusing the classifiers
{h(τ)}τ=2,3,... into policyf (presented in Sec.4.2.4).

4.2.1 Input Data to SLEDGE

SLEDGE sequentially labels descriptor vectors,
X=(X1, . . . ,Xn), associated with image edges
i=1, . . . , n. The descriptors are computed online, as
the sequential labeling visits one edge at a time, since they
depend on the layout of previously detected boundaries.
In each labeling stept = 1, . . . , n, we first use a ranking
function (see Sec.4.2.2) to select the next edge to be
labeled, and then compute its descriptor(s), as follows.

The entire set of edgesV can be divided, at stept, into
edges labeled as “on” or “off”, and unlabeled edges,V =

V
(t)

on ∪V
(t)

off ∪V
(t)

un . To compute the descriptors of unlabeled

edgesi ∈ V
(t)

un , we retrieve from graphG = (V,E, φ, ψ)
the following edge properties: (a) intrinsic propertiesψi;
(b) pairwise spatial relationsφij ; and (c) global layout en-
tropy H (defined in Sec.3.2.1–3.2.2and Sec.3.3). This
retrieval is efficient, sinceG, i.e.,ψi andφij have already

been computed in Step 1. Specifically, for eachi ∈ V
(t)

un , se-
lected by the ranking function, we generate the descriptors
X

(t)
i = {x

(t)
i1 , . . . ,x

(t)
ij , . . . }, indexed by object boundaries

j ∈ V
(t)

on that are detected by SLEDGE in the previous
(t−1) labeling steps. We define

x
(t)
ij = [ψi, φ

(t)
ij , H

(t)
i ], (4)

whereH(t)
i is estimated for the spatial configuration ofi

and all detected boundaries, i.e., all edges in{V
(t)

on ∪ i}.

In this way, eachx(t)
ij captures the Gestalt cues (proxim-

ity, collinearity, co-circularity, parallelism, and symmetry)
and Helmholtz grouping between the unlabeledi and the
detected boundaries. For example, ifi is close and collinear
with any of the boundariesj ∈ V

(t)
on theni is more likely to

lie on an object boundary. The same holds, ifH
(t)
i reduces

by addingi to V (t)
on . The goal of SLEDGE is to learn the

relative significance of these cues to boundary detection.
Each descriptorxij inX(t)

i is fed separately to the clas-
sifiers and assigned a label, as specified in8. Edgei receives
the highest-confidence label acrossX(t)

i .

4.2.2 Two Ranking Functions

The SEARN framework requires a well-defined ordering of
the input sequence of dataX. To this end, we specify two

alternative ranking functions, aimed at selecting an edge
to be labeled at every stept = 1, . . . , n, such that its la-
beling reduces uncertainty about the occurrence of object
boundaries in the image. Since edge descriptors are com-
puted with respect to the previously detected boundaries,
the edges selected early on facilitate the subsequent label-
ing of more ambiguous ones.

The first ranking function,R1, is based on the heuristic
assumption that longer and more salient contours are more
informative about objects and their layout in the scene than
smaller edges. Therefore,R1 uses graphG and its structure
to order the edges breadth-first, i.e., by their length. Sibling
edges are ordered by their degree of saliency,ψi1, defined
in Sec.3.2.1. At labeling stept, the descriptorsX(t)

i of
the largest and most salient edge among the unlabeled ones,
i ∈ V

(t)
un , are computed, as explained in Sec.4.2.1. Edge

i is then classified with the highest-confidence label across
X

(t)
i .
The second ranking function,R2, is based on the classi-

fier confidence in labeling the edges.R2 avoids the heuris-
tic assumptions ofR1. The main difference is thatR2 does
not select an edge first and then computes its descriptors.
Rather, at eacht, it first computes and classifies the de-
scriptorsX(t)

i of all unlabeled edges, and then selectsx
(t)
ij

whose labeling is characterized by the highest confidence.
This, in turn, simultaneously selects and labels the corre-
sponding edgei in stept. Note thatR2 is computationally
more expensive thanR1, since for all nodesi ∈ V

(t)
un , we

need to re-compute allX(t)
i in every stept. We reduce the

complexity of computingX(t)
i by precomputing graphG

and edge propertiesψi andφij in Step 1.

