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1. Introduction  

1.1 Background 

This project is about detecting eagles in videos. Eagles are endangered species at the brim of 

extinction since 1980s. With the bans of harmful pesticides, the number of eagles keep increasing. 

However, recent studies on golden eagles’ activities in the vicinity of wind turbines have shown 

significant number of turbine blade collisions with eagles as the major cause of eagles’ mortality. [1]  

This project is a part of a larger research project to build an eagle detection and deterrent system 

on wind turbine toward reducing eagles’ mortality. [2] The critical component of this study is a 

computer vision system for eagle detection in videos. The key requirement are that the system should 

work in real time and detect eagles at a far distance from the camera (i.e. in low resolution). 

There are three different bird species in my dataset - falcon, eagle and seagull. The reason for 

involving only these three species is based on the real world situation. Wind turbines are always 

installed near coast and mountain hill where falcons and seagulls will be the majority. So my model 

will classify the minority eagles out of other bird species during the immigration season and protecting 

them by using the deterrent system. 

1.2 Brief Approach 

Our approach represents a unified deep-learning architecture for eagle detection. Given videos, 

our goal is to detect eagle species at far distance from the camera, using both appearance and bird 

motion cues, so as to meet the recall-precision rates set by the user. Detecting eagle is a challenging 

task because of the following reasons. Frist, an eagle flies fast and high in the sky which means that 

we need a lens with wide angle such that captures their movement. However, a camera with wide 

angle produces a low resolution and low quality video and the detailed appearance of bird is 

compromised. Second, current neural network typically take as input low resolution images. This is 

because a higher resolution image will require larger filters and deeper networks which is turn hard to 

train [3]. So it is not clear whether the low resolution will cause challenge for fine-grained 

classification task. Last but not the least, there is not a large training database like PASCAL, MNIST 



or UCF101 [4] available for my research project.  

In order to address these challenges, we developed the following approach:  

1. A deep, recurrent neural network, called Long-Short-Term Memory (LSTM) for processing a 

sequence (or multiple sequences) of video frames and detecting eagle appearances in the 

frames. LSTMs have been demonstrated to achieve state-of-the-art results in both video and 

audio interpretation [5]. 

2. Connecting a traditional neural network CNN with LSTM to form a new neural network 

architecture called Long-Term Recurrent Convolutional Network (LRCN). And compare the 

new LRCN with traditional CNN.  

In detail, LSTM, as well as LRCN, is designed to integrate both color and texture visual cues of 

bird species, and account for an eagle-specific wing motion pattern. As our results demonstrate 

LSTMs is able to robustly discriminate between eagles and other birds (and other flying objects) in 

video. Importantly, in some cases, high recall and low precision of detection (i.e., the large number of 

detections not missing true appearances of an eagle in the video, but with the low true positive rate) 

may be of interest when the activation of bird deterrents is not expensive. In other cases, high 

precision of detection at the cost of missing a few eagle appearances may be of interest. Therefore, we 

also tried a flexible LSTM design which adjusts to specific recall-precision rates of eagle detection per 

user’s requirements. 

Overall, the key contribution of our work is to show that a robust fine-grained object detection can 

be done in low resolution videos using a deep recurrent neural network. Another contribution is 

evaluating and benchmarking the approach on a new dataset. Because this is to the best of our 

knowledge, the first model and dataset for fine-grained bird detection in videos. 

The rest of the thesis is organized as follows: In section 2, I will give the detailed information on 

the architecture of the neural networks we used in our research. In section 3, the dataset and the 

pruning process will be presented. And I will also discuss the challenges of processing data in detail. 

Finally, in section 4, the results and evaluation are discussed in detail.  

 

2. Approach 

In this project, we use Long-Term Recurrent Convolutional Network (LRCN), which is a 

combination of Convolutional Neural Network (CNN) and (Long-Short Term Memory) LSTM [6]. As 

Figure 1 shows, the input video frames are first input to CNN and then LSTM fuses CNN’s outputs for 

every frame and predicts the class of the video.  



