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Abstract—Recently, much progress has been made toward the
development of small-scale aircraft, known broadly as Micro Air
Vehicles (MAVs). Until recently, these platforms were exclusively
remotely piloted, with no autonomous or intelligent capabilities,
due at least in part to stringent payload restrictions that limit on-
board sensors. However, the one sensor that is critical to most con-
ceivable MAV missions, such as remote surveillance, is an onboard
video camera and transmitter that streams flight video to a nearby
ground station. Exploitation of this key sensor is, therefore, de-
sirable, since no additional onboard hardware (and weight) is re-
quired. As such, in this paper we develop a general and unified
computer vision framework for MAVs that not only addresses basic
flight stability and control, but enables more intelligent missions
as well. This paper is organized as follows. We first develop a real-
time feature extraction method called multiscale linear discrimi-
nant analysis (MLDA), which explicitly incorporates color into its
feature representation, while implicitly encoding texture through
a dynamic multiscale representation of image details. We demon-
strate key advantages of MLDA over other possible multiscale ap-
proaches (e.g., wavelets), especially in dealing with transient video
noise. Next, we show that MLDA provides a natural framework for
performing real-time horizon detection. We report horizon-detec-
tion results for a range of images differing in lighting and scenery
and quantify performance as a function of image noise. Further-
more, we show how horizon detection naturally leads to closed-loop
flight stabilization. Then, we motivate the use of tree-structured
belief networks (TSBNs) with MLDA features for sky/ground seg-
mentation. This type of segmentation augments basic horizon de-
tection and enables certain MAV missions where prior assump-
tions about the flight vehicle’s orientation are not possible. Again,
we report segmentation results for a range of images and quan-
tify robustness to image noise. Finally, we demonstrate the seam-
less extension of this framework, through the idea of visual con-
texts, for the detection of artificial objects and/or structures and
illustrate several examples of such additional segmentation. This
extension thus enables mission profiles that require, for example,
following a specific road or the tracking of moving ground objects.
Throughout, our approach and algorithms are heavily influenced
by real-time constraints and robustness to transient video noise.

Index Terms—Image segmentation, object recognition, real-time
control, vision-based control.

I. INTRODUCTION

OVER the past several years, much progress has been made
toward the development of small-scale aircraft, known

broadly as Micro Air Vehicles (MAVs). As these systems and
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the miniaturized electronics that make MAVs possible are ma-
turing, interest in MAVs has accelerated substantially for appli-
cations ranging from battlefield surveillance, smart munitions,
and real-time bomb-damage assessment, to forest-fire recon-
naissance, surveys of natural disaster areas, and inexpensive
traffic and accident monitoring. At the University of Florida,
Gainesville, researchers in aerospace and computer engineering
have established a long track record in designing, building, and
test-flying innovative and rugged MAV and small UAV flight ve-
hicles [1]–[4]. For example, Fig. 1 shows some of our recently
developed MAVs.

Until recently, these platforms were exclusively remotely pi-
loted, with no autonomous or intelligent capabilities. To de-
velop these capabilities in MAVs, we are faced with some chal-
lenges that are unique to small-scale aircraft. First, compared to
their more traditional and larger model aircraft cousins, MAVs
are much less stable and harder to control. Second, wind gusts
can typically be equal to or greater than the forward air speed
(e.g., 10–15 m/s) of the MAV itself. Thus, an average wind gust
can immediately affect a dramatic change in the vehicle’s flight
path. Third, MAVs have a stringent payload limit; for example,
our 6-in (15-cm) MAV platform (pictured in Fig. 1) weighs only
approximately 60 g. As such, even with the ongoing miniatur-
ization of electronic components, sensors that are available for
larger platforms are not currently practical for use on some of
our smaller MAVs. In choosing sensors appropriate for MAVs,
we must always balance the value (i.e., information content and
accuracy) of a given sensor with the consequent weight penalty
associated with that sensor.

The one sensor that is critical to most conceivable MAV mis-
sions, such as remote surveillance, is an onboard video camera
with a transmitter that streams the video to a nearby ground sta-
tion. Exploitation of this rich and important sensor is, therefore,
desirable, since no additional onboard hardware (and weight)
is required. In the recent literature, several onboard vision sys-
tems for MAVs and unmanned aerial vehicles (UAVs) have been
reported. For example, in [5], the authors present a real-time vi-
sion system for a rotor-craft UAV to land onto a known landing
target. Their algorithms include linear and nonlinear optimiza-
tion schemes for model-based camera pose estimation. Next,
in [6], a vision-based hierarchical approach to path planning
of UAVs is proposed, where a UAV builds and updates a vir-
tual three-dimensional (3-D) model of the surrounding environ-
ment by processing image sequences. Further, in [7], the authors
present a motion-sensing visual system for UAVs and MAVs
to follow terrain and avoid obstacles. In their approach, signals
from the 20-photoreceptor onboard eye, together with inertial
and rotor r/min signals, are processed in real time to achieve
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Fig. 1. (a) A 6-in (15-cm) UF MAV. (b) A 6-in (15-cm) UF MAV in flight with view through its onboard camera. (c) A 24-in (61-cm) MAV.

Fig. 2. (a) Overview of the MAV computer vision system (white blocks
indicate future work). (b) MAV flight image. (c) Sample desired output of the
system for the image in (b).

automatic terrain-following flights. The mentioned prior work
demonstrates significant improvements in flight control and
navigation of MAVs and UAVs when visual information is
introduced as an input to the controls system. Despite these
successes, however, the principal limitation of the mentioned
efforts is their narrow applicability; that is, these systems have
been designed to achieve specific goals without modularity or
readily implementable extensions.