4.2.3 Two Loss Functions

The SEARN framework requires that the loss function be
specified to learn the optimal policyf , which will minimize
the expected total loss over all loss-sequences of sequential
edge labeling in all training images. The optimal policy,
in our case, should produce a sequence of edge labels that
is equivalent to the manually annotated sequence. In this
subsection, we define two alternative loss functions.

The first loss function that we use is the standard Ham-
ming loss that counts the total number of individual dif-
ferences between the predicted output and ground-truth la-
bels in the two sequences,Y = (y1, . . . , yn) and Ŷ =
(ŷ1, . . . , ŷn), as

LH(Y , Ŷ ) =

n
∑

i=1

1 [yi 6= ŷi] , (5)

where1 is the indicator function.
The Hamming loss favors correct labeling of all edges,

since an error made at any edge carries the same relative
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weight. This may direct the learning algorithm to try to cor-
rectly label numerous small, non-salient edges, while ig-
noring some long and salient ones. To address this prob-
lem, we specify another loss function,LF , that uses theF -
measure of recall and precision associated with a specific
edge.F -measure is one of the most common performance
measures for boundary detection [51]. It is defined as the
harmonic mean of recall and precision of all image pixels
that are detected as lying along an object boundary. A large
value ofF (Y , Ŷ ) indicates good precision and recall, and
corresponds to a low loss. Thus, we specify

LF (Y , Ŷ ) = 1 − F (Y , Ŷ ). (6)

Note thatLH coarsely counts errors at the edge level, while
LF is estimated finely at the pixel level.

4.2.4 Majority Voting of Classifier Decisions

SEARN iteratively learns the optimal policyf , as in
(2), which represents a probabilistic mixture of classifiers
{h(τ)} τ = 2, 3, . . . , T . A newX is sequentially labeled
by probabilistically sampling one classifier from{h(τ)},
according to the multinomial distribution, parameterized
by {α

(τ)
T }, defined in (3). We modify this classification

scheme. We run all classifiers and weight their decisions
by the corresponding{α(τ)

T }. The heaviest vote is our
outcome. Voting decisions of several classifiers has been
shown to improve performance and reduces overfitting of
each individual classifier [37, 17, 23].

After T learning iterations, SLEDGE estimates the con-
fidenceP (f(Xi)=yi) that edge descriptorXi receives la-
belyi ∈ {0, 1} as

P (f(Xi)=yi) =

T
∑

τ=2

κα
(τ)
T P (h(τ)(Xi)=yi), (7)

where the constantκ re-scales theα’s, such that
κ

∑T

τ=2 α
(τ)
T = 1. Also,P (h(τ)(Xi)=y

′) is the confidence
of classifierh(τ) when predicting the label of edgei. For ex-
ample, when using the classical decision trees as the basic
classifier family forh, this confidence can be defined as the
percentage of elements with labely′ in the leaf nodes of
the decision tree, where all descriptorsXi = {xij} have
fallen. When using an SVM classifier, one can define the
confidence of a particular instance to be proportional to its
margin, i.e. its distance to the decision boundary. Note that
P (f(Xi)=0) + P (f(Xi)=1) = 1.

Finally, SLEDGE classifies each edge descriptorXi as

yi = argmax
y′

P (f(Xi)=y
′). (8)

Note that when the confidenceP (f(Xi)=yi) is rel-
atively low, then the ranking functionR2, described in

Sec.4.2.2, will defer the labeling of edgei, and give advan-
tage to the other edges to be labeled beforei. This, in turn,
will allow capturing new evidence for perceptual grouping
that may eventually remove the uncertainty abouti.

Remark: We run into the problem of highly unbalanced
data, because the number of negative examples (i.e., back-
ground edges) exceeds positives ones (i.e., object bound-
aries). For training SLEDGE, we rebalance the data by
using the standard procedure of under-sampling. We sam-
ple the majority class examples so that there are as many
negatives as positives. In the data mining literature, thisis
considered the best technique for handling unbalanced data,
compared to other alternatives [20].

SLEDGE with rankingR2 is summarized in Alg.2.

