From Hierarchies of Regions to Image Understanding

Prof. Sinisa Todorovic

Acknowledgment

UIUC: Prof. Narendra Ahuja

Oregon State University:
William Brendel
Nadia Payet
Muhamed Amer
Prof. Eugene Zhang

Goals: Object Recognition

input image set

discover and learn all objects present

new image

detect
segment
explain
all occurrences
of the learned objects

Goal: Video Painterly Rendering

video sequence enhanced with multiple painting styles
-- one per each object

flower petals = van Gogh stamens = expressionism background = pointilism

Goals: Texel-based Texture Segmentation

Many applications require unsupervised partitioning of the image into textured and non-textured subimages

Prior Work: Object Recognition

PRIOR WORK

OUR EXTENSIONS

high degree of supervision	relaxing supervision requirements
predominance of keypoint features	using richer features: regions
ignoring the spatial info	accounting for multiscale spatial info
limited goals	unified framework for many goals

Prior Work: Painterly Rendering

PRIOR WORK

OUR EXTENSIONS

Uses only a single style	Object-based multiple styles
Unrealistic, poor artistic expression	Rich artistic expression

Prior Work: Texture Segmentation

PRIOR WORK

OUR EXTENSIONS

Uses a pre-specified bank of filters	Extraction of texels
Assumptions: smoothness, scale	Relaxing the assumptions

meanshift

active contours

our results

WHAT IS AN OBJECT?

Properties of Objects

3D objects in the scene ———— 2D objects in the image

cohesive	occupy regions
form characteristic spatial configurations with other objects	context
have parts	subregions
parts have characteristic spatial layout	spatial layout of subregions

input images

- If some parts repeat in the set of images
- If some configurations of the learned parts repeat in the set

input images

- If some parts repeat in the set of images
- If some configurations of the learned parts repeat in the set

input images

- If some parts repeat in the set of images
- If some configurations of the learned parts repeat in the set

input images

- If some parts repeat in the set of images
- If some configurations of the learned parts repeat in the set

- If some parts repeat in the set of images
- If some configurations of the learned parts repeat in the set

Category = Set of Recurring Similar 2D Objects

- (1) Photometric (e.g., color)
- (2) Geometric (e.g., area, shape)
- (3) Structural:

spatial layout of subcategories

containment of subcategories

Category = Set of Recurring Similar 2D Objects

- (1) Photometric (e.g., color)
- (2) Geometric (e.g., area, shape)
- (3) Structural:

recursive definition

spatial layout of subcategories

containment of subcategories

• Given a set of images

- Given a set of images
- Discover frequently occurring 2D *objects*
 - Under illumination and scale changes
 - Amidst background clutter
 - Under partial occlusion

- Given a set of images
- Discover frequently occurring 2D *objects*
 - Under illumination and scale changes
 - Amidst background clutter
 - Under partial occlusion
- Learn their generative, statistical models

- Given a set of images
- Discover frequently occurring 2D *objects*
 - Under illumination and scale changes
 - Amidst background clutter
 - Under partial occlusion
- Learn their generative, statistical models
- Use the models for
 - Object recognition
 - Object-based painterly rendering and synthesis
 - Texel-based texture segmentation

Rest of the Talk

1. Image representation = Hierarchy of regions

2. Region matching

3. Applications and results

Image = Tree ⇒ Object = Subtree

Ahuja PAMI96, Tobb & Ahuja TIP97, Arora&Ahuja ICPR06

Connected Segmentation Trees

Lateral links = Region neighbor relations
Hierarchical links = Region embedding

Ahuja&Todorovic CVPR08

Region Properties Associated with Each Node

- Gray-level contrast with surround
- Boundary shape
- Displacement of centroids
- Orientation

•

Properties relative wrt parent \Rightarrow Scale and in-plane rotation invariance

Rest of the Talk

1. Image representation = Hierarchy of regions

2. Region matching

3. Applications and results

How to Discover Repeating Image Parts?