Therefore, in this paper we develop a general and unified
computer vision framework for MAVs that not only addresses
basic flight stability and control, but enables more intelligent
missions, such as moving-object tracking and localization as
well. Fig. 2(a) gives an overview of our MAV computer vision
system, while Fig. 2(b) and (c) shows an example of the de-
sired output for the system. First, we seek to extract relevant
features from the flight video that will enable our higher level
goals. Then, we apply this image representation toward horizon
detection and sky/ground segmentation for basic flight stability

and control. Finally, we extend this basic framework through the
idea of visual contexts to detect artificial objects and/or struc-
tures on the ground.

Horizon detection and tracking enable basic flight control
through the recovery of the two degrees of freedom most crit-
ical for stability—namely, the bank angle and the pitch angle.
Sky/ground segmentation disambiguates which regions in the
horizon-detected image correspond to the ground and sky, re-
spectively. While this step may not always be necessary under
normal flight conditions and with proper initialization, at other
times it will be critical toward properly estimating the state of
the MAV. Consider, for example, a MAV that is ejected from
some munition prior to impact for immediate bomb damage as-
sessment. Upon ejection, we cannot guarantee that the orienta-
tion of the MAV will be right-side-up. Sky/ground segmentation
also provides a better estimate of the two dominant regions when
the horizon does not correspond to approximately a straight line,
as is the case, for example, when flying at low altitudes.

Once we have a basic two-region segmentation of the flight
video, we can ensure basic stability and control of the MAV,
without any additional inertial sensors. Moreover, this segmen-
tation offers important contextual priors for further segmenta-
tion and detection algorithms. For example, roads cannot ap-
pear in the region identified as sky, while other flight vehicles
will most likely appear in the identified sky region. Therefore,
depending on the particular mission profile for the MAV, our
initial sky/ground segmentation, necessary for stability and con-
trol, also narrows the search space for subsequent segmentation
that is necessary to implement intelligent MAV behaviors. In
traffic monitoring, for example, we may wish that the MAV fol-
lows a flight path over a specific highway or track a particular
make and model car. While we do not specifically address object
recognition in this paper, we do provide examples of detection
of artificial objects, such as a road and a minivan.

The most important factors that inform our choices in de-
signing the above vision system are: 1) real-time constraints;
2) robustness to noise; and 3) a careful examination of those
features that lead to reliable segmentation for our application.
Later, we review some of the recent literature in natural scene
analysis that inform our choices in light of these constraints.

In [8], an unsupervised segmentation algorithm based on
Markov random field models for color textures was presented.
The authors provided experimental results that illustrated the
advantages of using color texture models on color images of
natural scenes. With regard to texture, Randen et al. [9] reported
that for images in which many textures with subtle spectral
differences exist, as in our case, spectral decomposition by a
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filter bank (i.e., a multiscale approach) consistently yields su-
perior results over other texture analysis methods. Along these
lines, in [10] wavelet-domain hidden Markov models for pro-
cessing natural scene images were shown to be very efficient,
especially in the presence of video noise. On the other hand,
recent findings on human vision and natural image statistics
undermine these arguments for a wavelet-based approach in
image analysis [11], [12]. It was reported that, unlike wavelets,
cortical cells are highly sensitive to orientation and elongation,
along with the location and scale of stimuli. Moreover, the
basis elements that best “sparsify” natural scenes are, unlike
wavelets, highly direction specific. Hence, recently many new
image-analysis methods, such as wedgelets, ridgelets, beamlets,
etc., have been proposed [13], [14]. Aside from the multiscale
and localization properties of wavelets, these methods exhibit
characteristics that account for concepts beyond the wavelet
framework, as does our approach to feature extraction and
image representation—namely, multiscale linear discriminant
analysis (MLDA) [15].

While we defer a detailed discussion of MLDA until Sec-
tion II, we note that MLDA provides a harmonic multiscale
representation of images, consisting of piece-wise constant re-
gions separated by smooth boundaries. It explicitly incorporates
color in its feature representation, while implicitly encoding tex-
ture through a dynamic representation of image details. Further-
more, this representation substantially compresses the informa-
tion content of images, while simultaneously preserving essen-
tial details in the image. Not only have we shown that this ap-
proach runs in real time, but the MLDA’s sparse representation
of images also significantly speeds up subsequent stages in the
computer vision system.

Given our feature representation (i.e., MLDA), we must
choose a statistical modeling framework that allows us to
perform the various segmentation tasks shown in Fig. 2. Two
main types of prior statistical models have been investigated in
the image-modeling literature—namely, noncausal and causal
Markov random fields (MRF). The most commonly used form
of these models is a tree-structured belief network (TSBN).
For example, in [16], image segmentation was performed using
Bayesian image analysis with TSBNs as prior models. To
connect the labeled fields to the image data, the authors used
local predictions of pixel classifications from neural networks.
Also, in [17], a TSBN-based algorithm for man-made structure
detection in natural scene images was proposed. Given the prior
success of TSBNs in natural-scene analysis and segmentation,
we also rely on TSBNs in our segmentation work.

As with MLDA, we defer a detailed discussion of TSBNs in
our work (see Section IV). At this point, however, the reader
may wonder whether simpler statistical models would suffice
for our tasks. Let us examine the sky/ground segmentation
problem. Although modeling sky and ground regions in images
may seem intuitively easy, it is, in fact, a very challenging task.
Depending on lighting, weather, landscape, etc., the appearance
of the sky and ground can vary enormously. Given the complex
variations in our two image classes (i.e., sky and ground), our
experimental results suggest that it is important to represent
both local as well as regional interdependencies in the feature
space [18], [19]. Therefore, our choice of TSBNs appears to

Fig. 3. Two-level wavelet transform. (a) Clustering of wavelets with large
magnitudes. (b) Wavelets are not resilient to bursts of video noise.

be well justified, since TSBNs can describe neighborhoods in
an image at varying scales. Moreover, the inference algorithm
for TSBNs, known as Pearl belief propagation [20], is accurate
and fast and can be executed in real time.