Algorithm 2 : SLEDGE with RankingR2

Input : Set of training imagesI = {I1, I2 . . . };
Extracted edges{V (I1), V (I2), . . . };
Ground-truth labels{Ŷ (I1), Ŷ (I2), . . . };
Loss-sensitive classifierh, and initialh(1);
Loss functionl; Interpolation constantβ = 0.1;
Maximum number of iterationsT

Output : Learned policyf(T )

Initialize: V
(1)

un = V ;1
for τ = 1, . . . , T do2

Initialize the set of descriptor sequencesX = ∅;3
for all I ∈ I do4

V = V (I); n = |V (I)|; Ŷ = Ŷ (I);5
for t = 1, . . . , n do6

for i ∈ V
(t)

un do7

ComputeX(t)
i ={x

(t)
ij :j∈V

(t)
on } as in (4);8

Computeyi = f(τ)(Xi) as in (2), (8);9

end10

Selecti from V
(t)

un with max confidence inyi;11

Add yi toY (τ);12

V
(t)

un ← V
(t)

un \ {i};13

end14

Estimate lossL(Y (τ), Ŷ );15
Add the estimated descriptor sequenceX toX ;16

end17

Learn a new classifierh(τ+1) ← h(X ; L);18

Interpolate:f(τ+1) = βh(τ+1) + (1− β)f(τ)19

end20

Returnf(T ) without h(1).21

5. Detecting Salient Edges

This section presents Step 1 of our approach, aimed at
extracting salient edges in a given image. Step 1 may use
any available edge detector, as long as it yields high recall
of true boundaries. Our subsequent steps are expected to
improve precision by labeling a subset of the detected edges
as boundaries.

While we are aware of the many powerful edge detectors
that exist in the literature, our goal in this paper is not to an-
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Figure 8.Texture variations at different scales.Original image with pairs of windows at different scales overlapped in yellow. For each
pair of windows around pixelq, we examine their texture properties to evaluate the probability of q to lie on a salient edge. Left to right
are examples of windows of size11 × 11, 21 × 21 and41 × 41.

alyze all of them. Instead, we aim to show that any detector
that produces edges with high recall is good enough for our
labeling algorithm to outperform the state of the art on the
object boundary detection task.

For this reason, we choose to test SLEDGE on edges
obtained with: (a) the Canny edge detector [11], (b) our
texture-based edge detector that we will describe in the sub-
sequent paragraph, and (c) the state-of-the-art gPb detector
[49]. Our intention is to cover a reasonable range of edge
detectors, from the simplest intensity-based Canny detector,
via an intermediate texture-based detector, to the most com-
plex gPb detector. In the following, we present our texture-
based edge detector, tPb. We then compare its performance
with the state-of-the-art boundary detectors on the BSD.

Building the edge probability map tPb. A salient edge
separates distinct image textures. Since real-world surfaces
are typically characterized by unique texture, salient edges
are more likely to represent boundaries than other edges in
the image. Our goal is thus to robustly estimate for each
pixel its probability of lying on a salient edge. This prob-
ability is large if image textures differ in the vicinity of a
particular pixel, or small, otherwise.

We analyze texture variations in a pixel’s neighborhood
at different scales, as illustrated in Fig8. Given pixelq, we
randomly place a large number of pairs of windows in the
image,{(rk

1 , r
k
2 )}, k = 1, 2, . . . ,K, so that one side of ev-

ery window containsq. Each pair of windows defines two
image areas whose texture properties are compared to es-
timate the texture variation atq. We use the unnormalized
variance,ε2(r), of pixel values within each window,r, to
characterize its texture,ε2(r) =

∑

p∈r(p − r)2, wherep
denotes pixels inr, andr denotes their mean value. Texture
difference between a pair of windows,∆(r1, r2), is esti-
mated, as in [65, 13], as the compression error

∆(r1, r2) = |ε2(r1 ∪ r2) − ε2(r1) − ε2(r2)| . (9)

After randomly placingK pairs of windows, the probability

that pixelq belongs to a salient edge is estimated as

P (q ∈ edge) =
1

K

K
∑

k=1

∆(rk
1 , r

k
2 ) (10)

These probabilities are computed for each pixel and assem-
bled into a probability map of edge saliences, tPb. The
saliency of a particular edgei,ψi1 (Sec.3.2.1), is defined as
the mean value of tPb along the edgei, ψi1 = meani(tPb).

