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Goals: Object Recognition

discover and learn all objects present

input image set

new image

detect
segment
explain

all occurrences 
of the learned objects
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Goal: Video Painterly Rendering

video sequence enhanced with multiple painting styles
-- one per each object

flower petals = van Gogh
stamens = expressionism
background = pointilism
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Goals: Texel-based Texture Segmentation

Many applications require 
unsupervised partitioning of the image into 

textured and non-textured subimages

5



training 
images

object 
representation

feature 
extraction

recognition
localization

segmentation
explanation

Prior Work: Object Recognition

high degree of supervision relaxing supervision requirements
predominance of keypoint features using richer features: regions

ignoring the spatial info accounting for multiscale spatial info
limited goals unified framework for many goals

PRIOR WORK OUR EXTENSIONS
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Prior Work: Painterly Rendering

Uses only a single style Object-based multiple styles
Unrealistic, poor artistic expression Rich artistic expression

PRIOR WORK OUR EXTENSIONS
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Prior Work: Texture Segmentation

Uses a pre-specified bank of filters Extraction of texels
Assumptions: smoothness, scale Relaxing the assumptions

PRIOR WORK OUR EXTENSIONS

meanshift active contours our results
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WHAT  IS  AN OBJECT?
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Properties of Objects

cohesive occupy regions

form characteristic spatial 
configurations with other objects context

have parts subregions

parts have characteristic 
spatial layout spatial layout of subregions

3D objects in the scene 2D objects in the image
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Rationale for Learning -- Like a Small Child

It is likely to be meaningful:

• If some parts repeat in the set of images

• If some configurations of the learned parts repeat in the set

input images
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Physical Objects in 3D World vs. 2D ObjectsRationale -- Like a Small Child

It is likely to be meaningful:

• If some parts repeat in the set of images

• If some configurations of the learned parts repeat in the set
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Physical Objects in 3D World vs. 2D ObjectsRationale -- Like a Small Child

It is likely to be meaningful:

• If some parts repeat in the set of images

• If some configurations of the learned parts repeat in the set

Rationale for Learning -- Like a Small Child

input images
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Any similar 2D objects?Category = Set of Similar 2D Objects
(1)  Photometric (e.g., color)  

(2)  Geometric (e.g., area, shape)

(3)  Structural:  

           spatial layout of subcategories 

           containment of subcategories

Category = Set of Recurring Similar 2D Objects

input images
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Any similar 2D objects?Category = Set of Similar 2D Objects
(1)  Photometric (e.g., color)  

(2)  Geometric (e.g., area, shape)

(3)  Structural:  

           spatial layout of subcategories 

           containment of subcategories

recursive 
definition

Category = Set of Recurring Similar 2D Objects

input images
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Problem Statement

• Given a set of images

• Discover frequently occurring 2D objects

• Under illumination and scale changes

• Amidst background clutter

• Under partial occlusion

• Learn their generative, statistical models

• Use the models for

• Object recognition

• Object-based painterly rendering and synthesis

• Texel-based texture segmentation

15



Rest of the Talk

1. Image representation = Hierarchy of regions

2. Region matching

3. Applications and results
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Image = Tree  ⇒  Object = Subtree

Ahuja PAMI96, Tobb & Ahuja TIP97, Arora&Ahuja ICPR06

multiscale segmentation segmentation tree
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Connected Segmentation Trees

Hierarchical links = Region embedding

Lateral links = Region neighbor relations

Ahuja&Todorovic CVPR08
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• Gray-level contrast with surround

• Boundary shape

• Displacement of centroids

• Orientation

Region Properties Associated with Each Node

...

Properties relative wrt parent  ⇒  Scale and in-plane rotation invariance
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Rest of the Talk

1. Image representation = Hierarchy of regions

2. Region matching

3. Applications and results
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How to Discover Repeating Image Parts?

Object category is present = Many similar subgraphs

Discovering objects = Graph matching
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Graph Matching = Subgraph Isomorphism

Match two regions 

• If their immediate properties are similar 

•AND the same holds for their subregions

•AND the same holds for their neighbors
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which minimizes their cost of matching:

Graph Matching: Formulation

Given two graphs:                          andG = (V, E) G′ = (V ′, E′)

Find the mapping f = {(v, v′)} ⊂ V × V ′

unary potential
function of region properties

pairwise potential
function of spatial relationships

COSTGG′ = min
f




∑∑∑

(v,v′)∈f

ψvv′ +
∑∑∑

(v,v′,u,u′)∈f×f

φvv′uu′




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Linearization by introducing an indicator vector

Graph Matching: Formulation

X = [0 0 1 0 0 1 ... 0 1 0]T

(v, v′) (u, u′)matched pair unmatched pair

⇓
Discrete problem

s.t. xvv′ ∈ {0,1}

min
X

[
ΨT X + XT ΦX

]
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Relaxation of the discrete problem

Graph Matching: Formulation

s.t.