This paper is organized as follows. In Section II, we define
MLDA and motivate its applicability to our system. Next, in
Section III, we show how MLDA naturally allows us to per-
form horizon detection and we report results on vision-stabi-
lized flights. Then, in Section IV, we discuss the problem of
sky/ground segmentation and our application of TSBNs to this
task. Finally, in Section V, we demonstrate additional ground
segmentation, detecting the road and an object (i.e., minivan)
on the road, under the same framework as was developed for
flight stability and control.

II. MLDA

For our task, we seek to identify features that lead to
improved segmentation performance without unnecessarily
increasing computational complexity. Our feature selection was
largely guided by extensive experimentation [18], from which
we conclude that a prospective feature space must:

1) span both color and texture domains;
2) analyze both local and regional properties of pixels;
3) have high directional selectivity;
4) meet real-time constraints.

As we discussed in Section I, these requirements might be
satisfied using the wavelet transform, a popular multiscale
orientation-selective filtering method. However, we consider
other image-analysis tools, also mentioned in Section I, due
to significant shortcomings in the wavelet treatment of edge
structure, which is of particular interest for our horizon-detec-
tion task. In Fig. 3(a), we show that large wavelet coefficients
cluster around smooth contours, which renders the wavelet
transform inefficient for representing geometric regularity
[13], [21]. Thus, wavelets do not support our basic assumption
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Fig. 4. (a) MLDA atom. (b) MLDA dyadic decomposition.

that images consist of smooth regions separated by smooth
contours. Moreover, in the presence of video noise, for which
we must account when designing a robust flight control system,
wavelets exhibit notorious inefficiency in differentiating true
edges from noise edges in the image. In Fig. 3(b), we illustrate
that, due to video noise, wavelets detect false ripples and edges,
which could cause substantial errors in horizon detection.

Recently, we proposed MLDA as a feature-extraction
method [15]. Not only does MLDA overcome the shortcomings
of wavelets, but it also incorporates color information (unlike
wavelets), satisfying the aforementioned requirements for the
feature space. An MLDA atom is a piece-wise constant
function on either side of a linear discriminant that intersects a
square in vertices and , as illustrated in Fig. 4. The discrim-
inant divides the square into two regions with values

and , the mean vectors of pixel values red,green,blue
in RGB color space of the two regions. Decomposing the
image into a number of dyadic squares and finding their corre-
sponding MLDA atoms, we obtain the MLDA dictionary over
a finite range of locations, orientations, and scales, as shown in
Fig. 4. The MLDA image representation—that is, our feature
extraction—is performed by searching through the MLDA
dictionary for the atoms that best represent the analyzed image
with respect to two important criteria: 1) discrimination and 2)
parsimony.

Addressing the first criterion (i.e., discrimination), we seek
the direction , characterized by the maximum Maha-
lanobis distance between two regions in a square, where

(1)

and and denote RGB covariance matrices for the two
regions.

Note that the computational cost of an exhaustive search over
a finite set of linear discriminants can be reduced by
updating the relevant statistics only with pixel values of delta re-
gions (areas between two consecutive candidate linear discrim-
inants).

As the size of the squares decreases, we achieve better
piece-wise linear approximation of boundaries between regions
in the image, as illustrated in Fig. 5. Therefore, the analyzed
image is decomposed into dyadic squares of varying sizes,
which results in the MLDA tree , which is incomplete, be-
cause atom generation stops at different scales for different
locations in the image. The leaf nodes of store the final
MLDA image representation.

To control the generation of children dyadic squares, we im-
pose the second optimization criterion (i.e., parsimony) as a
counter-balance to accuracy. We define the cost function
to measure the parsimony of

(2)

Fig. 5. (a) MLDA image representation: the dashed line depicts the actual
curve. (b) Corresponding MLDA tree: ellipsoid nodes represent the leaf MLDA
atoms.

Fig. 6. Efficient MLDA image representation. (a) Original 256� 256 image,
65 536 pixels. (b) No pruning, 1024 leaf nodes. (c) With pruning, 128 leaf nodes.

where is the inverse of the Mahalanobis distance com-
puted for the corresponding terminal node , ;

denotes the number of terminal nodes in ; and represents
the complexity cost per leaf node. Clearly, an exhaustive search
in tree space for the minimum cost function is computationally
prohibitive. Therefore, we implement a one-step optimization
procedure [22].

Instead of stopping at different terminal nodes, we continue
the MLDA decomposition until all leaf squares are small in size,
resulting in a large tree. Then, we selectively prune this large tree
upward using the cost function . From (2), it follows that
we can regulate the pruning process by increasing to obtain a
finite sequence of subtrees with progressively fewer leaf nodes.
First, for each node , we determine , for which the
cost of a subtree is higher than the cost of its root node ,
as

(3)

Then, the whole subtree under the node with the minimum
value of is cut off. This process is repeated until the actual
number of leaf nodes is equal to or less than the desired number
of leaf nodes.

We note that the pruning process described above is compu-
tationally fast and requires only a small fraction of the total tree
construction time. Starting with a complete tree, the algorithm
initially trims off large subtrees with many leaf nodes. As the
tree becomes smaller, the procedure tends to cut off fewer nodes
at a time. In Fig. 6, we illustrate the efficiency in image repre-
sentation of the fully optimized MLDA tree, as compared to the
unpruned MLDA tree. While there is almost no degradation in
accuracy with complexity-cost pruning, we achieved a signif-
icant reduction in the number of terminal MLDA atoms. Note
that the pruned MLDA representation in Fig. 6 consists of only

mean RGB vectors, yet the image information
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is rich enough for subsequent object recognition and segmenta-
tion. Thus, applying MLDA as a feature extractor, we can sig-
nificantly reduce redundant image information, so as to be able
to meet real-time constraints. At the same time, we incorporate
our basic assumptions for horizon detection—namely, that the
horizon line appears as approximately a straight line and that the
horizon line separates the image into two homogeneous regions.