Since a salient edge may occur at any image location,
and it may separate textures occupying arbitrarily large im-
age areas, the window locations and sizes are sampled from
the uniform distribution. The computation ofP (q ∈ edge)
is efficient sinceε2(r) can be computed inO(1) using inte-
gral images.

Fig. 9(b) shows two examples of the probability map of
edge saliences tPb. This map is thresholded at all prob-
ability levels and edges extracted using a standard non-
maximum suppression technique. Fig.9(c,d) shows edges
extracted at two different probability levels. These multi-
scale edges are then assembled in the graph of edgesG that
captures the recursive embedding of smaller edges within
larger ones, as well as their neighbor relationships (G is pre-
sented in Sec.3).

Evaluating tPb. For each pixelq, we placeK = 20
pairs of windows(r1, r2) and we pick at random a window
size (from5 × 5 to 41 × 41) and an orientation (from0◦ to
360◦). We can then compute the probability thatq lies on
an edge with (10).

To evaluate the performance of tPb on the object bound-
ary detection task, we adopt the methodology developed by
Martin et. al [51]. This framework considers two aspects
of detection performance. PrecisionP measures the frac-
tion of true positives in the edges produced by a detector.
RecallR measures the fraction of ground-truth boundaries
detected. For detectors like tPb, that have real-valued out-
puts, one obtains a curve parameterized by detection thresh-
old. The globalF -measure, defined as the harmonic mean
of precision and recall,F = 2PR

(P+R) , provides a useful sum-
mary score for the algorithm.
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(a) (b) (c) (d)
Figure 9.From edge probability maps to individual edges.(a) Original image. (b) Probability map of edge saliences, tPb. We threshold
this map for all gray levelsτ and use non-maximum suppression to extract individual edges. Here, we illustrate two such levels,τ = 25

(c), andτ = 75 (d). The multiscale edges are then organized in a graphG that captures the recursive embedding of smaller edges within
larger ones, as well as their neighbor relationships.

In Fig.10, we compare the performance of tPb to that of
Canny [11], Felz06 [21], Zhu07 [72], Ren08 [56], Mairal08
[48] and gPb [49] on the BSD. We see that in the low pre-
cision, high recall regime, our texture-based edge detector,
using only simple image features and no learning, compare
favorably to other approaches, that use a battery of sophis-
ticated features and learning. In particular, note that after
point A, our algorithm has better precision than all other
techniques.

Although tPb produces edges with lower precision than
most techniques, note that there is no need to produce edge
maps with high precision, for our purposes. We only need
the extraction of salient edges to be fast, and have high re-
call of true boundaries. We will then delegate the respon-
sibility of correcting errors, i.e. improving precision, to
SLEDGE. Fig.10shows that with tPb, we are able to obtain
very large recall for a relatively large range of thresholds
(from 0 to 0.3), i.e. most of the ground-truth boundaries are
present in the set of edges which are input to SLEDGE.

6. Results

This section presents qualitative and quantitative eval-
uation of our approach on images from the BSD [50, 4],
Weizmann Horses [7], and LabelMe [59] datasets. BSD300
(resp. BSD500) consists of 300 (resp. 500) natural im-
ages, manually segmented by a number of different sub-
jects. The Weizmann Horses dataset consists of 328 side-
view images of horses that are also manually segmented.
For the LabelMe dataset, we select the 218 annotated im-
ages of the Boston houses 2005 subset. The challenges of
these datasets have been extensively discussed in the past,
and include, but are not limited to, clutter, illumination vari-
ations, occlusion.

Figure 10.Evaluating edge detection on the Berkeley dataset
[50]. Leading approaches to edge detection are ranked accord-
ing to their F-measure (harmonic mean of precision and recall)
with respect to human ground truth. The green lines are level
sets of the F-measure, ranging from 0.1 (lower left) to 0.9 (up-
per right). Our method performs similarly to the state of theart
approaches (gPb [49], Ren08 [56], Mairal08 [48], Felz06 [21],
Zhu07 [72]), and achieves a maximum F-measure of 0.67 on this
dataset. Note that for high recall values, and particularlyafter
point A, our texture-based edge detector has the highest precision.
The dashed curve presents our tPb+SLEDGE results for boundary
detection, not edge detection.

