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Abstract
This paper presents an approach to scale-invariant

image matching. Given two images, the goal is to find
correspondences between similar subimages, e.g., rep-
resenting similar objects, even when the objects are
captured under large variations in scale. As in previous
work: similarity is defined in terms of geometric, photo-
metric and structural properties of regions, and images
are represented by segmentation trees that capture re-
gion properties and their recursive embedding. Match-
ing two regions thus amounts to matching their corre-
sponding subtrees. Scale invariance is aimed at over-
coming two challenges in matching two images of sim-
ilar objects. First, the absolute values of many object
image properties may change with scale. Second, some
of the finest details visible in the high-zoom image may
not be visible in the coarser scale image. We normalize
the region properties associated with one of the subtrees
to the corresponding properties of the root of the other
subtree. This makes the scales of objects represented
by the two subtrees equal, and also decouples this scale
from that of the entire scene. We also weight contribu-
tions of subregions to the total similarity of their par-
ent regions by the relative area the subregions occupy
within the parents. This reduces the penalty for not be-
ing able to match fine-resolution details present within
only one of the two regions, since the penalty will be
down-weighted by the relatively small area of these de-
tails. Our experiments demonstrate invariance of the
proposed algorithm to large changes in scale.

1. Introduction
This paper is about matching real-world images to

identify all pairs of similar subimages, e.g., for discov-
ering and segmenting out any frequently occurring ob-
jects belonging to a visual category in a given set of ar-
bitrary images [7]. The main contribution of this paper
over previous work is the ability to perform the match-
ing in a scale invariant manner. Thus, we would like
an object to be matched across images even if its size
varies – e.g., when images have been acquired at vary-
ing distances from the object. Such variations in the

scale of capturing an object result in two main differ-
ences in the object’s images to which matching must be
made invariant. First, the absolute values of many ob-
ject image properties may change with scale. Second,
some of the finest details visible in the high-zoom im-
age may not be visible in the coarser scale image. This
paper presents an approach in which we achieve both
of the above invariances. We extend our earlier work
in which we perform image matching invariant to ob-
ject orientation, illumination, and to a limited extent, to
object size.

Before we outline our approach, we first very briefly
review the large amount of related work in image
matching based on region properties. Finding region
correspondences across images is one of the fundamen-
tal problems in computer vision. It is frequently en-
countered in many vision tasks, such as unsupervised
learning of object models [7], and extraction of texture
elements (or texels) from an image texture [2]. Most ap-
proaches use only geometric and photometric properties
of regions. Others improve robustness by additionally
accounting for structural properties of regions. They
represent images as graphs which capture region struc-
ture, and formulate image matching as graph matching
problem.[4, 9, 5, 3, 6, 8, 7]. Some graph-based methods
allow many-to-many region correspondences to handle
possible splits or merging of regions, caused, e.g., by
differences in illumination across the images[6, 8].

We define the goal of matching as finding for all
regions in one image all similar regions in the other
image, so the total number of matched regions and
their associated similarities are maximized. The sim-
ilarity measure is defined in terms of the geometric
(e.g., shape, area), photometric (e.g., brightness), and
structural properties (e.g., embedding of regions within
larger ones). The image and object representations
that we use here and in [7, 2, 8] have the follow-
ing major features relevant to achieving the proposed
scale invariance. Our image representation captures
multiscale image segmentation via a segmentation tree.
Segmentation tree captures the recursive embedding
of smaller/finer regions inside bigger/more salient re-
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gions. This naturally facilitates scale based analysis. To
achieve the invariance to object size, in the past we have
expressed certain properties of a region, corresponding
to a segmentation tree node, relative to the correspond-
ing properties of the parent region in the segmentation
tree. However, such definition of the relative properties
of a region retains the dependence on the properties of
the root node, i.e., on the image size. In this paper, we
make two main contributions. First we eliminate the
mentioned dependence by normalizing the region prop-
erties with respect to the candidate object pair instead
of the images. Second, we build into the matching pro-
cess insensitivity to those fine level regions, which are
present in the high-zoom image, but have been lost in
the coarser scale image.