Clearly, the MLDA representation is appropriate for com-
puter-vision tasks where color is critical. Though not as obvious,
MLDA also implicitly encodes information about spacial fre-
quencies in the image (i.e., texture) through the process of tree
pruning. Furthermore, the MLDA tree can easily be examined
for spacial interrelationships of its linear discriminants, such as
connectedness, collinearity, and other properties of curves in im-
ages.

At this point, the observant reader might conclude that the
horizon-detection problem is solved by computing the root atom
of the MLDA tree. Note that, given our two horizon assumptions
specified above, the extracted linear discriminant is the
optimal solution for the horizon estimate. This seemingly obvi-
ates the need for MLDA tree expansion and pruning. There are,
however, several nonideal factors that argue for the full tree-con-
struction process. In the presence of noise, the root node by itself
may not provide reliable pixel statistics. Therefore, in order to
detect the horizon, it is necessary to examine discriminants at
finer scales of the MLDA tree. For example, in Fig. 7, we show
that the discriminant of the root MLDA atom does not coincide
with the true horizon due to video noise. Expanding the MLDA
tree corresponds to image filtering and leads to more accurate
positions for the linear discriminants, which then present more
accurate evidence of the true horizon’s location in the image.

Had we employed some de-noising algorithm before MLDA
and had horizon detection been our sole task, we could, of
course, have omitted the construction of the MLDA tree and
saved critical time for flight control. As we will see in Sec-
tions III–V, however, the MLDA tree representation gives rise
to a host of multiscale classification algorithms for sky/ground
segmentation and object detection. In other words, while
MLDA is a natural representation for horizon detection, it
also supports more advanced computer-vision tasks that are
desirable for more complex mission scenarios. As such, it plays
a dual role in our overall system.

III. HORIZON-DETECTION ALGORITHM

A. Introduction

In this section, we illustrate how MLDA performs in horizon
detection for flight stability and control. The two degrees of
freedom critical for stability—namely, the bank angle and the
pitch angle 1—can be derived from a line corresponding to the
horizon, as seen from a forward-facing camera on the flight ve-
hicle. Thus, accurate horizon detection is essential for our flight
stability and control system, requiring no additional inertial sen-
sors.

1In practice, we actually recover the closely related pitch percentage �, which
measures the percentage of the image above the horizon line.

Fig. 7. MLDA efficiently filters video noise. (a) Noise degraded original
image. (b) Root MLDA atom with the discriminant not equal to the true
horizon. (c) MLDA atoms at a finer scale are clues for the true horizon position.

Fig. 8. Various horizon-detection examples under different lighting conditions
(sunny and cloudy) and with varying degrees of video-transmission noise. For
each example, the white line indicates the algorithm’s horizon estimate.

As we mentioned at the end of Section II, the MLDA
framework offers an efficient solution to the horizon-detection
problem without prior image processing, such as de-noising,
etc. First, the MLDA image representation is found for the
cost function , as defined in (2). The precise value of is
largely dependent on the video transmission quality for a given
location, weather conditions, etc. Then, linear discriminants
are extracted by exhaustively analyzing all possible directions,
determined by a finite set of points along the perimeter of
the image. Each pair of points defines a direction
with slope , along which MLDA atoms are examined. If
coincides with the slope of an MLDA discriminant (within a
predefined margin), then that linear discriminant is extracted
as a part of the analyzed direction . Finally, among
the candidate sets of the extracted MLDA discriminants, we
choose the direction for which the sum of Mahalanobis
distances , computed as in (1), is maximum. For the special
case of only one MLDA node, the algorithm simplifies to
examining a single MLDA discriminant and works well for
relatively clean video. Given the solution , we trivially
obtain the corresponding bank angle and pitch percentage pair

, which is then used for flight control.2

2The transformation from (v̂ ; v̂ ) to (�̂; �̂) assumes that the onboard camera
is aligned with the principal axes of the flight vehicle. In that case,� for the flight
vehicle corresponds to the angle between the horizon line and the horizontal axis
and the pitch percentage � corresponds to the fraction of pixels in the sky region
over the total number of pixels in the image [23].
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Fig. 9. (a) Original image. (b) Optimization criterion as a function of bank angle and pitch percentage. (c) Resulting classification of sky and ground pixels in
RGB space.

Fig. 10. Noise-degraded MAV flight images. First, the MLDA image
representation is found; then, the linear discriminants are extracted along the
direction with the maximum Mahalanobis distance.

B. Horizon-Detection Examples

Fig. 8 illustrates several examples of the horizon-detection
algorithm at work, while Fig. 9 illustrates a more detailed ex-
ample, plotting as a function of the bank angle and pitch
percentage and the consequent classification of pixels as sky
and ground in RGB space. Fig. 10 illustrates two further ex-
amples of horizon detection for two particularly noisy flight
images. In all cases, we show only the set of extracted linear
discriminants, from which the horizon position and orientation
are derived. Additional examples and videos can be found at
http://mil.ufl.edu/~nechyba/mav

Our horizon-detection algorithm has been demonstrated to
run at 30 Hz on a 2.4 GHz x86 processor with a downsampled
image resolution of 128 128. To accomplish real-time pro-
cessing, vertices along the perimeter of the image, are set four
pixels apart ( vertices on one side), which results in the
following number of pairs: , at the root level of
the MLDA tree

(4)

Of course, computational complexity increases when exam-
ining additional levels of the MLDA tree. If computing power

Fig. 11. Averaged detection error: percentage of the image area between the
true and detected horizon positions as a function of the amplitude a of the
uniformly distributed additive noise U [�a; a]. Horizon detection is performed
by one-, two-, and three-level MLDA for the image in Fig. 9.

is more limited, we have shown only slightly reduced perfor-
mance for 64 64 images, where the root search resolution is
only .