Below, we present our default training and testing setups.

Training. We train SLEDGE on the 200 training images
of BSD300. For each image, we compute the edge prob-
ability map tPb and extract multiscale edges, as described
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in Sec.5. We build the graph of image edgesG and com-
pute the attributes of all nodes and arcs. We also convert
the manually annotated object boundaries to ground truth
labels for all edges in the training images. Our initial clas-
sifierh(1) is a fully grown C4.5 decision tree, that chooses
the split attribute based on the normalized information gain
criterion. The attributes considered forh(1) are only the in-
trinsic parametersψi introduced in Sec.3.2.1. In further
iterations of SLEDGE, the classifiers are pruned C4.5 de-
cision trees, which are learned on all attributesψi, φij and
Hi, as discussed in Sec.4.2.1. C4.5 pruning uses the stan-
dard confidence factor of 0.25. The interpolation constant
β, mentioned in Sec.4.1, is set toβ = 0.1. Also, we useR2

as the ranking function,LF as the loss function, and voting
to combine the output of the decision tree classifiers.

Testing. Given a new test image, we compute tPb and
extract multiscale edges. We build the graph of edgesG,
and let SLEDGE sequentially label all edges inG. Perfor-
mance is measured as the average precision and recall of the
boundary map produced by SLEDGE, as defined in [51].

In the following two subsections, we first test
SLEDGE on the three datasets, and show that we compare
favorably to the state of the art. Then, we evaluate spe-
cific aspects of our approach by introducing variations to the
aforementioned default setup. These variations concern us-
ing different: initial conditions, edge labeling strategy, clas-
sifier type, interpolation scheme, ranking function, and loss
function.

6.1. Object Boundary Detection by SLEDGE

Qualitative evaluation: Figures11, and12 illustrate the
order in which SLEDGE selects edges to label in two ex-
ample images of BSD. We refer the reader to the respective
captions for comments on the underlying Gestalt principles
that SLEDGE uses for labeling.

Fig. 15 demonstrates high accuracy of our boundary de-
tection on the BSD. Detection is good even in the following
cases: (i) when objects have complex textures, e.g., coral in
Fig. 15(c) and ground in Fig.15(b); (ii) when the bound-
aries are blurred or jagged, e.g., in Fig.16 (d); and (iii)
when boundaries form complex layouts, e.g., in Fig.16(c).
Filter-based methods, or approaches based on image dec-
imation and smoothing would typically fail to accurately
delineate topologically complex spots in which several tex-
ture boundaries meet. We are also able to detect boundaries
where there is no strong gradient, which gPb [49] typically
fails to extract, e.g., see the edge that separates the two cows
in Fig. 16(a).

We compare our algorithm with a related method, pre-
sented in [40], and mentioned in Sec.2. Fig. 17 shows two
illustrative examples, where the 50 most confident bound-
aries are color-coded in HSV space (red means more confi-

dent). SLEDGE finds prominent boundaries that [40] fails
to detect, e.g., see the back of the kangaroo. On the other
hand, SLEDGE labels the edges in the rock texture on the
left of the animal as boundaries, whereas [40] does not. A
likely reason we fail on these texture edges is that they con-
tinue each other well, and thus reinforce each other to be
jointly labeled as boundaries.

Fig. 18 illustrates cases when SLEDGE labels edges in-
correctly. For example, in Fig.18(top row), the shadow on
the horse’s neck is classified as boundary, because its edge
saliencyψi1 is high, and also because it would be a valid
continuation of the front leg. Similarly, in Fig.18(bottom
row), the shadow on the paved area generates a set of
collinear edges. In both cases, gPb [49] also characterizes
these edges by a high probability of being on a boundary.
Note that SLEDGE accurately assigns high confidence to
the boundaries of the electric pole, unlike gPb [49].

Quantitative evaluation: SLEDGE computes for each
edgei the confidence that it lies on a boundary. This pro-
duces a boundary probability map that we use to evaluate
our performance. To this end, we again use the boundary
evaluation methodology presented in [51].