 

Figure 1. The Sequence Learning box of the LRCN model. (Left: the input video frames; Middle: CNN’s output comes 

to LSTM; Right: y means label of the prediction)   

 

2.1 Convolutional Neural Network (CNN)  

CNN is the first module of our approach. It takes as input each video frame at a time. CNN is a 

neural network which is known very effective for image recognition and classification. So the 

implementation on our project is reasonable. The key component of CNN is called convolutional filter 

which is used to process the input images in kernel layers. The quality and quantity of filter will 

impact the final result of our prediction. Figure 2 shows the basic filters on the first layer after 

training. The filter will be scanned through the whole image and extract the matched pattern as Figure 

3 shows.  

 

Figure2. The basic filter in convolutional layer 



 

Figure 3. The original image (left) and the image after first convolutional layer (right) 

After convolutional layer, the pooling layer will only leave the neural activation with the 

maximum value and ignore the rest, which effectively shrinks the image size for the further layers. 

This strategy works fine in images, because of the fact that nearby pixels are likely to have similar 

value. With more convolutional layers and pooling layers, the filters at deep layers will extract high 

level features based on the features extracted in lower layers like Figure 4 shows.  

 

Figure4. Filters at higher layers will extract more meaningful features (left to right) 

Figure 5 shows the detail architecture of our CNN network, implemented in CaffeNet [7]. Our 

CNN has have five convolutional layers before the fully connected layer. Traditionally, there will be a 

Softmax layer after the fully connected layer to calculate scores of each label the image belongs to. 

While in our project, we move the Softmax layer to the end of LSTM.  

 



 

Figure 5. The architecture of CaffeNet. (Left to right is the data flow direction. The number beneath each layer is the 

data size and the matrix size)  

 

2.2 Long Short-Term Memory network (LSTM) 

CNN classifies images based on their appearance features. This is limited for our purposes. First, 

we need high resolution images for training and testing. For birds, one needs a lens long enough to 

take clear images about the appearance of birds before it’s getting too close to the wind turbine. 

Second, falcon and eagle looks similar even when flying. It will be a big challenge for CNN network 

in detection. 

Therefore, we use LSTM to overcome these above limitations from CNN network. LSTM units 

have hidden state augmented with nonlinear mechanisms to allow state to propagate without 

modification, be updated, or be reset, using learned gating functions. [8]  

The appealing features of LSTM are twofold. First, they are able to connect previous information 

to the present task, such as using previous video frames will inform the understanding of the present 

frame. That means, we do not rely on the detailed images with clear bird appearance in classification 

the birds. LSTM allow us to use the motion features between different frames for classification. 

Second, LSTM is not constrained by a fixed-size input and fixed-size output. We can have videos with 

variant length for one prediction. As recent research, LSTMs are also demonstrated to be capable of 

large-scale learning of speech recognition [9] and language translation models [11], [10].  



 

Figure 6. Left is the general form of network with self-loop. With different structure of A, it can split into RNN (Mid) 

and LSTM (Right) 

 

In the right side of Figure6, it shows the detailed structure of the LSTM network we used in our 

approach. The yellow square represents network layer. The red cycle is point wise operation. And the 

arrow line means vector transfer.  

The key to LSTMs is the cell state, the horizontal line running through the top of the diagram. It 

runs straight down the entire chain, with only some minor linear interactions. It’s very easy for 

information to just flow along it unchanged. But the point wise multiplication operation works as a 

forget gate and filtering the information going through.  
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When we stack several LSTMs on the top of each other, it will give us additional depth. The 

advantages of using LSTMs for sequential data in vision problems are the straightforward of LSTMs 

to fine-tune end-to-end. Besides, LSTMs can be apply to flexible length inputs or outputs, as I 



mentioned before which allows simple modeling for sequential data of varying lengths, such as text or 

video. Based on our motion, LSTM seems more suitable for our eagle flying detection. But the answer 

is still unknown because fine-grain classification is a challenge problem not only for LSTM but also 

for CNN.   