At different times of the day and under both fair and cloudy
conditions, we have gathered hours of video onboard our MAV,
flying under manual control over terrain that includes roads,
buildings large and small, meadows, wooded areas, and a lake.
For these real-world data, our horizon-detection algorithm cor-
rectly identifies the horizon in over 99.9% of cases.

We have conducted several types of performance character-
ization experiments, where we have systematically tested our
algorithm’s resilience to typical aberrations in flight images,
such as noise degradation and color rotation. First, adding a
uniformly distributed random variable to RGB pixel
values, we have measured the detection error as a percentage of
the image area between the true and estimated horizon positions.
The averaged detection results shown in Fig. 11 are obtained for
the image in Fig. 9. Obviously, MLDA is very resilient to mod-
erate noise amplitudes and multilevel MLDA handles image
noise more efficiently than MLDA with fewer levels. Similar re-
sults have been obtained for additive Gaussian image noise. In
the second type of experiments, we have considered chromatic
involution; that is, color mappings, where brightness, relative
angles between colors, and saturation are unchanged. From our
results, we conclude that MLDA-based horizon detection is in-
variant to chromatic involution. Moreover, MLDA is invariant to
any isotropic transformation in the RGB color space that keeps
relative distances among pixel values intact.

C. Recovery From Video Noise

At this point, the reader might be wondering whether a full
search of the line-parameter space for each
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Fig. 12. (a) Video noise in the first frame does not influence subsequent
horizon estimation when performing a full search of the line-parameter space
for every frame. (b) When consecutive searches are restricted to a limited range
around the previous frame’s horizon estimate, however, the horizon detection
algorithm is not able to recover from the first noise-corrupted estimate.

image in the video sequence is really required once flying, since
the horizon at the current time step should be very close to the
horizon at the previous time step; perhaps speed improvements
could be made by limiting this initial search. There is, however,
at least one important reason for conducting a full search with
every frame, rather than just a partial search in the neighborhood
of the previous frame’s horizon estimate. Assume, for example,
that the algorithm makes an error in the horizon estimate at time
; then, at time , a limited search could permanently lock

us into the initial incorrect horizon estimate, with potentially
catastrophic results.

We illustrate this idea in Fig. 12, where we show four
frames from a flight sequence over the University of Florida,
Gainesville, campus. Note that the first frame is severely cor-
rupted by video transmission noise, so that the horizon estimate
for the first frame in the sequence is far from the true horizon.
In this case, deepening of the MLDA tree does not yield better
performance; therefore, here, we present analysis only of the
root node. In Fig. 12(a), a full search is conducted for every
frame, so that the noise-corrupted estimate of the first frame
does not influence subsequent horizon estimates. In Fig. 12(b),
however, we restrict the search for the horizon line to a limited
range around the previous frame’s horizon estimate; note that,
with the limited search, subsequent horizon estimates continue
to exhibit large error. Thus, a full search of the line-parameter
space guards against this type of cascading failure due to
single-frame errors.

Finally, we note that since we perform our full search through
the line-parameter space for a single frame such that consec-
utive horizon hypotheses are very close to one another, we need
only compute the full statistics for the Mahalanobis distance, as
in (1), for the first horizon hypothesis [24]. Subsequent compu-
tations are incremental and typically involve only a few pixel
values that have to be added to one class and subtracted from
the other class. As such, when implemented efficiently, the full
search through line-parameter space is significantly less com-
putationally burdensome than might be expected.

D. Self-Stabilized Flight

We have previously implemented closed-loop control, based
on horizon detection and tracking, for one of our MAVs [23],
[25]. Fig. 13 illustrates the experimental setup for these test

Fig. 13. Experimental setup for video-based flight control.

flights. The video signal from the MAV is transmitted from the
plane through an antenna to a ground-based computer, where
all vision processing is performed. In manual mode, the plane
is controlled during flight by a remote human pilot through a
standard radio link. In autonomous mode, the human input is
limited to providing a desired heading (through a joystick inter-
face), while the MAV is stabilized through a PD feedback con-
troller that sends control surface commands to the MAV through
a custom designed interface over the same radio link. The MAV
used for these test flights is the one depicted in Fig. 1(c).

Due to computational limitations (900 MHz x86 processor)
at the time, horizon detection during these flight tests was con-
ducted with only the MLDA root node. This limitation forced
the introduction of an ad hoc error/noise detection scheme that
was based on short-term histories of sky and ground appear-
ances [23], [25]. Furthermore, since sky/ground modeling was
not integrated into the system, prior to launch, the MAV had to
be oriented right-side-up such that the horizon was in the field
of view of the onboard camera and the sky occupied the top part
of the video image. Finally, horizon estimates over time were
passed through a simple Kalman filter to reduce control surface
jitter.

Fig. 14(a) plots a 72-s run of actual flight data, where the flight
vehicle was under vision-guided control above the University of
Florida campus (the full length of the flight exceeded 10 min and
was primarily limited by low battery power). During this flight,
the MAV was instructed to execute a trajectory that consisted of
straight-line segments, followed by left-bank turns (to keep the
MAV within range of the receiving video antenna). For compar-
ison, we also plot a 65-s segment of manual (human-controlled)
flight in Fig. 14. (Videos corresponding to these and other flight
segments can be viewed at http://mil.ufl.edu/~nechyba/mav).
The same vision-based control system also flew successfully
over substantially different terrain at a Special Ops demo over
Fort Campbell, KY, where audience members, who had never
previously controlled any type of aircraft (e.g., model airplane,
MAV, etc.) successfully kept the MAV in the air for extended
flight times.

From Fig. 14, we observe that the human-controlled flight is
much more erratic than the self-stabilized flight with respect to
both the bank angle and pitch percentage. It is important to note
that the erratic nature of the human-piloted flight is not caused
by inexperience on the part of the pilot, who had flown our
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Fig. 14. Bank angle and pitch percentage for a typical human-controlled flight
and a self-stabilized flight (sequence of level-flight and left-turn segments).