Todorovic&Ahuja IJCV08, PAMI08, CVPR06-08, ICCV07, ICPR06-08

min
X

[
ΨT X + XT ΦX

]

∀xvv′ ≥ 0,
∑∑∑

v

xvv′ = 1,
∑∑∑

v′

xvv′ = 1
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Rest of the Talk

1. Image representation = Hierarchy of regions

2. Region matching 

3. Applications and results

a. Object recognition

b. Painterly rendering

c. Texture segmentation
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training images
Discovering Objects = Matching + Clustering

discovered category occurrences
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Learning Repeating Image Parts = Matching + Cluster

Each cluster = Distinct Object

training images
Discovering Objects = Matching + Clustering
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Learning a Model of Each Cluster = Structural EM

matched subgraphs hierarchical object model

model structure ?

model parameters ?
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Category Model = Bayesian Net

...

...

...
yij

...

yjl

xi

xj

xk

yki

Nj

Ni

Nk

...

region properties

number of children

object part (hidden)
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Category Model = Bayesian Net

...

...

...
yij

...

yjl

xi

xj

xk

yki

Nj

Ni

Nk

...

region properties

number of children

object part (hidden)

P (X, Y, N |T ,Ω)=
∏∏∏

j∈T

P (Nj|xj)

Nj∏∏∏

i=1

P (xi|xj)P (yij|xixj)

Exponential Gaussian

Markovian chainstructure + parameters
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Structural EM = Learning Grammar

Given T
Belief propagation ⇒ Ω

Given Ω
Graph matching ⇒ T

ΩT
Category model

T model structure

Ω model parameters

Todorovic&Ahuja  ICCV07

Learning a Model = Structural EM
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training images category model

Results: Weizmann Horses

Todorovic&Ahuja  PAMI08
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Results: Weizmann Horses

• Object segmentation is good on contours that are:
• Jagged 
• Blurred
• Form complex patterns

• Low-contrast regions merge with background
Todorovic&Ahuja  PAMI09
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UIUC Hoofed Animals Dataset
http://vision.ai.uiuc.edu/~sintod/HoofedAnimalsDataset.html

training images
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Multi-Object Recognition
1. TREE MATCHING
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Overview of Multi-Category Recognition
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Overview of Multi-Category Recognition

2. CLUSTERING

1. TREE MATCHING

3. TAXONOMY OF ALL 
DISCOVERED CATEGORIES 

WITH DIFFERENT COMPLEXITIES

4. RECOGNIZE
SEGMENT
EXPLAIN
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Simultaneous Recognition and Segmentation
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Results: AnimalsSimultaneous Detection, Recognition, SegmentationSimultaneous Recognition and Segmentation
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Discriminative Learning of Object Parts

baseball! people! wagon! horses!

discovery of subcategories in segmentation trees trees  =  points in the feature space of subcategories

linear classifier!

Zero !

relevance !

Max !

relevance !

rescaled axesaxis = subcategory

two categories !
of image points!

ball!

house!

leg!

tree!

face!

wheel!

Todorovic&Ahuja  CVPR08
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CVPR 2008: Results on Caltech-256

Published, best categorizations on Caltech-101 and Caltech-256 

Caltech-101:

Ours

Bosch-ICCV07

Frome-ICCV07

CaltechTechRep07

Zhang-CVPR06

Lazebnik-CVPR06

Todorovic-CVPR06

Caltech-256:

Ours

Bosch-ICCV07

CaltechTechRep07

Todorovic-CVPR06
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Rest of the Talk

1. Image representation = Hierarchy of regions

2. Region matching under unstable segmentations

3. Applications and results

a. Object recognition

b. Painterly rendering

c. Texture segmentation
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Multi-style Painterly Rendering

Collaboration with Prof. Eugene Zhang at Oregon State University
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Results: Video Object Segmentation

 Brendel&Todorovic ICCV09
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Results: Multi-style Painterly Rendering

Collaboration with Prof. Eugene Zhang at Oregon State University
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Rest of the Talk

1. Image representation = Hierarchy of regions

2. Region matching under unstable segmentations

3. Applications and results

a. Object recognition

b.Video object segmentation

c. Painterly rendering

d.Texture segmentation
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What is image texture?

...Repeated occurrence of image texture elements (or texels)...

[Beck ‘82]
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Texture = Spatial Repetition of Texels

• Image texels = Images of physical texture elements 

• Texels are not identical, only statistically similar

• Texel placement is not regular
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EvaluationResults: Texel Segmentation

original image extracted texels

Results: Unsupervised Texel ExtractionResults: UIUC Texture Dataset

 Ahuja&Todorovic ICCV07
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EvaluationResults: UIUC Texture Dataset

original image texel segmentation

 Ahuja&Todorovic ICCV07
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Results: Texture Segmentation

 Todorovic&Ahuja ICCV09
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Results: Texture Segmentation

original image filter-based
Galun et al ICCV03

texel-based
Todorovic&Ahuja ICCV09
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Summary
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Summary

• Hierarchical region-based image representation

• Robust matching of regions

• Operative definition of an object category

• Hierarchical taxonomy of shared categories

• The framework allows:

• Simultaneous recognition and segmentation

• Semantic basis of recognition

• Space-time coherent video object segmentation

• Texel-based texture analysis
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Thank you!

54