First, we examine the boundary map output by
SLEDGE, and compare it to the initial edge probability
map. We use edges detected with the same algorithm for
training and for testing. Fig.13 compares the edges ob-
tained with (a) Canny detector [11], (b) our tPb detector
and (c) gPb detector [49], before and after they have been
labeled by SLEDGE. Sequential labeling significantly im-
proves performance for all edge detectors, especially in the
high-recall-low-precision regime. This demonstrates that
SLEDGE does not require a very good initial set of edges
for good performance. We note however that the higher
the precision of original input edges, the higher the pre-
cision of output boundaries. For example, Fig.13 shows
that the precision of gPb+SLEDGE is higher than the preci-
sion of Canny+SLEDGE. Interestingly, our tPb edge detec-
tor combined with SLEDGE is as good as the gPb detector
combined with SLEDGE. This demonstrates that our ap-
proach can successfully work with noisy input edges, most
of which are not object boundaries, as long as the input set
contains a high recall of boundaries.

Fig. 14 compares the average precision and recall of
tPb+SLEDGE with gPb of [49] on BSD, Weizmann Horses
and LabelMe. SLEDGE is trained on 200 training im-
ages from BSD. Results in Fig.14 are reported as the av-
erage performance of SLEDGE on 100 test images from
BSD, and on all images from the Weizmann and LabelMe
datasets. As can be seen, our technique outperforms gPb on
all three datasets.

Running-time: Training SLEDGE on 200 BSD train-
ing images takes about 24 hours, on a 2.66GHz, 3.4GB
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Original image t1 t2 t3

t4 t5 t6 t7
Figure 11.Sequential labeling of edges by SLEDGE.We illustrate a few iterations of SLEDGE, and the order in which object boundaries
are selected at timest1 < t2 < t3 < . . . < tT . For visibility, we do not show the intermediate edges that are classified as non-boundaries.
At time t1, SLEDGE selects a long, prominent edge. Then at timet2, it picks a smaller edge that is close and collinear to the first boundary.
Thus, SLEDGE uses the principle of good continuation of edges att2. At t3, t4 andt7, it labels other long edges. At timest5 andt6, we
note that the selected edges are not the longest, nor the mostsalient ones. They are edges that connect other boundaries together (t5), or
that again continue well an existing boundary (t6).

Original image t1 t2 t3

t4 t5 t6 t7
Figure 12.Sequential labeling of edges by SLEDGE.See the caption of Fig.11. At time t1, SLEDGE selects a long, prominent edge.
Then at timest2, t3 andt7, it selects edges that are parallel to the first boundary. Thegrouping principles used for edge labeling at times
t4, t5 andt6 are not obvious.

RAM PC. Computing the boundary probability map by
SLEDGE for a new image takes 20-40sec, depending on
the number of edges in the image.

6.2. Evaluating Particular Aspects of SLEDGE

This section presents quantitative evaluation of how dif-
ferent design choices modify performance of SLEDGE.

Initial conditions. The early errors of SLEDGE in the se-
quence might be critical, because they could sequentially
propagate to the entire sequence. To test this aspect of our
algorithm, we compare our default setup with the following

variant of SLEDGE. We create 100 different initial configu-
rations by randomly pickingb true boundaries as the initial
set of correctly labeled edges. The randomization serves to
eliminate any bias in picking certain boundaries (e.g., long
ones). Then, we let SLEDGE continue labeling the remain-
ing edges. The pairwise and global features are computed
based on the initial set of randomly selected true bound-
aries. Finally, we compute recall and precision averaged
over these 100 distinct initializations. These tests serveto
evaluate SLEDGE performance when there is no error at
the beginning of the labeling sequence. Table1 shows the
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(a) (b) (c)
Figure 13.Improvement in boundary detection. We compare boundary detection performance on BSD in two cases: outputs of existing
edge detectors are input to SLEDGE (solid line), and outputsof existing edge detectors are simply declared as boundary detection without
using SLEDGE (dashed line). The detectors include: (a) Canny [11], (b) tPb, and (c) gPb [49]. Training and testing are performed with
the same type of edges, i.e. if we test SLEDGE on Canny edges, it means it has been trained with Canny edges. We see that SLEDGE is
able to improve the precision of any initial set of edges. Even using Canny edges as input to SLEDGE gives higher precisionhigher than
gPb of [49], for a large range of threshold levels in the high-recall-low-precision regime.