MAVs and small UAVs for many hours over a number of years;
in, fact, he was one of our most experienced pilots. Rather, the
seemingly erratic nature of the human-piloted flight indicates
that controlling MAVs and small UAVs is significantly more dif-
ficult than controlling larger, more traditional model airplanes,
which tend to exhibit much more passive stability.

Thus, qualitatively, even our simple PD-control system pro-
vides much more stable control than that of our best human pi-
lots, both in terms of steady level flight and in coordinated turns.
As illustrated by Fig. 14, human pilots can typically not hold the
plane on a steady level heading for more than a few fractions of
a second; under vision-guided control, however, we are able to
fly long straight segments that are limited only by the range of
the video transmitter (see Fig. 15, for example, for a 7.5-s stretch
of self-stabilized straight and level flight).

IV. SKY/GROUND SEGMENTATION

As we have seen in Section III, overall, the horizon-detection
algorithm works well. The algorithm does not, however, deter-
mine which region corresponds to sky and which corresponds to
ground; it only determines the line separating the two regions.
Under benign flight conditions, we can mitigate this deficiency
by assuming that, initially, the sky occupies the upper part of
the image. For complex mission scenarios, however, this may
be an incorrect assumption with potentially fatal consequences
to the flight vehicle. For example, we are currently working on
deploying MAVs on munitions for post-impact bomb-damage

Fig. 15. Image sequence of self-stabilized level flight (7.5 s, images are 20
frames apart). Note that the black lines at the top of the image are the propeller.

assessment. In this case, the MAV would separate from the mu-
nition prior to impact and an upright attitude with respect to the
ground cannot be guaranteed. Correct identification of the sky
and ground regions, rather than just the line separating them,
therefore, takes on increased importance.

Our approach to sky/ground image segmentation is based on
building statistical prior models of both classes. The parame-
ters of the prior models are learned through extensive training,
which can be performed offline.3 Once learned, the parameters
fully characterize the likelihoods of image classes, given the
pixel values. These likelihoods are then submitted to a Bayes
classifier, which performs image segmentation [26].

We choose TSBNs as the underlying statistical models to de-
scribe the sky and ground classes. There are several reasons for
this choice of model. Successful sky/ground segmentation im-
plies both accurate classification of large regions, as well as dis-
tinct detection of the corresponding boundaries between them.
To jointly achieve these competing goals, both large- and small-
scale neighborhoods should be analyzed, which can be achieved
using the multiscale structure of TSBNs. Further, as discussed
in the Section I, it is necessary to employ a powerful statistical
model that is able to account for enormous variations in sky
and ground appearances, due to video noise, lighting, weather,
and landscape conditions. Prior work cited in Section I clearly
suggests that TSBNs possess sufficient expressiveness for our
goals. Finally, TSBNs, as opposed to other multiscale statistical
models, such as factorial hidden Markov models, dynamic trees,
etc., have a fixed-tree structure for which the corresponding in-
ference algorithms are computationally very efficient [20], [27],
which is of crucial importance given our real-time constraints.

A. TSBNs

A TSBN consists of nodes , say at the scale , vertically
connected to one parent at the coarser scale , as well
as to its four children at the finer scale , as depicted in
Fig. 16. As is customary for TSBNs [16], [28], to each node

we assign an observable random variable , which, in our
case, represents an MLDA atom at the corresponding position
in the MLDA tree. Recall that the MLDA tree is incomplete
(see Fig. 5), because atom generation stops at different scales

3In this case, there are no real-time constraints for training.
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Fig. 16. TSBN model. Hidden state variables are depicted as white nodes and
observable variables (MLDA atoms) are represented as black nodes.

for different locations in the image. Consequently, the TSBN
model is incomplete as well.

The distribution of the observable variable is controlled by
the hidden state variable , which takes values in a set of
image classes. We assume that is conditionally independent
of all other observable and hidden random variables given its
associated state . Furthermore, we impose the Markov prop-
erty such that is conditionally independent of the entire tree,
given its parent state . In Fig. 16, edges connecting nodes
depict these statistical interdependencies, forming the recogniz-
able tree structure.

If we assume an -component Gaussian mixture density for
likelihoods , the TSBN is fully characterized by the fol-
lowing set of parameters :

1) prior probability of the root node , ;
2) transition probability tables ;
3) mean , covariance , and priors of the compo-

nents in a mixture of Gaussians .
In order to simplify computation and to avoid the risk of overfit-
ting the model, we assume that the statistical parameters at the
same scale are equal for all nodes.

The TSBN model parameters can be trained by the expec-
tation–maximization (EM) algorithm [28], [29], using the Pearl
belief propagation scheme [20], [27]. For space reasons, here we
omit the details of this algorithm. The EM algorithm iteratively
estimates , maximizing the likelihoods at all scales.
Once is estimated for a given class, it is possible to compute
the following -component Gaussian mixture for each node:

(5)

Consequently, we are able to perform Bayesian classification.
Denoting the collection of all pixel labels at the finest scale
with , where , the optimal
sky/ground segmentation , is given by

(6)

(7)

(8)

In (8), is readily computable from (5). Computa-

tion of the transition probabilities of class labels
is nontrivial, as discussed thoroughly in the literature [16], [19],
[30]. Since the full derivation of the transition probabilities is

Fig. 17. Training images of the sky and ground classes.

Fig. 18. Percentage of sky/ground misclassified pixels as a function of the run
time for four-, five- and six-level MLDA and the 64� 64 subsampled image in
Fig. 9. For MLDA with pruning, the number of leaf nodes is set to 64, regardless
of the number of levels.

beyond the scope of this paper, here we assume that is
available, implementing a Viterbi-like algorithm, as proposed
in our prior work [19].