Object category is present = Many similar subgraphs

Discovering objects = Graph matching

Graph Matching = Subgraph Isomorphism

Match two regions

- If their immediate properties are similar
- AND the same holds for their subregions
- AND the same holds for their neighbors

Graph Matching: Formulation

Given two graphs:
$$G = (V, E)$$
 and $G' = (V', E')$

Find the mapping
$$f = \{(v, v')\} \subset V \times V'$$

which minimizes their cost of matching:

$$COST_{GG'} = \min_{f} \left[\sum_{(v,v') \in f} \psi_{vv'} + \sum_{(v,v',u,u') \in f \times f} \phi_{vv'uu'} \right]$$

unary potential function of region properties

pairwise potential function of spatial relationships

Graph Matching: Formulation

Linearization by introducing an indicator vector

$$X = [0\ 0\ 1\ 0\ 0\ 1\ ...\ 0\ 1\ 0]^T$$
 matched pair (v,v') unmatched pair (u,u')

 \downarrow

Discrete problem

$$\min_{X} \left[\Psi^T X + X^T \Phi X \right]$$

s.t.
$$x_{vv'} \in \{0,1\}$$

Graph Matching: Formulation

Relaxation of the discrete problem

$$\min_{X} \left[\Psi^T X + X^T \Phi X \right]$$

s.t.
$$\forall x_{vv'} \geq 0, \quad \sum_{v} x_{vv'} = 1, \quad \sum_{v'} x_{vv'} = 1$$

Todorovic&Ahuja IJCV08, PAMI08, CVPR06-08, ICCV07, ICPR06-08

Rest of the Talk

- 1. Image representation = Hierarchy of regions
- 2. Region matching
- 3. Applications and results
 - a. Object recognition
 - b. Painterly rendering
 - c. Texture segmentation

Discovering Objects = Matching + Clustering

training images

Discovering Objects = Matching + Clustering

training images

Each cluster = Distinct Object

Learning a Model of Each Cluster = Structural EM

matched subgraphs

hierarchical object model

model structure?

model parameters?

Category Model = Bayesian Net

Category Model = Bayesian Net

$$P(X,Y,N|\mathcal{T},\Omega) = \prod_{j\in\mathcal{T}} P(N_j|x_j) \prod_{i=1}^{N_j} P(x_i|x_j) P(y_{ij}|x_ix_j)$$
 structure + parameters Markovian chain

Learning a Model = Structural EM

Todorovic&Ahuja ICCV07

Results: Weizmann Horses

training images

category model

Todorovic&Ahuja PAMI08

Results: Weizmann Horses

- Object segmentation is good on contours that are:
 - Jagged
 - Blurred
 - Form complex patterns
- Low-contrast regions merge with background

UIUC Hoofed Animals Dataset

http://vision.ai.uiuc.edu/~sintod/HoofedAnimalsDataset.html

training images

Simultaneous Recognition and Segmentation

Simultaneous Recognition and Segmentation

Discriminative Learning of Object Parts

discovery of subcategories in segmentation trees

trees = points in the feature space of subcategories

CVPR 2008: Results on Caltech-256

Published, best categorizations on Caltech-101 and Caltech-256

Rest of the Talk

- 1. Image representation = Hierarchy of regions
- 2. Region matching under unstable segmentations
- 3. Applications and results
 - a. Object recognition
 - b. Painterly rendering
 - c. Texture segmentation

Multi-style Painterly Rendering

Collaboration with Prof. Eugene Zhang at Oregon State University

Results: Video Object Segmentation

Brendel&Todorovic ICCV09

Results: Multi-style Painterly Rendering

Collaboration with Prof. Eugene Zhang at Oregon State University

Rest of the Talk

- 1. Image representation = Hierarchy of regions
- 2. Region matching under unstable segmentations
- 3. Applications and results
 - a. Object recognition
 - b. Video object segmentation
 - c. Painterly rendering
 - d. Texture segmentation

What is image texture?

...Repeated occurrence of image texture elements (or texels)...

[Beck '82]

Texture = Spatial Repetition of Texels

- Image texels = Images of physical texture elements
- Texels are not identical, only statistically similar
- Texel placement is not regular

Results: UIUC Texture Dataset

original image

extracted texels

Results: UIUC Texture Dataset

original image

texel segmentation

Results: Texture Segmentation

Results: Texture Segmentation

Todorovic&Ahuja ICCV09

Galun et al ICCV03

• Hierarchical region-based image representation

- Hierarchical region-based image representation
- Robust matching of regions

- Hierarchical region-based image representation
- Robust matching of regions
- Operative definition of an object category

- Hierarchical region-based image representation
- Robust matching of regions
- Operative definition of an object category
- Hierarchical taxonomy of shared categories

- Hierarchical region-based image representation
- Robust matching of regions
- Operative definition of an object category
- Hierarchical taxonomy of shared categories
- The framework allows:
 - Simultaneous recognition and segmentation
 - Semantic basis of recognition
 - Space-time coherent video object segmentation
 - Texel-based texture analysis

Thank you!