We next describe a unified framework to combine LSTMs with deep convolutional networks to 

form end-to-end trainable networks capable of complex visual and sequence prediction tasks. 

   

2.3 Long-Term Recurrent Convolutional Network (LRCN) 

In our project, LRCN combines high-level hierarchical visual features with the model that can 

learn to recognize dynamic tasks involving sequential visual data, or otherwise to achieve higher 

prediction performance. LRCN works by passing each visual input xt (an image in isolation, or a 

frame from a video) through a feature transformation φV (.) with parameters V, usually a CNN, to 

produce a fixed-length vector representation φV (xt). The outputs of φV are then passed into a 

recurrent sequence learning module. [6] 

In its most general form, a recurrent model has parameters W, and use an input xt and a previous 

time step hidden state ht-1 to calculate an output zt and updated hidden state ht. Therefore, the whole 

model must be run sequentially (i.e., from top to bottom, in the Sequence Learning box of Figure 1), 

by computing in order: h1 = fW (x1; h0) = fW (x1; 0), then h2 = fW (x2; h1), etc., up to hT . 

To predict a distribution P(yt) over outcomes yt belongs to C (where C is a discrete, finite set of 

outcomes) at time step t, the outputs zt of the sequential model are passed through a linear prediction 

layer 𝕫 = Wzzt + bz , where Wz the weight of Zt and bz the bias are learned parameters. Finally, the 

predicted distribution P (yt) is computed by taking the softmax of 𝕫:  
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 The CNN base of LRCN in our eagle recognition model is a hybrid of the CaffeNet [12] 

reference model and the network is pre-trained on the 1.2M image ILSVRC-2012 [13] classification 

training subset of the ImageNet [14] dataset, giving the network a strong initialization to facilitate 

faster training and avoid overfitting to the relatively small eagle recognition datasets. Based on the 

pre-trained model, I fine-tuned the new CNN model and applied the high level features extracted by 

fc6 as an input of LSTMs to make the whole LRCN eagle recognition model for my approach. 

 

3. Dataset  

For this project, we prepared a new dataset of videos and the optical flow images. There are 20 

videos of eagle, 30 videos of falcon and 18 videos of seagull being uses as training data in my 



network. For average, each video has 160 frames.    

The dataset is gathered manually online by myself. They are videos from YouTube, National 

Geography, BBC Nature and Wildscreen Arkive website. Some of these videos can last more than 1 

hour and containing many unrelated information. So the first thing is to find out the sections I can use 

for training and peel off the unrelated parts. To fulfill the real world purpose, the selected video 

sections are always birds flying in the sky. Then all the videos are cut to approximate 5 seconds long. 

Because the CNN and LSTM network won’t take video as input directly. So I have to extract each 

frame out of the video. Then all the frames are resized to 320*240 pixels for fitting as the input of our 

network.  

Besides the original image extracted from videos, I also calculated their optical flow images by 

using MATLAB. The difference between original image and flow image is showed in Figure7. 

Basically, the optical flow function in MATLAB paints the color onto the image according to motion. 

The larger the motion of object, the more colorful the moving part will be in the image. Ideally, it can 

give us more information on the flying pattern of different birds, such as the flapping frequency. I also 

compared the model trained by original images with the model trained by flow images in the result 

section. 

 

Figure7. Original image (top) and calculated flow image (bottom) 

For the training part, I randomly select 90% of the total videos as training data and the remaining 

10% as the testing data. I also saved several unused videos as the final evaluation data for testing final 

performance of my model. To minimize the impact of small training data, I also use the 10-fold 

technology and mirroring of the frame data to extend the training data group.  



 

Figure8.  Left is standing Gyr Falcon. Right is standing Golden Eagle 

 There are four main challenges that impact the performance of the model.  