Overview of Proposed Approach: We extend in this
paper the basic image representation, and many-to-
many matching strategy presented in [8]. Our approach
consists of four steps. (1) As in [8], images are repre-
sented by segmentation trees that capture the recursive
embedding of regions obtained from a multiscale image
segmentation. We associate a vector of absolute geo-
metric and photometric properties of a corresponding
region to each node in the tree, and thus depart from
the specification presented in [8], where only relative
region properties were used. In the sequel, we will refer
to node and region, and descendant node and subregion,
interchangeably. (2) Similar to the steps in [8] that al-
low many-to-many matching, the segmentation tree is
modied by inserting new nodes, referred to as mergers.
A merger represents the union of two sibling regions,
whose boundaries share a part. A merger instantiates
the hypothesis that a border between two regions is in-
correctly detected (due to, e.g., lighting changes etc.),
and therefore their union should be restored as a sepa-
rate node. Each merger is inserted between its source
nodes and their parent, as a new parent of the sources,
and as a new child of the sources’ original parent. Then,
to provide access to all descendants under a node dur-
ing matching, and thus improve robustness, new edges
are established between each node and all its descen-
dants, transforming the tree into a DAG. (3) Note that
every node in the DAG defines a subgraph rooted at that
node. Thus, matching any two nodes can be formulated
as finding a bijection between their descendants in the
corresponding subgraphs. This bijection can be char-
acterized by a similarity measure, defined in terms of
region properties. Since our goal is to identify pairs
of regions with similar intrinsic and structural proper-
ties, the bijection of their subregions needs to preserve
the original node connectivity and maximize the asso-
ciated similarity. Formally, two nodes are matched by
finding the maximum-similarity subgraph isomorphism

between their respective subgraphs. In this step of our
approach, we modify the algorithm of [8] in two criti-
cal ways mentioned at the beginning of this section and
aimed at achieving scale invariance. First, when match-
ing two regions, i.e., two subgraphs, we make the as-
sumption that they represent similar object occurrences
which should be matched, and normalize the absolute
region properties of one of the subgraphs to the corre-
sponding properties of the other. This modification ad-
dresses the problem of object properties being measured
relative to the entire image as is the case in [8]. Sec-
ond, when finding similarity of two regions, we weight
the contributions of their subregions to the similarity, by
the area the subregions occupy within the regions. This
modification helps eliminate the direct dependency of
similarity of two regions on the total number of their
subregions present in the image. In turn, this helps
achieve the second desirable scale property mentioned
earlier in this section, since the penalty for not being
able to match fine-resolution details present within only
one of the two regions will be down-weighted by the
rather small (relative) area of these details. (4) The sub-
graph isomorphism of a visited node pair is computed
as a maximum weighted clique of the association graph
constructed from the descendants. The proposed ap-
proach is validated on real images captured under large
scale variations. The following sections describe the de-
tails of our algorithms.

2. Image Representation

This section presents steps (1)–(2) of our approach.
An image is represented by the segmentation tree,
T=(V,E, ψ). Nodes v∈V represent regions obtained
from the multiscale segmentation algorithm presented
in [1]. This algorithm partitions an image into homoge-
neous regions, so changes in pixel intensity within the
region are smaller than those across its boundary, re-
gardless of the absolute degree of variation. Segmenta-
tion is performed regardless of the size, shape and loca-
tion of regions, and their contrasts with the surround.
The multiscale regions are then organized in tree T ,
where the root corresponds to the entire image, and each
edge e=(v, u)∈E represents the embedding of region u
within v, i.e., their parent-child relationship. Function
ψ : V → [0, 1]d associates a d-dimensional vector, ψv,
with every v∈V , where ψv consists of the following
absolute region properties: 1) area, 2) outer-ring area
not occupied by subregions, 3) mean brightness of the
outer-ring area, 4) orientation of the principal axis with
respect to the image’s x-axis, 5) four standard affine-
invariant shape moments, and 6) centroid location. The
elements of ψv are in [0, 1].

As mentioned in Sec. 1, T is modified by insert-
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ing and appropriately connecting mergers of contigu-
ous, sibling regions, i.e., regions that share boundaries
and are embedded within the same parent. The presence
of mergers allows addressing the instability of low-level
image segmentation under varying imaging parameters.
Next, the augmented T is transformed into a DAG by
adding new edges between each node and all its de-
scendants. This allows considering matches of all de-
scendants under a node, even when its direct children
cannot find a good match. We keep the same notation T
for the segmentation tree and its corresponding DAG.

3. Scale-invariant Graph Matching
Given two DAGs, T and T ′, we match all possi-

ble pairs of nodes (v, v′)∈V×V ′, and estimate their
similarity, Svv′ . Let fvv′={(u, u′)} denote a bijection
between descendants u of v and u′ of v′. The goal
of our matching algorithm is to find subgraph isomor-
phism fvv′ that preserves the original connectivity of
subgraphs rooted at v and v′, and maximizes Svv′ .