b = 2 b = 4 b = 6
Increase in recall [%] 21± 2.3 33± 2.4 61± 1.84

Increase in precision [%] 23± 3.5 25± 1.9 49 ± 2.1

Table 1.Initial conditions. Increase in recall and precision in %,
at equal error rate, relative to those of our default setup, averaged
over 100 random initializations consisting ofb ∈ {2, 4, 6} true
boundaries as the initial set of correctly labeled edges.

average increase in recall and precision, at equal error rate,
relative to those of our default setup, forb = 2, 4, 6. As
can be seen, when errors at the beginning of the labeling
sequence are manually eliminated, our performance gain is
relatively small. This suggests that our default setup is rel-
atively insensitive to initial labeling errors.

Edge labeling strategy. We test how performance varies
when we allow SLEDGE to continue relabeling edges after
all the edges have already been labeled once. Specifically,
after all edges have been visited, we remove them from the
labeled set and send them to the unlabeled set. The pair-
wise and global features are still computed based on the
current labeling of boundaries. We iterate SLEDGE un-
til it reaches convergence, i.e., no edge changes the label.
On the 100 test images of the BSD300, at equal error rate,
SLEDGE with relabeling improves by 0.2% in precision,
and by 0.5% in recall, relative to the performance of the
default SLEDGE with just one labeling pass. Thus, allow-
ing edges to be relabeled, in our approach, only marginally
improves precision and recall, but increases complexity.
Therefore, it seems that the iterative relabeling of edges is
not justified in our approach.

Layout entropy. We measure the influence of the layout
entropyH on the performance of SLEDGE. We obtain that
at equal error rate, the performance of SLEDGE withH im-
proves by 3.2% in precision and by 4.1% in recall compared

to the performance of SLEDGE withoutH .

Classifiers. From our experiments, a non-linear clas-
sifier is more suitable than a linear one for separating
boundaries from background edges. Classification accu-
racy of SLEDGE with decision trees compared to that of
SLEDGE with a linear SVM-type classifier is 91% vs. 72%.
For training SVMs (as in the case of decision trees), we use
a balanced number of positive and negative examples – the
under-sampling procedure mentioned in Sec4.2.4-Remark
– with the complexity parameterC = 1.0. When more so-
phisticated classifiers are used, e.g. SVM with RBF and
random forests, we observe only a relatively small gain in
accuracy over the decision tree, which does not justify the
increase in complexity. Indeed, the total computation time
primarily depends on the complexity of the chosen classifier
as all classifiers have to be run at each iteration of SLEDGE.

Ranking functions. Fig. 19 compares the performance of
SLEDGE on BSD, for ranking functionR1 orR2, described
in Sec.4.2.2. WhileR1 selects the next edge in a breadth-
first manner,R2 ranks first the edge that the classifier is the
most confident about. From Fig.19, R2 outperformsR1.
The edges that have already been labeled provide important
perceptual-grouping cues for labeling of subsequent edges,
and thus it is critical to initially label those edges which
would be least harmful for later decisions, i.e., edges with
the highest confidence in classification.

Loss functions. Fig. 20 shows the performance of
SLEDGE when using the loss functionLH or LF , speci-
fied in Sec.4.2.3. LH coarsely counts errors at the edge
level, whileLF is a loss estimated finely at the pixel level.
As expected, SLEDGE withLF produces boundaries with
slightly better precision than SLEDGE withLH . LF is
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(a) (b)

(c) (d)
Figure 14.Boundary detection.Comparison of tPb+SLEDGE and gPb [49] for (a) BSD 300 [50], (b) BSD 500 [4], (c) Weizmann Horses
[7] and (d) LabelMe [59]. For the BSD 300, we also compare SLEDGE to the method of [39]. We outperform gPb on all four datasets, and
obtain a better F-measure than [39] on the BSD 300.

a more appropriate loss function for the boundary detec-
tion problem because unlikeLH , it favors the selection of
long, salient edges. Since all descendants of an edge la-
beled as boundary are automatically labeled as boundary,
the number of edges in the unlabeled set decreases much
faster if long boundaries get labeled early on. We verify that
SLEDGEwithLF runs about 3 times faster than SLEDGE-
with LH .