B. Sky/Ground Segmentation Examples

For training our statistical models, we recorded two sets of
500 sky and ground images. We carefully chose the training sets
to account for the enormous variability within the two classes,
as illustrated by the representative training examples in Fig. 17.
After experimenting with different image resolutions, we found
that reliable segmentation was achievable for resolutions as
coarse as 64 64 pixels. For each image, first the MLDA
representation was found and then the corresponding TSBN
model was trained. The training time for the 1000 images of
both classes takes less than 40 s on a 2.4-GHz x86 processor.
Depending on the number of levels in the MLDA tree, correct
segmentation (i.e., testing) takes only 0.03–0.07 s, as shown in
Fig. 18.

Recall that the MLDA tree is incomplete; therefore, in-
creasing the number of levels does not increase the computa-
tional cost exponentially. Clearly, the algorithm runs faster for
a small number of MLDA terminal nodes, but at the cost of
increased segmentation error. The number of MLDA-tree levels
and the number of MLDA leaf nodes are parameters that are
preset according to the desired performance goals. Note that
while we are very close to meeting our 30-Hz processing goal,
30-Hz performance is not crucial for sky/ground segmentation,
as long as this segmentation is updated sufficiently often. In
between segmentation updates, horizon detection suffices for
flight stability and control.

Having trained our sky and ground statistical models, we
tested the algorithm on 300 natural scene images. For accuracy,
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Fig. 19. Sky/ground segmentation for the three categories of test images: (a) mountain view (category I); (b) water surface covered with broken patches of ice
similar in appearance to the sky (category II); (c) noise-degraded MAV flight image (category III).

TABLE I
PERCENTAGE OF SKY/GROUND MISCLASSIFIED PIXELS

we separated the test images into three categories of 100 images
each, as follows:

1) easy-to-classify sky/ground appearances (e.g., clear blue
sky over dark-colored land);

2) challenging images due to landscape variability;
3) noise-degraded images.

In Fig. 19, we illustrate classification performance on represen-
tative test images from each category. To measure misclassifi-
cation, we marked the “correct” position of the horizon for each
image by visual inspection and then computed the percentage
of erroneously classified pixels. For each category, we set the
number of MLDA-tree levels to six and the number of leaf nodes
to 64, 128, 32, respectively. In Table I, we summarize our seg-
mentation results. Averaging results seemed inappropriate, be-
cause only a small number of test images in each category gen-
erated the larger error percentages.

Next, we tested the influence of uniformly distributed addi-
tive noise on sky/ground segmentation performance. We aver-
aged the percentage of misclassified pixels when a uniformly

Fig. 20. Averaged segmentation error for the image in Fig. 9 as a function of
the amplitude a of the uniformly distributed additive noise U [�a; a]. MLDA
with pruning filters noise and achieves better performance than MLDA without
pruning for large amplitudes of additive noise.

distributed random variable was added to RGB pixel
values. The results presented in Fig. 20 were obtained for the
64 64 subsampled category I image in Fig. 9, where both
five- and six-level MLDA with pruning had maximally 64 leaf
nodes. Note that TSBNs for MLDA with pruning outperform
TSBNs for MLDA without pruning for large amplitudes of ad-
ditive noise. This phenomenon is a consequence of the better
filtering properties of MLDA with pruning.

We also tested our algorithm on MAV flight videos. While a
flight sequence does not offer the same variability in sky/ground
appearances as our test images above, these results can give us
insight into the performance of the algorithm on a sequence
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Fig. 21. Percentage of misclassified pixels for three video sequences of 100
images each.

of flight images with small changes from one image to the
next. Here, we also consider three types of flight video: 1)
easy-to-classify sky/ground appearances; 2) challenging land-
scapes; and 3) noise-degraded images. Each video sequence
is down-sampled, such that the time interval between two
consecutive images is 1 s. The classification results for the
three flight videos are presented in Fig. 21. Obviously, the
variance of the segmentation error is the highest for the third
type of video. The increase in error for the third video type,
starting at image number 40, coincides with a change in
lighting conditions, which changed the “usual” color scheme
of the sky and ground. The complete videos can be found at
http://mil.ufl.edu/~nechyba/mav

V. ENABLING SMART MAV MISSIONS

While horizon detection and sky/ground segmentation allow
for basic flight stability and control, we have not yet consid-
ered trajectory planning of the MAV’s flight path in response
to events on the ground (or possibly in the air). For example,
a particular mission profile might require that the MAV track a
moving vehicle on the ground or fly above a specific highway.
As such, we wish to extend our computer vision system for
better situational awareness and artificial object detection (e.g.,
a car). However, rather than treat this problem separately from
the algorithms for flight stability and control, our approach ex-
ploits these computations—both the feature representation (i.e.,
MLDA) and the whole-image segmentation into sky and ground
regions. Hence, the overall system is not a patchwork of inde-
pendent algorithms, but rather a unified framework for the var-
ious tasks in Fig. 2.

In our approach to artificial object detection and localization,
we seek to exploit the idea of visual contexts [31]—a low-di-
mensional representation of the whole image. Having previ-
ously identified the overall type of scene, we can then proceed
to recognize specific objects/structures within the scene. Thus,
objects (e.g., cars, buildings), the locations where objects are de-
tected (e.g., road, meadow) and the category of locations (e.g.,
sky, ground) form a taxonomic hierarchy. There are several ad-
vantages to this type of approach. Contextual information helps
to disambiguate the identity of the object despite the poverty
of scene detail in flight images. Second, visual contexts signif-
icantly reduce the search required to locate specific objects of
interest, obviating the need for an exhaustive search for objects
over various scales and locations in the image. Finally, as dis-
cussed in Section II, our low-dimensional image representation

Fig. 22. Graphical model for location recognition and categorization: Y
represents all observable MLDA atoms, X denotes their location values, and
Z denotes the corresponding category.X and Z form a taxonomic hierarchy.