We define Svv′ in terms of region properties of all
descendants u and u′ included in the subgraph isomor-
phism fvv′ . Invariance is achieved by normalizing prop-
erties of the subgraph rooted at v′ to those of v, so as to
decouple the (relative) properties of their descendents
from those of the entire images, and make them com-
patible by expressing them relative to the normalized
common reference regions. To render Svv′ invariant to
scale changes, we re-scale the area of v′ to be equal to
the area of ψ̃v′(area)=α ·ψv′(area)=ψv(area), and use
the same scaling factor α to re-size all descendants u′ of
v′, ψ̃u′(area)=α · ψu′(area). This decouples the scales
of objects represented by v and v′ from the scales of the
scenes represented by entire T and T ′. To also achieve
rotation-in-plane and translation invariance, we rotate
and translate all descendants u′ under v′ by the unique
delta angle and displacement which make the orienta-
tions and centroids of v and v′ equal. Additionally, we
make the mean brightness of v and v′ equal, and then
use the same delta-brightness factor to increase (or de-
crease) the brightness of descendants u′. This addresses
local illumination changes, and decouples the bright-
ness of objects represented by v and v′ from the global
brightness of the entire images represented by T and T ′.
There is no need to compute new shape moments of the
resized regions, since they are affine invariant. This nor-
malization yields new properties ψ̃v′ and ψ̃u′ of region
v′ and its descendants u′.

While finding the subgraph isomorphism that max-
imizes Svv′ , the algorithm should match subregions
of v and v′ whose differences in region properties
are small. At the same time, it is desirable to find
good matches between subregions that are perceptu-

ally salient. In general, regions that have large inten-
sity contrasts with the surround and occupy large ar-
eas within their parent regions are perceptually salient.
Thus, we define the saliency of region u, σu, as a rel-
ative degree of difference between the brightness and
area of u from the corresponding properties of parent v,
σu ,

|ψu(brightness)−ψv(brightness)|
255 + ψu(area)

ψv(area) . Note that
σu is invariant to changes in scale and illumination.

Using the above definitions of subgraph isomor-
phism f , absolute region properties ψ, normalized
properties ψ̃, and region saliency σ, we define the sim-
ilarity of two regions v and v′ as

Svv′,max
f

vv
′

∑

(u,u′)∈f
vv

′

ρvv′uu′ (σu +σu′ − |ψu − ψ̃u′ |),

(1)
where the weights ρvv′uu′ make contributions of
matches (u, u′) in (1) proportional to the relative areas
they occupy within v and v′. We define ρvv′uu′ as the
total outer-ring area of u and u′ that is not occupied by
the other descendants of v and v′ included in fvv′ , ex-
pressed as a percentage of the total area of v and v′,
ρvv′uu′ ,

ψu(outer-ring area)+ eψ
u
′ (outer-ring area)

ψv(area)+ eψ
v
′ (area)

. As men-
tioned in Sec. 1, these weights help diminish the scale
effects, since the weights are small for tiny subregions
most affected by scale changes.

From (1), the algorithm seeks matches among the de-
scendants of v and v′ whose saliencies are high, and
differences in normalized geometric and photometric
properties are small. As shown in [8], the maximum
similarity subgraph isomorphism f is equal to the max-
imum weighted clique of the association graph con-
structed from all descendant pairs (u, u′) of v and v′,
which can be found by using the replicator dynamics
algorithm presented in [4].

Complexity of matching two regions, i.e., subgraphs
each containing no more than |V | descendants, is
O(|V |2). Note that the branching factor of our image
DAGs varies from node to node, in proportion with the
spatial variation of image structure. The DAG is not
complete and the total number of subgraphs is image
dependent. In experiments presented in the following
section, we have observed that the number of subgraphs
within an image DAG is typically |V |/2 (almost the
same as would be in a complete binary tree containing
|V | nodes). Therefore, complexity of matching all pairs
of regions from two DAGs is O(|V |4). It takes about
1min in MATLAB on a 2.8GHz, 2GB RAM PC.