First challenge is for the CNN model. Because falcon and eagle have very similar appearance. 

With large number of clear images like Figure8 and 9, we can make a high accuracy CNN model for 

classification. But it will not work well in our application because the data itself is not general. In our 

situation, we cannot easily get such high resolution and clear image of our target because of the 

camera. In my model, the input data is always far away in the sky and the resolution is low. That 

means in the testing videos, we may not capture any appearance information of the birds, but the 

flying pose as Figure 8 shows. The still image of birds’ flying patterns won’t give too much cue 

because of similarity. It likely that only using CNN model won’t make correct classification because it 

lacks high detailed features. For LRCN model, we can alleviate this limitation using the time serial 

information as an important feature.  

 

Figure9.  Flying pattern of three birds 

 Secondly, the dynamic background will also become a challenge for our model. Ideally, the 

background of birds should be homogeneous, as Figure 9 shows, which will help emphasizing the 

targets and eliminating distractions. While, in real situation, the background can be tree branches, 

clouds and ocean waves, etc. The importance of a pure background is also caused by the low 

resolution of our video data. Lacking of high level detailed features means the difference of 



background in each frames probably will be learned as features to classify the bird species. It will 

mostly cause the overfitting problem, such that the model are making classification by ‘shortcuts’ that 

is the difference of background.  

 Third, the clip speed of the videos are not consistent. Some of the falcon videos are slowed down 

originally. As the flapping frequency is very important feature for LSTM. The slowed down video will 

generate large number of misleading information. If I don’t adjust the speed accordingly, falcon will 

have a similar flying pattern like eagle. Because falcon originally has almost two time faster flapping 

frequency than eagle. While the video speed adjustment has no ground truth. I can only really on 

personal estimation.   

 Last but not the least, the videos capture by the camera on the wind turbine may vary from the 

ideal training video. In the training data, all the videos are captured under perfect condition, such as 

with stable base, nice telephoto lens. They are all different from the condition in our situation. 

Installed 50 meters above ground with strong wind blowing, the camera cannot easily take stable 

video like we did on the ground. For a light weight design, the camera won’t necessary have a 

telephoto lens on it which will make our target looks even smaller than it’s presented in training data. 

The rotation of the wind turbine will also cause unexpected irregular movement of the installed 

camera which never covered in the training data.  

 Even though there are big challenges of our data, the LRCN model still shows its advantage 

when comparing the single CNN model. We will discuss the result in the next section.  

4. Results 

From our empirical studies, the most influential hyperparameters include the number of hidden 

units in LSTM and the layer of CNN as an input to LSTM. We are using 1024 LSTM hidden unites 

our performance has 2.1% boost in accuracy in comparison to LSTM with 256 hidden units. And 

when using fc6 layer of CNN as input to LSTM, we get a better performance of using fc7 layer in 

CNN. Therefore in the test I use 1024 hidden units in LSTM and fc6 layer of CNN as input to LSTM.  

 To discuss the robustness of our architecture, we use three different data groups for the training 

which are falcon_eagle, seagull_eagle and falcon_seagull_eagle. Based on the various of our 

approach, we trained four different models for each dataset group.  

4.1 CNN/ Flow_CNN 

 

Table 1. CNN/Flow_CNN results on falcon/eagle, seagull/eagle and falcon/seagull/eagle data groups 

The fraction means correct prediction out of ground-truth 



 As Table 1 shows, the average accuracy of using CNN is 78%. Comparing with the Flow_CNN 

which gives 50% accuracy, the original images as input offer more reliable features for classification 

than using optical flow images. Because CNN takes only one image each time for making prediction, 

the sequential flow information is ignored. And the limited appearance in flow image leads to the 

random guess result in the output.  