Fig. 23. Extended graphical model for object recognition. (a) Inadequate
model for MLDA. (b) Separating the feature set for location X and object
indicator O random variables.

is very resilient to video noise, yielding better object-detection
results.

For each image in a video sequence, we compute the MLDA
representation, that is, MLDA atoms that represent observable
random variables (RVs) . To each , we assign a
hidden RV that represents location. Finally, we complete the
hierarchical structure with the RV category , noting that such
a taxonomy can easily be extended to meet different applica-
tion requirements. In Fig. 22, we present the proposed statis-
tical model. Both location and category RVs take values in finite
application-oriented mutually dependent sets. For example, the
category equal to “ground” encompasses the following values
for locations: road, forest, lawn, apartment complex, etc. For no-
tational simplicity, we denote with , , and the collection
of all MLDA atoms in the MLDA tree, their locations and their
categories, respectively. Note that this approach is reminiscent
of building the TSBN models for the sky and ground classes.
Here, we are simply generalizing the meaning of classes to any
label for locations and categories. Thus, the results from Sec-
tion IV-A are readily applicable.

In order to perform localization, we resort to a Bayesian for-
mulation, where our goal is to compute . According
to the model in Fig. 22, it follows that

(9)

where denotes the finest scale. As in Section IV-A, we assume
statistical independence among ’s given the location , as
well as independence among ’s given the category . The
likelihoods and can be modeled as a mixture
of Gaussians. It follows that

(10)
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Fig. 24. Object detection. (a) Original image. (b) MLDA representation. (c) Result of categorization. (d) Location recognition. (e) Detection of artificial objects.

where denotes the parent of . Recall that to learn all
the model parameters, we resort to the EM algorithm, using the
Pearl belief propagation scheme [20], [27]. Once the model is
trained, we can perform location recognition, choosing the re-
alization of the RV for which is maximum.

Clearly, the proposed statistical model, depicted in Fig. 22,
can be extended to enable the vision system to detect the pres-
ence of artificial objects. Had we used an image analysis tool
for feature extraction other than MLDA, we could have used
the new model as in Fig. 23(a). MLDA is not as efficient for ob-
jects as for contexts, because we lose some image details com-
puting the mean values for MLDA atoms (see Section II). Nev-
ertheless, we can resort to examining spacial interrelationships
of linear discriminants of MLDA atoms, such as connectedness,
collinearity and other properties of curves in the image. Thus,
we use one set of features—namely, mean color values and

of MLDA atoms, for inferring values of location and cat-
egory . The other set of features, more specifically, the geo-
metric properties of slopes of MLDA discriminants, are used
in computing object indicator RVs . Separate dependencies of

and on different feature sets is illustrated in Fig. 23(b).
Similar to the explained procedure before, we derive the cor-

responding distributions for artificial object detection. Note that,
due to the limitations of MLDA, our intention is not to actu-
ally recognize and differentiate between particular objects, but
just to detect the presence of artificial objects, which tend to
be characterized by different spatial interrelationships than nat-
ural objects (such as a bush). Thus, we examine the slopes of
MLDA atoms and look for collinearity and orthogonality. Since
we are specifically interested in locating artificial objects, we
cannot detect these objects simply through color analysis alone
(e.g., differences in backgrounds and foreground objects). Be-
cause we do object detection and not recognition, the random
variables take on binary values .

In Fig. 24, we present the proposed inference procedure on
two examples, for which we define the sets ,

, and . Next, having com-
puted the distributions of and , using (9) and (10), we per-
formed location recognition and categorization. Finally, having

examined the spacial frequency of orthogonality of discrimi-
nants in the location of interest, we detected the artificial ob-
ject/structure. In this example, we considered only the location
“road” and objects on the road, although the algorithm enables
simultaneous detection of arbitrarily many artificial objects in
different locations.

VI. CONCLUSION

In this paper, we presented a unified computer-vision system
for enabling smart MAV missions. We first developed MLDA
as a feature-extraction tool for subsequent image analysis. Next,
we demonstrated MLDAs applicability to real-time horizon
detection and reported flight test results for vision-stabilized
flights. Then, we demonstrated the use of TSBNs in segmenting
flight images into sky and ground regions. Finally, we extended
this basic framework through the idea of visual contexts to
detect artificial objects and/or structures.

The work presented in this paper is but one part of our on-
going research effort to develop intelligent and mission-capable
MAVs. Together with other researchers, we are also working on
recovering 3-D scene structure of the ground from MAV flight
videos. Additionally, work is ongoing in sensor integration [e.g.,
global positioning system and inertial navigation system (INS)]
on our larger platforms ( maximum dimension), flight ve-
hicle modeling and characterization, and advanced control algo-
rithm development. We expect that the totality of our efforts will
eventually enable MAVs not only to fly in obstacle-free envi-
ronments, but also in complex 3-D environments, such as urban
settings.

While the focus of this paper has been guided by the re-
quirements of flying vehicles, in principal, the framework de-
scribed herein certainly is applicable to other robotic platforms
as well. Unmanned ground vehicles that are capable of exe-
cuting goal-directed intelligent missions could readily benefit
from our unified vision system. Although horizon detection and
sky/ground segmentation for stability and control will typically
be less critical in ground vehicles, as opposed to flight vehicles,
these early steps in our vision framework could nevertheless be
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exploited to aid higher level goals. Depending on particular mis-
sion profiles, unmanned ground vehicles may well be tasked
with, for instance, tracking activity in the air or pursuing and
localizing ground objects of interest. In these cases, sky/ground
segmentation can still be the top hierarchical level of a mis-
sion-specific defined taxonomy. Furthermore, while points of
view obviously differ between ground and flight vehicles, iden-
tification of roads and or moving objects, as demonstrated for
flight images in Fig. 24, will obviously also be critical in many
unmanned ground vehicle missions.
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