4. Results
The proposed scale-invariant matching (SIM) is

evaluated on 435 faces from Caltech-101, and 80 im-
ages of UIUC 2.1D natural textures [2]. Caltech-101
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(a) Input images whose tree representations are matched

(b) Matching results in the subsampled images using [8]

(c) Matching results in the subsampled images using SIM

Figure 1. Unsupervised image-to-image
matching: (b)-(c) Sample segmentation
of the image on the right in (a). Darker
shades of gray indicate higher similarity
of matched regions. SIM yields darker
shades of faces in (c) than those in (b).

images contain only a single, frontally viewed face,
against cluttered background, under varying illumina-
tion. The texture images present additional challenges:
texels are only statistically similar to each other, they
may be partially occluded, and their placement is ran-
dom. When matching Caltech-101 images, our algo-
rithm is unaware that the images contain any common
objects (i.e., faces). Thus, Caltech-101 faces are used
for unsupervised image-to-image matching. The texture
images are used to evaluate our algorithm in a differ-
ent setting, that of model-to-image matching. Since the

(a) Input images

(b) Matching results in the subsampled image using our algorithm

Figure 2. Model-to-image matching: (a)
The texel model, learned using the im-
age on the left, is matched with the
DAG of the subsampled image on the
right. (b) Darker shades of gray indicate
higher similarity between model and im-
age matches, i.e., higher confidence in
texel extraction.

recurrence of texels in the image is guaranteed by the
assumption that the image shows texture, we first learn
the hierarchical texel model, as in [2], and then match
the texel model with the segmentation tree of another
image showing the same texture. We report comparison
only with the approach of [8], for brevity, because the
algorithm of [8] has already been demonstrated to out-
perform the state-of-the-art matching methods on chal-
lenging benchmark datasets, like Caltech-101. To eval-
uate the two proposed modifications with respect to the
approach of [8] – namely, normalization of absolute re-
gion properties, and similarity weighting – we addition-
ally present results of SIM without one of these modifi-
cations, referred to as SIM−N and SIM−W .

In experiments with Caltech-101 images, we ran-
domly select a total of 10 images, where the size of
one image is kept intact, while the remaining nine im-
ages are all equally subsampled. In each experiment,
the amount of image-size reduction is increased in in-
crements of 5%, until 80% of the original size. Fig. 1
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demonstrates a set of these experiments, where the unal-
tered image (top) is matched to rotated and subsampled
images, which are all placed on a random background
(bottom), for brevity. As can be seen, SIM is invari-
ant to changes in scale and illumination, in-plane rota-
tion and translation. It improves the matching results
of [8], since similarity values Svv′ produced by SIM
over regions representing common objects (i.e., faces)
are larger than the similarities obtained using the ap-
proach of [8], while remaining low over background
clutter. This, in turn, allows us to use SIM in solving
higher-level vision problems, such as, for example, ob-
ject detection. Specifically, Fig. 1 suggests that it is pos-
sible to select a suitable threshold of Svv′ values to de-
tect occurrences of common objects (i.e., faces) present
at a wide-range of scales. For quantitative evaluation,
we use the threshold that yields equal recall-precision
rate, where matches are declared as true positives if the
ratio of intersection and union of the matched area and
the ground-truth area are greater than 0.5. Detection
error includes false positives and negatives. Fig. 3 com-
pares face detection results, averaged over 10 experi-
ments, obtained using SIM, SIM−N , SIM−W and the
approach of [8]. The plots show that SIM is relatively
scale invariant up until the faces become one half of the
original size, and that the slope of increase in error of
SIM is less than that of [8]. Also, SIM−N yields the
worst detection results, since matching uses directly the
absolute properties of regions without normalization.

In experiments with UIUC image textures, the texel
model is first learned from the unaltered image texture,
as in [2]. The texel model is a hierarchical graph whose
nodes encode the statistical properties of correspond-
ing texel parts, and edges capture their spatial relations.
The texel model is matched to the segmentation tree
of another rotated and subsampled image showing the
same texture. Fig. 2 shows improvements of our ap-
proach over that of [8] in that Svv′ values produced by
SIM are larger over regions occupied by the texels than
Svv′ values obtained using the approach of [8]. By us-
ing the same detection strategy as before, we threshold
matches of the texel model with subsampled images,
and thus achieve texel extraction over various scales.
Fig. 3 presents the detection results averaged over the
80 UIUC image textures. As the degree of subsampling
increases, SIM is nearly scale invariant until the size of
image texture is reduced to one half of the original, af-
ter which the slope of increase in texel-extraction error
is less than that of [8]. Again, SIM−N yields the worst
texel detection.
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Figure 3. Face and texel detection using
SIM, SIM

−N , SIM
−W and approach [8].

5. Conclusion
We have presented an approach to region-based, hi-

erarchical image matching that explicitly accounts for
changes in region structure, including their disappear-
ances, due to scale variations. Our experiments demon-
strate that the proposed matching is indeed invariant to
a wide range of scales, changes in illumination, in-plane
rotation, and translation of similar objects. Experiments
also suggest that our algorithm facilitates unsupervised
detection of texels in a given image texture, or object-
category occurrences in an arbitrary set of images.1
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