4.2 LRCN/Flow_LRCN     

 

Table 2. LRCN/Flow_LRCN results on falcon/eagle, seagull/eagle and falcon/seagull/eagle data groups 

The fraction means correct prediction out of ground-truth 

 The average accuracy of using LRCN is 84% which is 6% higher than only using CNN for 

classification. And the Flow_LRCN also yields 65% of accuracy. Unfortunately, the Flow_LRCN 

using optical flow images did not give higher accuracy comparing with LRCN using the original 

frames data. The none-homogenous background must has large impact on the classification.  

4.3 Overall Comparison  

 

Table 3 . Final result of using three models-Falcon/eagle (top left), Seagull/eagle(top right), Falcon/seagull/eagle 

(bottom). The fraction means correct prediction out of ground-truth 

 

From Table3, the overall performance of using LRCN is higher than using single CNN network in 

most cases. Especially, in the three species model, the LRCN improves accuracy by 6.67% on predicting 

falcon/seagull and 7.69% on predicting eagle than using single CNN.  

Surprisingly, the CNN model still gives as high accuracy as LRCN model on Falcon/eagle and 

Seagull/eagle data groups. It means the CNN model is well designed enough to handle fine-grained 



bird classification by little appearance images. While, with the including of more negative data 

(falcon/seagull) the CNN model shows its disadvantage comparing with the LRCN model. The mixed 

high level features of both falcon and seagull become a bottleneck of the model which is hard to 

improve. While, with the help of LSTM, the LRCN model can successfully overcome the drawback 

and make correct classification by the movement pattern between video frames. 

For optical flow images, the accuracy of falcon/eagle dataset is lower than the models using 

original image as input data. There are number of reasons. Mostly, the camera is moving during the 

recording process which means the eagle maybe not the only moving object in the frames. When the 

background moves, the calculated optical flow image will give large weight to the background. This 

will cause noise for our classification because the background should not become the main feature 

during LRCN training. Inside the falcon testing data, it contains a lot of trees as the background. The 

low accuracy of flow falcon/eagle images is mainly caused by that reason. On the other side, the 

seagull/falcon flow image dataset yields higher or as much accuracy as original image dataset for both 

model. It’s caused by the homogenous background of the seagull dataset which largely reduced noise 

to the model. 

By the comparison of different birds’ data groups and flow/original images, LRCN shows its 

advantage on most of the cases than single CNN model. While, the optical flow data is not so reliable 

with nonhomogeneous background. 

 

4.4 Running time  

 The network training process is one of the most time-consuming part of our project. The training 

was done on the campus server: gpu-bart.eecs.oregonstate.edu. The graphic cards installed on the 

server are two NVIDIA K80, each with 24GB memory and 4992 CUDA cores.  

We fine-tuned the CaffeNet from Zeiler&Fergus [15]. There are totally 7000 images in the 

training group and 1000 images in the testing group. It took 5 hours and 4 GB of memory for fine-

tuning one model with 50000 iterations. After the training of CNN, we fused the CNN with LSTM and 

started training the LRCN model. It took 3 days and 11 GB of memory for training each model with 

30000 iterations. Finally, it will take 2 hours to run the extra evaluation image group. It approximately 

took one week to finish one LRCN model using one data group. There are three data groups and two 

LRCN models I trained in our project in total.   

 

 

 



5.  Summery  

Overall, the key contribution of our work is to show that a robust fine-grained object detection can 

be done in low resolution videos using a deep recurrent neural network. Another contribution is 

evaluating and benchmarking the approach on a new dataset. Because this is to the best of our 

knowledge, the first model and dataset for fine-grained bird detection in videos. 

While, there is still various way to improve this project. When analyzing the output, I found that 

the larger training data group on one class will yield a higher accuracy on this class. In falcon/eagle 

data group, I have 30 videos of falcon and 20 videos of eagle as training data. The accuracy of 

predicting falcon is higher than accuracy of predicting eagle. Same thing happened in seagull/eagle 

data group. To reduce this impact, the next step will be collecting more dataset for training and give 

same number of training data for each class. To better discuss the using of optical flow image as 

training data, it would be necessary to collect more videos with homogenous background for training, 

as well. 
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