Interpolation scheme. We stop learning new classifiers
when the average performance on the training data does not
change. For BSD, this happens after about 10 iterations.
Fig. 21 compares the performance of SLEDGE with these
10 classifiers, as the interpolation scheme changes from
sampling to weighted majority voting of the classifiers. As
can be seen, voting significantly outperforms sampling.

In the following subsection, we evaluate the relevance of
distinct Gestalt principles for boundary detection.

6.3. Relative Significance of Gestalt Laws

We are interested in how SLEDGE schedules (i.e., prior-
itizes) distinct Gestalt principles for edge labeling. To this
end, we perform the following analysis: For each nodeu
in a decision tree that corresponds to a split on the Gestalt
rule gi ∈ {ψi2, φi1, . . . , φi5}, we count the number of its
ancestors,k, that are also splits on the Gestalt rules.k + 1
corresponds to the ranking of the splitting criteriongi, i.e.
the position of this rule in the schedule of all Gestalt rules.
Note that some splits might not correspond to a Gestalt rule,
e.g. splits onψi1, the saliency of edgei. For each Gestalt
rule gi, we build a histogram of rankings of the nodes that
split ongi in all the decision trees that form the final clas-
sifier f . We report in Table2 the relative rankings of each
Gestalt principle.

This result could be used for estimating a prior distribu-
tion of scheduling the Gestalt principles for edge labeling
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Figure 15.Boundary detection on BSD.From top to bottom: Original image, Edge probability map tPb, Edges corresponding to the
leaves of the edge graph (the finest-scale), Edges corresponding to the roots of the edge graph (the coarsest scale), Boundary map output by
SLEDGE, Boundaries detected by SLEDGE for best F-measure, Boundary map output by gPb [49], Boundaries detected by gPb for best
F-measure. A zoom-in of the windows highlighted in the original images is available in Fig.16. SLEDGE outperforms gPb on challenging
object boundaries amidst texture or low-contrast ramps, for example: the cow’s head in (a); the tip of the alligator’s mouth in (b); the green
coral in (c); and the details in the dress of the woman in (d).
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(a) (b) (c) (d)
Figure 16.Zoomed-in parts. Top row: Zoom-in of the windows that are marked in Fig.15. Bottom row: Boundaries detected by
SLEDGE for best F-measure are overlaid onto the original images.

Figure 17.Strength of boundaries.From left to right: Original image, Edge probability map tPb, 50 most confident boundaries output by
SLEDGE, 50 most confident boundaries output by the approach of [40]. The confidence is color-coded in HSV space, where red means
very confident, and purple and magenta mean less confident. Best viewed in color.

(not used in this paper). Note that the results in Table2
depend on our particular formulations of the Gestalt rules,
which are common in the literature.

7. Conclusion

We have presented an approach to boundary detection
in arbitrary images. The approach takes as input salient
edges, and classifies these edges using a new sequential la-
beling algorithm, called SLEDGE. SLEDGE learns how to
optimally combine Gestalt grouping cues and intrinsic edge
properties for boundary detection. In addition to the com-
mon pairwise grouping cues, we have also formalized the
Helmholtz global principle of grouping, as the entropy of
the edge layout.

Our empirical evaluation demonstrates that the approach
outperforms the state-of-the-art boundary detectors regard-
less of the input set of salient edges, as long as the set con-

tains a high recall of true boundaries. We have observed
that SLEDGE tends to favor good continuation of strong
edges, which works well in most cases, but fails when there
is an accidental alignment of object and background edges
(e.g., shadows). Our results demonstrate that proximity
and collinearity of edges are typically scheduled before the
other Gestalt principles of grouping for boundary detection.

Two key novel aspects of our approach lead to good
performance—namely, reasoning about boundaries: (1) in-
vestigates a data-driven sequence of distinct image loca-
tions, rather than scans uniformly all image locations, and
(2) takes into account both local and global perceptual orga-
nization of salient edges, rather than small image patches.
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